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Abstract

A digraph D is a local out-tournament if the outset of every vertex
is a tournament. Here, we use local out-tournaments, whose strong
components are upset tournaments, to explore the corresponding ranks
of the adjacency matrices. Of specific interest is the out-tournament
whose adjacency matrix has boolean, nonnegative integer, term, and real
rank all equal to the number of vertices, n. Corresponding results for
biclique covers and partitions of the digraph are provided.

1 Introduction

The topics of local tournaments, {0, 1}-matrix ranks, upset tournaments, and digraph
biclique cover and partition numbers have been the foundation of many papers in
the area of graph theory. Work in the area of local tournaments originates with
Bang-Jensen [1]. Further work includes Bang-Jensen et al. [3], Bang-Jensen, Hell,
and Huang ([4], [16]), and Huang [17], with the introduction of local in- and out-
tournament digraphs by Bang-Jensen et al. [5].

Biclique cover and partition numbers of bipartite graphs and digraphs, as well as
the related matrix ranks of the corresponding adjacency matrices, have been popular
research topics during the past twenty-five years. As the answer to the interesting
question of what digraphs have adjacency matrices with equal semiring ranks remains
elusive, many have partially answered the question by considering certain classes of
digraphs. The following list represents only a portion of the research that has been
generated by this interest. See Brualdi et al. [7], Barefoot et al. [6], deCaen [9],
Doherty et al. [10], Gregory et al. [11], Hefner (Factor) et al. ({12}, {13], [14],(15]),
Lundgren and Siewert ([18], [19], [20]), Maybee and Pullman [21], Monson et al. {22],
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Orlin [23], and Shader [25].

We further this research by bringing together concepts from these areas, and begin-
ning the exploration of matrix ranks of the adjacency matrices of local out-tournaments,
This is done through the use of upset tournaments that serve as the building blocks
of the local out-tournaments. In this paper, we are interested in isolating the di-
graph structures that have adjacency matrices with full real rank, which is equal to
the boolean, nonnegative integer, and term ranks.

The structure of the local out-tournament is determined in the first part of this paper
following the definitions and preliminary results. Additionally, upset tournaments
are defined and then used as the strong components of local out-tournaments. The
resulting adjacency matrices are examined to determine which of these digraphs have
corresponding adjacency matrices, A, where r (A) = rg(A) =rz+(A) =1 (4) = n.
Similar results follow for the associated biclique cover and partition numbers of the
out-tournaments. Finally, open questions are discussed.

2 Terminology and Preliminaries

Many notational conventions are adopted from Bang-Jensen and Gutin [2]. A digraph
D = (V, A), where V (D) is the nonempty vertex set of D and A (D) is the arc set
of D. For any arc (u,v) € A(D), we say that u dominates (or beats) v, and write
u — v. The outset of a vertex v, O (v), is the set of all vertices that v dominates, and
|O*(v)] = d*(v). Similarly, the inset of a vertex v, O~ (v), is the set of all vertices
that dominate v, and |O~(v})| = d~(v). In this paper, all digraphs are considered to
be loopless. If we condense D by replacing each strong component with a vertex,
the strong component digraph, SC (D), is obtained. A digraph D is connected if its
underlying graph is connected,

A tournament is a digraph where each pair of vertices defines exactly one arc. A
local out-tournament (respectively, local in-tournament) is a digraph where the outset
of every vertex is a tournament (respectively, the inset of every vertex). For ease in no-
tation, these digraphs will often be referred to as out-fournaments and in-tournaments.
A local tournament is a digraph where both the inset and outset of every vertex is a
tournament. Local tournaments are also referred to more generally as locaily semi-
complete digraphs. To use the language of the majority of the research done on bi-
clique covers and partitions and the associated matrix ranks, the authors will use the
more specialized terms of local, in- and out-tournaments. Related to the results on in-
and out-tournaments is out-branching and in-branching. A subdigraph T of D is an
out-branching if T is a spanning, oriented tree of D and T has only one vertex v of in-
degree zero. An in-branching is defined analogously with only one vertex of outdegree
zero,

The relationship of domination is an important one in defining the structure of the
out-tournament. Therefore, it is necessary to use notation that models certain nuances
in the domination relationships. Let D, and D, be vertex disjoint digraphs. The
notation Dy == Dj, means that there is no arc from V (D) to V (D;). If every
vertex in Dy dominates every vertex in Dy, then we use D; — D,. Since we will be
using tournaments as strong components, it will be the case that if arcs go one direction

e i o o o

oing in the other direction.

i t be any g
between the strong components, then there will no y 8 minates v (Dp) and
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negative ;nteger rank, rz+ (A). The boolean rank (?f t;l a'r:d e T; 1) matrix p
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d - , e
adeﬁt:::i csu:x}:la:r!y using a partltlomflg of the edges of G. By labeling the rows of the
adjacs nu)rrn A :rsnxt ;)):‘ : dj;gcr::: D vs;xth a ;etD of numbers and the columns with a disjoint
et of ) : Cy matrix o also represents the adja i
bipartite graph B. Using this common matrix, the following resultJ isc Zﬁirﬂ?x o

Lemma 2.3 [11] IfD is a digraph, thenrg (A) = be (D) and rz+ (A) = bp (D).

The bicliques of B corres i icli
[ ( pond to directed bicliques of D. In thi i
. is
;elatnonshlp to' gxtend the results obtained for the matrix ranks to ingiz‘;r,ﬂ:v B!;I'ST.UHS
over and partition numbers of the out-tournaments. e e

3 Local Qut-Tournaments and Upset Tournaments

3.1 Out-Tournaments

B . .

toeﬁ(:lr:e:c;r::in:;g the {0, 1}-matrix .ranks of the local out-tournaments, it is important

(o understand e str.ucture of the digraphs. It is this that will determine which out-
ents have adjacency matrices with full and equal ranks.

Bang-
o mge i :snsg? 1[)1 ]1 ssgu:ws tlhat local tournaments have a structure that resembles that of
o addition i‘f ot ocal tournament, tht_an every strong component is a tournament.
e %or wo siro g components are adjacent in D, then one completely dominates
onty the outect of ea-c 1t:umament, however, not all of this structure i necessary. Since
Oy ane outset of ach ve;t;‘);snzcirl;esz (t:r)lumament, the constraints on the structure
0 ) ? i
ncc;:ssanly a tournament, and complete dom%n‘;(t,il:: (1);1 :122 ?jq?x?rgg Hioumement 1 not
n-to i i .
- (t)fl:;l;a:rllzr; ld;graphs were.exarpmed in depth by Bang-Jensen et al. [§], and
e in-toumam); I1:tg :ltlructure 1dentl.ﬁed'. The following lemma and theorem a;e re-
iy om-toumamemss ’;; are of speglﬁc interest in this paper in defining the structure
equivalont, and . e corollaries following each result are the out-tournament
, and come from the out-tournament being the converse of the in-tournament

Lemma
3.1 [5] Every connected in-tournament has an out-branching.
Corollar

¥ 3.2 Every connected out-tournament has an in-branching

Theorem 3.3 [5] Let D be an in-tournament.

(@) Let A o
SOme)vertex i:'g Itghz: Zlﬁnc;strong components of D. If a vertex a € A dominates
cachb e B, , . Furthermore, AN O~ (b) induces a tournament for
(W) If D is
connected, then SC (D) has an out-branching. Furthermore, if R is

the-root and A is
any other compo :
components that can reach A iponent, there is a path from R to A containing all the

Figure 1: (a) shows an out-tournament whe

Corollary 34 Let D bean out-tournament.
(a) Let A and B be distinct strong components of D. Ifavertex b € B is dominated

by some vertex in A, then A+ b, Furthermore, BN O+ (a) induces a tournament for

each a € A.

(b) If D is connected, then S
vertex with out-degree of zero an
§ containing all components that can re

C (D) has an in-branching. Furthermore, if S is the
is a path from A to

d A is any other component, there
ach S.

(b)

re tournaments form one strong component.

(b) shows an out-tournament composed of two transitive tournaments.

In general, when constructing an out-tournament, it is not true that each strong com-
ponent is a tournament. Figure 1(a) illustrates the possibility that an out-toumafnent
might have a strong component that is comprised of separate tournaments. Figure
1(b) shows two transitive tournaments that form a strong component where the re-
sulting digraph is an out-tournament. The strong component digraph for each of the

Thus, we can have an

out-tournaments in Figure 1 condenses down to one vertex.
rnaments are some OF all of the strong components, of out

out-tournament where tou

tournaments where none of the components are tournaments. Since the §tructure of
out-tournaments has not been completely characterized, but has been described for the
strong component structure, we focus on out-tournaments whose strong components

are all tournaments.

3.2 Upset Tournaments
When implementing a structure where t are ?he strong components, it is
helpful for our purpose to use tournaments for which information exists 88 to thP
boolean, nonnegative integer, and term ranks of the tournament matrices. For this

paper, we restrict our exploration to out-tournaments whose strong compqnents are
st describe the standard form that 18 used to

upset tournaments. To this end, we fir :
represent the upset matrices, then verify that they are, indeed, strong tournaments.
ts upset path.

Figure 2 shows an upset tournament in standard form by representing i
tion. The arcs (’U],’UQ) and (vn_l,vn?

All other arcs are directed in the opposite direc ,

are in every upset path. The arc (v, v;) can only be on the upset path when ¢ < g

Vertices are presented in the order vy, V2, -1 ¥Vn- .
As stated by Poet and Shader [24], every upset tournament 18

ournaments

jsomorphic to exactly
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Figure 2: Upset tournament in standard form — all other arcs are directed down,

one upset tournament in standard form. Additionally, this results in having a unique
path from v, to v,,.

Lemma 3.5 [24] Let T be an upset tournament in standard form., Then T has a
unique path from vertex vy to vertex v,, and this path consists of the upset arcs of T.

A result of Lemnma 3.5 is that we know that an upset tournament is strongly con-
nected,

Proposition 3.6 IfT is an upset tournament, then T' is strongly connected.

Proof. Let T be an upset tournament in standard form. By Lemma 3.5, there is a
unique path from vy to v,. Vertex vn, dominates all vertices except vertex v,,;, and
reaches v, using arc (v,, v;) and the upset path. If v is a vertex on the upset path
other than v,,, then v reaches Un~1 and v,. It reaches all other vertices through v,. If
v is a vertex that is not on the upset path, then v dominates vy, and reaches all vertices

on the upset path through v;. It then reaches all vertices not on the upset path from v,,.
Thus, T is strongly connected, OJ

Because the upset tournaments are strong,

they can be used as the strong compo-
nents of a local out-

tournament D. Corollary 3.4 guides the placement of arcs between
upset tournaments T; and T;. Additionally, the structure of SC (D) is acyclic, but the
underlying graph is not necessarily a tree. The second part of the following lemma

addresses the structure when two upset tournaments are dominated by a third upset
tournament,

Lemma3.7 LetD beg local out-tournament with strong components T;, T;, and T},
where v; € V (T), vj € V(T}), and v € V (Ty).

(@ YT and Ty are upset tournaments where (vi,vy) is an are in D, then
T¢ — Vj.

) YT, Ty, and T}, are upset tournaments where T; = T; and T; = T},
then Ty == T, or Tj = T;.

Corollary ,

, we can use part (b) from ¢ structure. Given
gxzrggi:gt?c;:tol:s(:p(;gﬂ the further understanding %f;hemﬁ;[:i f}. — T, then
that upset tournaments T, T and T}, are strong, 1t & S and T; — vk BY

. p—t Vs
there exists v; € V (Tj) and vi € v (Tk) gu: § ::1: tuip ;. tournajment, so they must be
; and vk .  — T
definition of an out-tournament, both UJF‘:om part (a), we extend this to T} g O

V4.
adjacent. Thus, v; — Vg Of Vg — Vj |
T:t——’ vy So, T_-,' = T} or Ty => TJ. O

4 Matrices and Matrix Ranks

compo-
i set tournament Srong ¢
o o B g which of these digraphs

structure of the out- ' t
1:;1\:'5 t::st. :;lleeen described, we direct our atten_t_lon to(it;d:m T = o o 0. we
have adjacency matrices with 7 (A)=re(A) = :g:matrices.
use results on the matrix ranks of upset touman'.x % A of outtoumament b
i ider the basic structure of the adjacency mé o upset o aments

i e ts T:. Let A; be the adjacency matrices 0 B O S0 (D)
b flt‘;long.;gnzll);)n;r;s Vt;;tices T,. We will carefully order the ve

i us T; ‘v
g;sed upon the following proposition.

. : its vertices.
P ition 4.1 [2] Every acyclic digraph has an acyclic ordering of its
ropos :

) be more than one
‘o hing, there may . th
: is only guaranteed an in-branc t there is a pa

r::“i:z gg gg)) \fi&nigdi‘;ree of zero. Thusi, w: ciﬁ:?tth?::‘;st:: acyclic ordering

ve iton 4.1 states : ix

. . . However, Proposition L adjacency matri

mfc:;:dlgg ev\?\g ;eill:e:ssume this ordering of the T;. This gives the adj

of the T;.

t along
ine places each componen

in Figure 3. The ordering p

structure for SC (D) shown in

the diagonal.

Ty
T3

Q's T;

i ﬂl tour llalllellt.

1 . i djacency matrix
K i i - above, we obtain the a :
i lic labeling of the T,.a . S e
teurepl?grttlkileesaadjaec:?c,; matrix of D shown in Figure 4, The two stru th
structure fo

jangle
; that the upper triang
nts in D. Note Jues can
T\ are strong compone < because these valu
i onl}tl' l‘:e;]a ‘:::trt?;s ;re not labeled with values. Thatis b
regions of bo

C | W shown sre 2t s in the upper triangular
va hn.le the Vahtllesstructure: of D dictates the plac':ement of :ss in ;rc : npp " on ol of
i OHS;C‘!EF tlﬁoscc:;:nleing to part (a) of Lemma 3.7, if vy, vy) 18 80 D
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in order to satisfy Lemma
vg}. Itisthe minimum set
wn in Figure 5.

than zero. So, every

A
Ay then Ty — {vs,ve}. All of Tp must dominate vs and vg
3.7. The vertices in T could also dominate more than {vs,
that must be dominated. The adjacency matrix A (D) is sho

0O
O's A,
19 an upset tournament, every vertex has an outdegree greater
row in the adjacency matrix of an upset tournament contains a 1. Visually, a directed
block of 1’s in the digraph’s adja-

biclique of a digraph is 2 submatrix which forms a
cency matrix. Inabiclique partition, these submatrices must be disjoint. Ina biclique
cover, they may overlap. Given the structure of the adjacency matrices here, every
biclique in A; can be expanded to cover any I’s to the right of A; ina biclique cover.
t in determining what upset tournaments can be used as

Figure 4: Adj
: Adjacency matrix structu
. re
matrices of the strong components of an out-tournament where A; are the adjacency

the vertices in T; domi
i dominate v;. This tr ; ; . N
@d above A;. Thereisa 1 ii-n evry roansl:tes. into a column of I’s to the right of A; :" This relationship 1s.1mportan
v;. w of A; in the column corresponding to verte ;{ strong components m out-tournaments where bc (D) =bp (D) =n.
In the matrix, it ‘ .
. , it may become ne . 1
regions. To help in the identificati cessary to discuss particular | 01000
n; be the numb:r of v:tc:::hficz;,on procesks, the following notati;:‘:,vsi,llc;;umnds ’ s;:xed \‘0 0100 ((;1 B= {v1,v4,vs.va}-—-> {vz}
s in T;, L used. t =
be labeled vi1, viz, ..., in,. If this i So, Y-, i = n. Further, let the vertices of 7} 5 100100 82 bavarel o)
A, then vertex v would b s extended to the labeling of column ol By = o, ve 1 Broval
To further idém‘ e represented by column and row n; + s and rows in ‘ 110010 By={a}— frv2vs}
conjunction with thlfy the structure of these matrices, consid L oL . . 111001
. e acyclic labeling th , consider part (b) of Lemma 3.7 i : Bs =5 {!’1»"2,"3,"5}
if T; and T; are adjacent, th g that has been adopted. With the acycli - 111100
, then T; = T} if and only if ¢ < j A)c;fiilt(i:;abﬁlmg% :
| nally, i ] )
Figure 6; Adjacency matrix of an upset tournament on 6 vertices, and 2 minimum bi-

T; = T;and T,
L i == T, we willh
are isomorphic within labeli ave T; = T}, whenever j ; :
these indiézs, Irvlv;;hlir;' :ﬁ:ehflg, we will assume the alph:e; gd:riﬁ.g ilfnf:e the_ digraphs
columns of A and re is a submatrix of 1’s in th i <J < kfor
; and Ayg, then the . e rows of A; that includ
same columns of A ’ re will be a submatrix of 1%s i c8 some
k- s in the rows of A; in th '
e
d Consider the matrix in Figure 6 representing an upset tournament with vertices
U1, ., Vg. A minimum biclique cover is given, where B, are the bicliques. Each of
lumn to the right or the left of this

the B; can be expanded to cover any 1’s in a co
ws the same bicliques expanded to cover 1’s representing the

clique cover.

!’o 101100 1
11
001 149
1004 1 3 g 11 submatrix. Figure 7 sho
0000100 : ! vertices in the original matrix dominating vertices Vg and vg.
1
000O0O0T1O -
6oo0otooo : : 01000001 ﬂ B§=‘5’1,V4»V5»Ve}"5’2»"e:"9}
000000010 00100001H 3'2={}’2-V5~V6}”@av"snv9}
1 001
sooo0000 1100 (1) g g : : gy = o} Brvavee)
- Dooo1t1o oJ BQ={v4}—+{y..v2,v5,va.v9
11100 1011 BI=@}_){V1‘,2V3‘,GVB",9
111100011 5= ol BT

Figure §: Adj
' Adjacency matrix
of an out-tournament with three upset tournament
ent compo-
dominate vertices

nents, each on three vertices
Figure 7: Submatrix where all of the vertices of the upset tournament

vg and vg. The expanded biclique cover is given.

For an exam
ple, consid
components 7T ’ er the out-tourna
1= {(vy,v ment D consistin
and Ty = {('U'I:UB),(US,, vz))’((:’)?a”a)) j(va,vl)}, T = {(vs sssf(‘;l)pset ;Olzmament
eyvr) b T — { ’ » (v, ve) , (vs,v4)}
vg,vs} and T} —s
Y
{vs, o}, Lemma4.2 Let D be an out-tournament with k upset tournament Strong compo-

10




nents, T,. Thenbe (D) < 3 be(Th).

Proof. Let B; = X; — Y; be any maximal biclique in a minimum biclique covering
of T;. Suppose that T; is not the terminal vertex in SC (D). Then there exist arcs
from T; to at least one other tournament component T;. Let Z; C V (T}) be the set
of vertices dominated by T;, and B! = X; — (Y; U Z;). The collection of all B; in
the biclique covering cover all arcs in T} by definition, so the collection of all B} also
cover those arcs. Every vertex in T; dominates Z;. Since T; is strong, each vertex
has outdegree greater than zero, and so must be contained in some X; of B;. Thus,
every arc from X; to Z; is in B, so every arc from T; to T is covered, Taking every
B/ for every T; in D, we obtain a cover for D using only the number of bicliques used

to cover each of the individual upset tournaments. Therefore, be (D) < ZLl be (T3).
O

Corollary 4.3 Ler A be the adjacency matrix of an out-tournament with k upset tour-

nament strong components, where A; is the adjacency matrix of strong component T;.
Thenrg (A) <30 78 (A

Thus to find the matrices with full and equal ranks, the submatrices, .A;, must have
rp (Ai) = n;. So we look for upset tournaments where be (T;) = ny. Since be (T3} <
bp (T3), the upset tournaments must have bc (T;) = bp (T}) = ni.

Theorem 4.4 [18] Let T' be an upset tournament in standard form on n 2> 6 vertices.

Then be (T) = n if and only if the upset path does not contain any arcs of the form
(vivit1) for3<i<n -3

When we have n; > 6, Theorem 4.4 gives us the structure that must be used for
the upset tournament strong components of the out-tournament. What about upset
tournaments on 3, 4 or 5 vertices? To answer this question, we use results from

Gregory, et al, [11]. A set S of independent 1’s of a {0, 1} —matrix is said to be
isolated if no two 1’s are in a 2 x 2 submatrix of 1’s.

Lemma 4.5 [11] If the adjacency matrix A of a digraph D has an isolated set of v
I's, then rp (A) = be (D) > .

We use this result in the proof of the following lemma where we establish the
boolean and nonnegative integer ranks of upset tournaments on 3, 4 or 5 vertices.

Lemma 4.6 IfT is an upset tournament on n. = 3,4, or 5 vertices with adjacency
matrix A, then be (T) = bp (T) = n, andrg (A) = rz+ (A) = n.

Proof. When n = 3, there is exactly one upset tournament on 7 vertices in standard
form', and it has upset path (vy, v3), (vg, vs). Entries a;2, aga and ag; of the adjacency
“matl"lx are isolated 1’s. When n = 4, there is exactly one upset tournament on n
vertices in standard form, and it has upset path (v1, v2), (v2, v3) and (vs, vs). Entries

12

i i ’ n = b, there

aae and agy of the adjacency matrix are isolated } 5. Vx(’)h::has oot path

i ? . t ypset tournaments on 7 vertices in standard form. e R e other

are t\:o) da 'n:4);;nd (v4,vs), and isolated 1's @12, 824, a?ilz a‘{:{e‘:inl’s ?1.2, e .
e path (v, v2)s (v2,v3), (va,va) and (v, v0): end 189

rg(A) =
and a By Lemma 4.5 all of the above upset tournaments have 78 (A)
€45, 51- )

== T) =
be(T) = n. Since rz+ (A) =bp(T) 278 (A) = be(T), we have be (T) = bp ( )
nandrg (A) =rz+ (A)=n 0

i ization of the out-
Next, the real rank must be considered in the final charac::gzaﬁve o egor tank
toumam,ents The following theorem relates real rank to nom

in upset tournaments.

12, 923

i j { tourna-
Theorem 4.7 [25] Let A bean adjacency matrix corresponding 1o an upse

ment. Thenr (A) =Tz+ (A). )
A;) = rz+ (A;) for the upset tournament strong components.

d nonnegative
Since it is possible for the real rank to be less than both the boolean an

f ices we have
: . A) = n in the matrices
: ' it remains to show that 7 (4) ‘ f of the
integer ’:“ki“:eg:m(rj)’ — rge (A) = n. That will be dont?ﬁllnuth; Pt
e =
ggilc;svsiflg \tl;;eorem?which characterizes the out-tournaments witii up

strong components with full and equal ranks.

This translates to 7 (

{ournament strong compa'-
is on 3, 4 or 5 vertices or it
~3forn; 26 ifand

Theorem 4.8 Let D be an out-tournament with .l:hufs;
nents, T;, and adjacency matrix A. For eachT;, el 3e< ; o
does not contain any arcs of the form (v v} for3 £33
only if 75 (A) = T2+ (A) = e (A) =T (A) =7 o
lated real rank of the adjacency matrices

= 3,4 or B, the calcu \ : nined with
Proo{;')segzzmlxggent in standard form is 3, 4and5 respectively. This com
any u

= = n. Ifn > 6 and there ar¢ no arcs
Lo 46 ges s o (4) =15 () 7700 2 pkaow rom o 40
, jl — rar (E) = ng. Also, from Corollary 43,7p(A) Sc-l zn‘:r:lmi m l;iclique
Tl‘g ghc;\)v —t;'l;z;B (f;.) — n, we will show that be (D) = n.f e::vz:%iciirques e used 10
covers of Ty and 7. Because V ()07 o n’,ol" So, be(D) 2 or be(To)-
cover A (T;) and A (T}) if arcs are created from T to] j.bc (&1.) Thxefore, be(D) =
In the proof of Lemma 4.2, we know t}.lat bC(D()Af Z:;-_; (A),‘\\./e have rgs (A) =
Zi::l bl S(:h?réﬁ )ra:knc;f im ?Teh:?'ows of each A; are uncaﬂ)t'(;:d;‘%in:?%,
D, Y o near ombination of these rows that equals the zer0 ‘flﬁ th;a\t equal the
:g g;e::slsstﬁz,:]:fi;:re must be a linear combir::ztioeni:fl :)hﬁ nr:::Sc :mbination of these

’ et .

:zi\?s‘;iztto;il’lr:?v:otﬁ: (f)'lisft‘ :Lfaertllr’::ite:c:)?:l:: ’ztsro vector, and all entries below Arin A

imi easons, we cannot use
are 0’s. Thus, we can only use TOWS below Ai. 'Folr similar T .
) i . . N
the rows of As. Following this reasoning mductn:fj,
combination of the rows of ‘A that equal the zero Vectoh

since 1 (A) < 1t (A), we have T (A) = n.

i linear
find that there 15 10
:1:1 sor (A)=n. In all cases,

13



(é) r A = { 1 k

rank, rz g Az ) __,n,;‘_nplsl?s that 30, rg (A;) = n. So, each A; must have full boolean
Thus, 75 (4;) = r+ (/;l-l;e—-rB (A) < 77+ (4), 77+ (Ai) = n; foreach i = 1,...k
5 vertices, or by Tlfeoren: o 1‘:;‘hfor 1 _E i < k. This only occurs when T} is on 3:,4: or
for3< g <m —3 O . enn > 6 and there are no arcs of the form (v;,v;41)

Although this
A paper concentrate:
for Tocal in-tournaments. s on local out-tournaments, the same results hold

5 Miles to Go

A characteristi
o o wher;is::: («j:')ugset tournaments that makes them interesting is that it is also
=r1z+ (A) =n—1. If we use these upset tournaments as strong

COmponentS in an out-to
urnament D i i
| . ’ the smgular matrices Ai make for a Val'iety of

(010000100000'
001000100000
100100100000
110010100000
111001100000
111100100000
000000010000
000000001000
0oopnoo0100t1t00
000000110010
000000111001
_oooooo1111ooJ

I lgu[e 8 Adl y i -
h . cenc mamx f an ou

To illustrate this, consi
, consider the matrix in Fi

nents T} and : i X in Figure 8. The upset t
(v3,v4 )1, (vyg 11:25 )h av}?l:cl:;(l Y]emccs each with upset paths isomol‘ghic tglg]la?e;l t(‘;‘i‘ﬂfo-
the first labeied \;enex of ;’S be (L) = bp(T) =n — 1. All vertices of,' fl3 ,dOsz'l’in 3t).
the bicliques of T, can b 2 to form a local out-tournament. As shown inIS on 4.
(g — D+ (s _11)32 1e expanded to cover the arcs from T to T,. So rec(t::n b
Nor can the Partitions—i—n 1(2 bHowever, the partitions cannot be expax;ded i’n tiis v)va—
is not enough to show th 2 be expanded upward to cover the 1’s. While this in i ¢

What if, insten of at rZ.+ > 10, it must be at least 11 since r (A4) = 11lS‘ln itself
dominate th’e socond ?0 Fc!ommatmg the first labeled vertex of T}, the verti.ce £
we have the same boole;i“fe 9 showfvs tl}is slightly different adjac,ency matrixs ?‘l L
of T, can be extended ¢ rank as in Figure 8, but a biclique in the partiti - Here,
rz+ (A) = 10 Ag s bo cover the column of 1's above it. Theref(l:re llonzover

onus, r (A) = 10 as well. This shows that for ;qgcgl Zju—t—?

14

‘01000001000 0]
001000010000
100100010000
110010010000
111001010000
1141100010000
000000010000
000000001000
oooo000100100
opooo00110010
oooo000111001
00000011 1100]

Figure 9: Adjacency matrix of an out-tournament where T are upset tournaments on 6

vertices, and rp (A) = rz+ (4).

unlike the case for tournaments.

ow becomes, how can local out-tournaments with upset tourna-
here 75 (A) = rz+ (4) < nand rg (4) =
what local out-tournaments have adja-
and what are the subsets?

tournament, r (A) < n — 1 is possible,

So the question n
ment strong components be constructed w
rz+ (A) = ¢ (A) =7 (A) <n? Additionally,
cency matrices with equality for some subsets of these ranks,
acency matrices of local tournaments and local out-

Naturally, the ranks of the adj
nts as components can be explored.

tournaments with a variety of strong tourname
Hopefully, a characterization as to the local, Jocal out- and local in-tournaments whose

adjacency matrices have equal {0, 1} —matrix ranks can be obtained. This paper pro-
vides the first inroad to that characterization. It has also been an opportunity to bring

together two different areas of research within graph theory.
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