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Anti-Cancer Drug Design (1986), 1, 197-214 

Charge transfer-oxy radical mechanism for 
,anti-cancer agents1 

P. Kovacic1
, J.R. Ames1

, P. Lumme2
, H. Elo2

, 0. Cox3
, H. Jackson3

, L.A. 
: Rivera3

, L. Ramirez3 & M.D. Ryan4 

1Department of Chemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA, 
2Department of Inorganic Chemistry, University of Helsinki, Vuorik 20, SF -00100, Helsinki, 
Finland, 3Department of Chemistry, Universi-ty of Puerto Ricq, Rio Piedras, Puerto Rico 00931, 
and 4 Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA 

Summary: The proposal is advanced that anti -cancer drugs generally function by charge 
transfer resulting in formation of toxic oxy radicals which destroy the neoplasm. Electrochem­
ical studies were performed with some of the main types of agents: iminium ions (adenine 
iminium from alkylating species, iminium metabolite of 6-mercaptopurine, nitidine, other 
polynuclear iminiums) and metal complexes (Pt(II)diaquodiammine-guanosine, copper 
salicylaldoximes). Reduction potentials ranged from -0.4 to -1.2 V. Literature data for 
quinones are presented and radiation is discussed. Based on the theoretical framework, a 
rationale is offered for the carcinogen-anti-cancer paradox and the role of antioxidants. 

More than two decades ago the oxy radical 
for carcinogenesis was advanced 

& Guzman Barron, 1951; Holman, 
1956; Harman, 1956). Shortly thereafter, the 
proposal was placed on a broader, more 
systematic foundation (Harman, 1962; Kov­

. acic, 1959 and 1960). This approach received 
scant attention until fairly recent times 
which have witnessed ever increasing 
support from a variety of disciplines (Ames, 
1983; Mason, 1982; Demopoulos et al., 1980). 
In general terms, the comprehensive theory 
states that oxy radicals are implicated in the 
action of most carcinogens, arising as the 
end product of metabolic processes, usually 

. via charge transfer (CT). Apparently, the 
highly reactive radicals subsequently attack 
cellular DNA, as well as other crucial 
constituents, resulting in transformation to 

'. the oncogenic state. Specific application has 
· been made to alkylating agents, quinones, 

metal complexes, iminium ions .. radiation, 
carbon tetrachloride, 4-nitroquinoline 1-
1 Presented in part at the 189th national meeting, 
American Chemical Society, Miami, FL, MEDI Abstr­
acts, 81 (1985). 
Correspondence: P. Kovacic. 

oxide, and inert bodies (Kovacic et al., in 
press). 

The initial inklings (Holman, 1956; War­
burg et al., 1957) that reactive oxy species 
may play a role in anti-cancer action was 
shortly followed by a better developed, 
more comprehensive approach (Kovacic, 
1959). A baffling paradox of oncology is the 
well-known phenomenon that generally the 
substances which induce cancer are also 
antineoplastic. If the premise is valid th.at 
these agents cause cancer by producing 
excessive amounts of oxy radicals, it may 
well be that their ability to combat the 
condition is intimately related to the same 
chemical property. An essential component 
of the overall picture is the corollary that 
many tumor cells are more susceptible than 
normal ones to elevated concentrations of 
oxy radicals, thus providing the requisite 
specificity. Supporting evidence may be 
found from the early days of oncology 
(Kovacic, 1959), as well as newer data which 
will be presented in the discussion section. 

Recently the suggestion was made that 
iminium species (1), usually in conjugated 
form, play important roles biologically in a 

© The Macmillan Press Ltd, 1986 
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variety of redox transformations (Kovacic, 
1984). These entities might then function· 
catalytically at the active site as electron 
conduits for the formation of superoxide, a 
precursor of other oxy radicals (Fridovich, 
1983). This concept is now applied to the 
anti-cancer domain. 

The principal objective of the present 
work was to determine the electrochemical 
characteristics of several main categories of 
antineoplastic agents: iminium ions (aden­
ine iminium from alkylating species, imin­
ium metabolite of 6-mercaptopurine, nitid­
ine, other polynuclear iminiums) and metal 
complexes (Pt(II) diaquodiammine-guano­
sine, copper(II) salicylaldoximes). Literature 
data for quinones and other CT agents are 
presented, and radiation is discussed. The 
results are treated within the context of the 
unifying theory for anti-cancer ' action 
involving CT with production of toxic oxy 
radicals. The carcinogen-anti-cancer para­
dox is addressed, as well as the role of 
antioxidants. 

Materials and methods 

Isoquinolinium salts 7 and 8 were obtained 
from Prof Mark Cushman (Cushman et al., 
1984). Literature methods were used for 
synthesis of purine-6-sulfinate 6 (mp 178°C 
(dec.), lit. (Doerr et al., 1961); mp 175°C 
(dec.), 3-benzyladenine chloride 3 (mp 
254-260°C with prior darkening, lit. (Ab­
shire and Berlinquet, 1964; mp 261-267°C), 
3-benzyladenine (3-HCl) (mp 268-270°C, 
with prior darkening, lit. (Abshire & 
Berlinquet, 1964; mp 284-287°C) and 1-
methyladenosine iodide 4 (mp 190-195°C) 
(dec.) Gones & Robins, 1963). Elemental 
analyses were satisfactory for the com­
pounds whose melting points differed 
appreciably from literature values. Benzo­
thiazoloquinolinium salts 9 (Cox et al., 1982 
and unpublished results), and copper(II) 
salicylaldoximates 11 (Lumme & Korvola, 
1975; Lumme et al., 1984) were prepared as 
described. cis- and trans-Oiaquodiammine 
platinum(II) nitrates were obtained from the 
corresponding OOPs by stirring with two 

j<;J 

~;;~J 
-. ;~r~ 
;;{~ 
·!'% 

. _;-~:;:7 

:~~:~~::~~,0!~g~7e~i~g ~h~ lo;ci ~~;cJp~~ :::(Ql 
tate (Marcelis et al., 1980). The solution was <it~ 
evaporated to dryness in a vacuum over /'~~ 
H2S04 to yield the product. Complex ,,,:t 
formation was attempted (Oehand & Jor- ·:~.); 
danov, 1976) with guanosine and the .>>ij;,;~ 
cis-diaquo reagent for 30 min, since this Pt /-;~,~ 

r~:~!~=~i;~1z!;{~:£:~;:~u~~a~~:r;Fe~ ':~! 
under vacuum to furnish a solid material. '"51 

Cyclic voltammetry and polarography ·•• 
were perf0rmed on an ECO model 550 , 
potE~ntiostat with a PARC model 175 
waveform generator. All solutions were·. 
degassed for 15 min with pre-purified , 
dinitrogen that was passed through an ·~-­
oxygen scrubbing system. The working<· 
electrodes were a platinum flag or a hanging 
mercury drop (HMDE). Reference electrodes<. 
were an IBM aqueous Ag/ AgCl or a , 
Corning SCE both in saturated KCI. The <: ... ···., 
counter electrode in all cases was a platinum.\'!;:;:(·~ 
wire. The supporting electrolyte was-;:;· .. ·:: .• ~ 
tetraethylammonium perchlorate (G.F.~.'<;/i•:v,:;; 
Smith Chemical Co.). The solvents, N,N.:- .· 
dimethylformamide and dimethyl sulfoxide, · 
were obtained from Aldrich Chemical Co. iri.' 
the highest possible purity, in addition to;." 
cis-OOP, trans-DOP and guanosine hydrate:'·: 
Buffer solutions of pH 3.3, 3.9 and 4.8 ·· 
(HOAc/OAc-) (compound 6) and pH 
(50% ETOH/buffer, KHP) (compounds 
and 8) were used for cyclic voltammetry. 

Results and discussion 

Iminium ions 

1. Purines . ,. 
(a) Alkylated DNA models: The alkylating:_' 

agent class contains a large group of< 
antineoplastic agents, including nitro~:)~; 
gen mustards, epoxides, aziridines~c'· 
triazenes, N-nitroso compounds, and·' 
alkyl alkanesulfonates (Reich, 1981). Some_.\ 
have progressed to the stage of practical~\ 
use in chemotherapy. As is we11'3 
established, the diverse types alsq:r 
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generally function as carcinogens (Miller 
& Miller, 1983). Concomitant production 
of oxy radicals has been observed with 
various members (Ames, 1983; Floyd, 
1982). Although the precise role of these 
reactive intermediates has not been 
ascertained, it appears that DNA strand 
cleavage may be a crucial event (Floyd, 
1982). 

12 

In a recent investigation of the 
mechanism of carcinogenesis, a novel 
proposal was advanced in which the salt 
form (iminium) of alkylated nucleic acid 
was assigned a key function as aCT agent 
(Kovacic et al., in press). The purines 
(guanine and adenine) of DNA are the 
principal targets of attack (Miller and 
Miller, 1983). For example, the ionic 
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structure 2, a conjugated form of iminium 
(1) is generated from 0-6 alkylation of 
guanine and could conceivably undergo 
one-electron reduction. Electrochemical 
data from the literature (Dryhurst, 1977) 
and our own studies (Kovacic et al., in 
press) are in reasonable accord with the 
current picture relating site of alkylation 
and defect persistence to oncogenic 
response. Thus, it appears quite plausible 
that the salt form is functioning in a 
catalytic manner as a generator of toxic oxy 
radicals. 

In order to test this concept as applied 
to anti-cancer alkylating agents, salts 
derived from alkylation of adenine and 
adenosine were investigated electro­
chemically as models. 3-Benzyladenine 
chloride 3 gives irreversible reduction 
values of about -1.0 V (Table I). Upon 
addition of strong base the potentials 
become more negative and the current 
drops until, with excess base, there is no 
reduction before the background current, 
due to generation of the nonreducible, 
nonionic base via loss of HCl. Occurrence 
of this transformation was confirmed by 
electrochemical studies on the free base 
which gave no reduction before back­
ground. A second model consisted of the 
nucleoside with the base alkylated at a 
different site, namely, N-1. For 1-
methyladenosine iodide 4, the most 

Table I Cyclic voltammetry of N-alkylated 
adeninium and adenosinium halides.a 

-Ep 

Compound [OH-] mM DMF DMSO 

3-Benzyl adenine 0.96 1.00 
chloride 0.49 1.03 1.19 

0.99 b - b 

3-Benzyladenine - b - b 

1-Methyladenosine 0.96 1.23 
iodide 0.49 0.96 1.23 

0.99 - b - b 

a 100 mV /s, tetraethylammonium perchlorate (0.1 M), 
substrate (0.5 mM), Pt electrode, irreversible, vs. SCE. 
b No reduction of substrate before background 
reduction. 

!1 mA 

0.0 -0.5 -1.0 
v 

Figure 1 Cyclic voltammogram of 4 in DMF, Pt 
electrode, scan rate 100m VIs. 

positive figure obtained for the reduction 
potential was -0.96 V (DMF) (Figure 1, 
Table 1). The results were less favorable in 
DMSO. The product of the reduction is 
probably a dimer, since coupling has been 
observed from electrolysis of purine bases 
in non-aqueous solvent (Yao et al., 1976). 

Our data are in agreement with 
previous investigations with adenine in 
aqueous acid. E112 values, -1.05 to 
-1.07 V, were reported, which varied 

. linearly with pH (Dryhurst, 1977). 
Adenosine and adenylic acid behaved 
similarly. Evidently salt formation oc- · 
curs by preferential protonation at N-1 · 
(Saenger, 1984). 

There are several possible sites 
adenine alkylation. The preferred one in. 
vivo is generally the N-1 position. 
Reaction at N-7 is also common! 
observed, whereas N-3 attack varies 
degree (Shooter, 1972; Rajalakshmi 
al., 1982). Alkylation at any of the 
positions would produce a potential 
agent capable of catalytic operation. 
N-3 position has been suggested as 
important locale in the carcino 
process (Lijinsky, 1976). It is .,J·,F. ... ,, .............. u ••• (',., 

that N-7 adenine salts possess ph 
logical activity (Iio et al., 1985). 

(b) 6-Mercaptopurine: The properties _ 
this drug are summarized in Table Vll. 
It, as well as related materials, · 
evidently converted to the corresp 
ing nucleotide (Ishiguro et al., 1984) 
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the nucleoside (Chabner, 1981; Christie 
et al., 1984) followed by insertion into 
the DNA chain. The thiol appears to be 
oxidized to the unstable sulfenic acid 5 
which undergoes further conversion to 
the isolable sulfinic acid 6a (Hyslop & 
Jardine, 1981; Nelson, 1982). The acids 
could exist in an ionic (iminium) form 
(cf. 2) either from intra- or intermolecu­
lar nuclear protonation. 

Since an oxidative metabolite is 
thought to be the active agent, we 
obtained data on the reduction potential 
for 6. In DMF the EP varies from -1.0 V 
for the iminium from nuclear protona­
tion to > -2.0 V for the sodium salt (6b) 
(Table II). In aqueous buffer 6 exhibits 
potentials (V) that vary linearly with pH 
(Ep = -0.44-0.100 pH); the most posi­
tive value was -0.77 V (pH 3.3). Hence 
reduction is facilitated by increasing 
acidity. The results in aqueous media 
are in agreement with data (V) from an 
earlier study (Dryhurst, 1969) in which 6 
exhibited E112 = -0.37-0.094 pH (pH 1-
9.1). Reduction involved the N-1=C-6 
bond giving the dihydro product (Dry­
hurst, 1977). Also included were the 
parent thiol, E112 = -0.79-0.116 pH 
(pH 0-5), purine 6-sulfonic acid, E112 = 
-0.45-0.078 pH (pH 1-7), and 6-
purinyldisulfide, E112 = -0.0 V. From 
these findings Dryhurst concluded that 

Table II Cyclic voltammetry of 
purine-6-sulfinic acid.a 

[Acid] mM DMF H20b 

>2.0 - c 

HC104 0.46 1.24 - c 

HC104 0.91 1.03, 1.23 - c 

HC104 1.3 1.00, 1.22 - c 

HOAc pH3.3 0.77 
HOAc pH3.9 - c 0.83 
HOAc pH4.8 - c 0.92 

a 100 mV /s, tetraethylammonium per­
chlorate (0.1 M, DMF), 6b (0.5 mM), HMDE 
vs. SCE, irreversible. 
b HOAc/OAc- buffer. 
c Not examined electrochemically. 

Table III Electrochemistry of fused derivatives of 
quinolinium and isoquinolinium salts.a 

-EP 
Electrode 

Compound DMF DMSO H20b techniquec 

7a 0.90 d - d Hg,P 
1.07 1.09 - d Pt,CV 
- d - d 1.15 Hg,CV 

7b 0.99 - d - d Hg,P 
1.01 - d 0.89 Hg,CV 
1.11 1.14 - d Pt,CV 

8 1.24 d - d Hg,P 
1.25 - d 1.35 Hg,CV 
1.34 1.35 - d Pt,CV 

9a 0.39, 1.18 0.42, 1.12 - d Hg,P 
0.42, 1.19 0.45, 1.17 - d Hg,CV 
0.65, 1.21 0.64, 1.16 - d Pt,CV 

9b 0.42, 1.18 0.45, 1.12 - d Hg,P 
0.45, 1.20 0.47, 1.16 - d Hg,CV 
0.66, 1.17 0.67, 1.17 - d Pt,CV 

a 100m vIS, tetraethylammonium perchlorate (TEAP, 
0.1 M), substrate (0.5 mM), vs. SCE. 
b Buffer (KHP) pH 6, no TEAP. 
c P-polarography, CV--cyclic voltammetry. 
d Not examined electrochemically. 

5 should reduce at a value between 
those for 6b and the disulfide. 

2. Fused derivatives of quinolinium and iso­
quinolinium salts.. This class is represented 
by the alkaloids nitidine 7a and fagaronine 

-0 6 -1 0 

v 
-1.4 

Figure 2 Cyclic voltammogram of 7a in DMF, Pt 
electrode, scan rate 100 mV/s. 
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7b, the indenoisoquinolinium salt 8 and 3-
nitrobenzothiazolo(3, 2-a)quinolinium salts 
9a, b. Studies on 7 and the analogue 8 gave 
values ranging from -0.90 to -1.15 V (Table 
III) for 7 and -1.25 to -1.35 V for 8. The 
methoxyl . substituent is known to result in 
more negative potentials (Zuman, 1967a). 
Cyclic voltammetry (CV) (Figure 2) gives 
irreversible reductions. On the other hand, 
calculations from polarography (P) and CV 
indicate reversible behavior. The EP - EP12 

(CV) and E314 - E114(P) values of 60 mV are in 
reasonable agreement with the theoretical 
values of 57(CV) and 56(P) mV for a 
one-electron process. Isoquinolinium salts 
are known to undergo one electron reduc­
tion with formation of the 1,1'-dimer 
(Bradsher, 1981). The nitrobenzothiazolo­
quinolinium salts (9a, b) give multiple 
reduction values (Table III) (Figure 3); the 
most positive range from -0.39 to· _:_0.65 V 
(irreversible). The more negative waves, 
about -1.2 V, are reversible. Calculations on 
the first wave provide values similar to 
those from 7, namely, 63(CV) and 60(P) mV. 
Apparently the reductions are followed by a 
fast follow-up step. There are two predomi­
nant electroactive sites associated with 9, 
namely, the nitro group and the iminium 
ion. The literature E112 for nitrobenzene is 
-0.62 V (Wheeler, 1963). Enhancement in 
the positive direction in our case is due to a 
more extended, electrophilic system of 
conjugation. Substitution of methoxyl for 
hydrogen in the benzothiazole ring has the 
effect of making the reductions more 
negative by about 0.03 V as a result of 
electron donation, in agreement with the 
reported effect of the 4-methoxyl group in 

0.0 -0.5 -1 0 -1.5 
v 

Figure 3 Cyclic voltammogram of 9a in DMF, Pt 
electrode, scan rate 100m VIs. 

the 1-phenylpyridinium ion, i.e., ~E112 was 
more negative by about 0.03 V (Zuman, 
1967a). 

The activity of 7 has been correlated with 
the presence of the imini urn site ( Caolo & 
Stermitz, 1979), in keeping with our 
theoretical framework. Also N-methylphen­
anthridinium salts are known to undergo 
charge transfer (Parkanyi & Leu, 1975). It is 
reasonable to associate the activity of 9 in 
part with nitro or the nitroso reduction 
product, since compounds of this type are 
used in cancer therapy (Docampo & 
Moreno, 1984; Murray & Meyn, 1985). These 
substances (7-9) may exert their activity by 
binding to DNA (Baez et al., 1983; Cushman 
et al., 1984). Related anti-tumor alkaloids 
include coralyne (Cox et al., 1982) and 
sanguinarine (Nandi & Maiti, 1985). 

3. Ellipticines. Most members of this class 
are anti-tumor agents. Metabolites and 
various derivatives incorporate quinone­
imine and iminium, e.g., 10. The results 
from extensive studies (Paoletti et al., 1983) 
are summarized in Table VII. Electrochemi­
cal data demonstrate the ability of the 
hydroxylated metabolite to function as a 
charge transfer entity (Paoletti et al., 1983). 

Recent reviews deal with iminium ions 
in the alkaloid category (Knabe, 1979) and 
from oxidative metabolism of xenobiotics 
(Overton et al., 1985). The iminium charge 
transfer theory appears broadly applicable 
to a wide variety of biologically active 
agents (Kovacic, 1984), carcinogens (Kovacic 
et al., in press), drugs (quinoxaline-di-N­
oxides) (Ryan et al., 1985), MPTP (Ames et 
al., in press a), phencyclidine, nicotine and 
spermine metabolites (Ames et al., in press 
b), antimalarials (Ames et al., 1985c), 
mesoionic betaines (Ames et al., 1986d) and 
benzodiazepines (Crawford et al., in press). 

Metal complexes 

Metal species are known to elicit a variety of 
physiological responses. Specific chemical 
reactions that have been observed include 
oxygen radical formation (Ames, 1983;· 
Stern, 1985) and DNA strand cleavage (Furst 
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& Radding, 1984) (Table VII). Formation of 
complexes with DNA is reported for some 
cases (Furst & Radding, 1984; Saenger, 1984) 
(Table VII). 

1. cis-DDP. The most prominent member 
of the anti-cancer group is cis-DDP. Several 
reviews summarize much of the work 
(Roberts & Thomson, 1979; Rosenberg, 1980; 

& Lippard, 1980). Binding of Pt(II) to 
F.--·-~···~·- of DNA is known to occur, and is 

to have marked biochemical and 
:~¥~:~:\ 'pharmacological significance (Pinto & Lip­
;z~i·'~:,._pard, 1985; ·Macquet & Theophanides, 1975; 
·;,;(~J~~, Ciccarelli et al., 1985). Considerable effort 
~&~l;}{ has been devoted to structural analysis of 
t:[(: the DNA-Pt(II) complex (Sherman et al., 
· :· 1985; Marcelis et al., 1980; Rosenberg, 1980). 

~;~~;:;:: Since there is apparent conversion to the 
~~z,~,· diaquodiammine metabolite in vivo (Carsey 
,~~~i:.~ & Boudreaux, 1980), attention was centered 
*iK:~.·:. on this form in the electroreduction studies. 
:;,:'r:· Guanosine was used as the model ligand. 
j~? Cyclic voltammetry data for the Pt com­
·k• .plexes are presented in Table IV. All 

· reductions are irreversible. No reduction 
occurs before background for cis-DDP and 

Experiments with the cis­
Pt(II)-guanosine complex 

or in solution) revealed approximately 

Table IV Cyclic voltammetry of Pt(II)­
guanosine complexes.a 

Compound 

cis-DDP 
trans-DDP 
Guanosine 
cis-Pt(II)(H20 )2(NH3)2 
cis-Pt(II)(H20 )2(NH3h-

guanosine 
cis-Pt(II)(H20 )2(NH3h­

guanosine (1: 1 solution) 
trans-Pt(II)(H20 )2(NH3)2 

trans-Pt(II)(H20 )2(NH3)2-
guanosine 
(1: 1 solution) 
(1: 2 solution) 

NRb.c 
NRb.c 
NRb.c 
0.96 

0.96 

1.0 
1.20 

1.45 
1.30, 1.60 

aPt flag, tetraethylammonium perchlorate 
(0.1 M), substrate (0.5 mM), vs. Ag/AgCl, 100 mV/ 
s. 
b No reduction. 
c 200mV/s. 

the same EP values ( -0.96 to -1.0 V) as for 
the Pt(II) precursor. The similar results may 
be due to involvement of supporting 
electrolyte since added salt is known to alter 
the 1:1 Pt(II)(H20h(NH3h-guanoside com­
plex in solution (Marcelis et al., 1980). No 
reduction occurs before background for 
trans-DDP, and the corresponding diaquo 
derivative is reduced at -1.20 V. The trans­
diaquodiammine Pt(Il)-guanosine complex 
(1: 1 and 1:2 in solution) gave EP values 
that are more negative ( -1.3 to -1.6 V). 
Thus, the reduction potentials in the cis 
series are more positive than for the trans 
counterparts. Since trans-DDP is less active 
(Cleare, 1974) than the cis-isomer a correla­
tion exists between potency and ease of 
electroreduction, in accord with the general 
mechanistic theme. Prior rationale for the 
difference in activity has been summarized 
Qohnson et al., 1985). 

The proposed pathway entailing catalytic 
production of oxy radicals is consistent with 
effectiveness of the Pt drug at low doses 
(Rosen~erg, 1980; Barton & Lippard, 1980). 
The toxicity is reduced by mercapto­
containing compounds that are well known 
antioxidants (Nagy et al., 1986; Kempf et al., 
1986). Other radical scavengers such as 
a-tocopherol and N,N' -diphenyl-p-phenyl­
enediamine exerted a similar effect (Sugihara 
& Gemba, 1986). The investigators proposed 
free radical damage by the drug. Also thiols 
protected against mutagenesis (Nagy et al., 
1986) a condition generally attributed to oxy 
radicals (Kovacic, 1984). There is evidence 
for a close relationship between mutagene­
sis and carcinogenesis (Slaga, 1983). Chrom­
osomal aberrations, primarily chromatid 
breaks, are known to be induced by 
cis-DDP (Flessel et al., 1980). 

2. Complexes of copper and iron 
(a) Copper: Some copper complexes in this 

category 11 incorporate salicylaldoximes 
as chelating agents (Lumme et al., 1984). 
Reduction potentials for 11a and 11b 
ranged from -0.86 to -0.96 V for the 
most positive values with Pt as the 
working el~ctrode, and from -0.71 to 
-0.86 V with Hg. All of the reductions 
were irreversible (Table V) (Figure 4). 
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Table V Cyclic voltarnrnetry of copper(II) 
salicylaldoxirne complexes. a 

Compound DMF DMSO Electrode 

lla 0.86, 1.29 0.93, 1.34 Pt 
0.75, 1.23 0.71, 1.18 Hg 

llb 0.91, 1.26 0.97, 1.38 Pt 
0.86b 0.84b, 1.28 Hg 

a 100 mV /s, tetraethylammonium perchlorate (0.1 M), 
substrate (0.5 mM), irreversible, vs. SCE. 
b Reduction with adsorption. 

The difference in reduction potential for 
lla and llb ( -0.04 to -0.05 V, Pt 
electrode) is in agreement with the 
reported effect of the hydroxyl group in 
anthrone, i.e., ~E112 was more negative 
by 0.01 to 0.05 V (Zuman, 1967b). There 
has been a prior suggestion that 
electron transfer may play a mechanistic 
role in vivo (Lumme & Elo, 1985). For 
the related Cu(II)(3,5-diisopropyl­
salicylateh, evidence was provided to 
support the contention that hydrogen 
peroxide is partly involved in the 
anti-tumor action (Oberley et al., 1983). 

Another class of copper(II) coordina­
tion compounds, the thiosemicar­
bazones, is known to possess anti­
cancer activity (Petering, 1980; Scovill et 
al., 1982). Reduction of the complex 
derived from 2-acetylpyridine thiosemi­
carbazone occurs reversibly at about 
-0.5 V (Ames et al., 1985c). The 

-0.4 -1.0 

v 
-1.3 

Figure 4 Cyclic voltarnrnograrn of lla, in DMF, 
Pt electrode, scan rate 100 rn VIs. 

related bis(thiosemicarbazone) com­
plexes display E112 values of -0.34 to 
-0.53 V, adjusted to SCE that are 
attributed to the reduction of Cu(II) to 
Cu(I) (Winkelmann et al., 1974). 
According to our guiding theme, there 
is CT resulting in toxic oxy radicals via 
superoxide. Experimental support is 
provided by the observation that 
Cu(l)bis(thiosemicarbazone) is autoxi­
dizable by oxygen (Petering, 1972), a 
process expected to produce superoxide. 

It is relevant that interaction of 
heterocyclic carboxaldehyde thiosemi­
carbazones with DNA was observed to 
result in single strand cleavage (Tsifts­
oglou et al., 1975); preliminary associa­
tion of the drug with metal may well 
occur. DNA scission is commonly 
associated with oxy radical formation 
(Demopoulos et al., 1980). Agrawal & 
Sartorelli (1978) proposed that the action 
on DNA is of major significance for 
cytotoxicity. 

(b) Iron: Iron complexes of thiosemicarba­
zones show antineoplastic activity (Sco­
vill et al., 1982). Compound 12 exhibits 
a reduction wave at -0.23 V (reversible) 
(Ames et al., 1985c). 

Proposals have been made that 
several well-known agents function 
after initial coordination with metal ion. 
The action of bleomycin is summarized 
in Table VII (Halliwell & Gutteridge, 
1985a). According to current thinking 
(Hecht, 1979; Lown, 1982), the drug 
sequesters Fe(III) in the cell nucleus and 
intercalates or binds to DNA. Redox 
reactions involving the iron and oxygen 
take place. The reduction potential for 
the Fe(III) complex is -0.11 V adjusted 
to SCE (Melnyk et al., 1981). 

Adriamycin is known to be a chelat­
ing agent for a number of metal ions 
including Fe(II), Fe(III) and Cu(II) 
(Halliwell & Gutteridge, 1985a). The 
iron complexes bind to DNA (Gianni et 
al., 1985) and reduce molecular oxygen· 
to reactive radicals. DNA cleavage is 
observed. 

3. Others. Various other metals, e.g. Rh, 
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;-'Ru, Sn, Ti, V and Mo, in derivative form 
>;exhibit anti-cancer activity (Cleare, 1974; 
'> Cleare & Hydes, 1980; Sadler, 1982). 

,.
1;'However, compared to cis-DDP, they have 
-received relatively little attention. In addi­

tion, several agents, such as, a,a' -dipyridyl 
. ·(Hellman et al., 1983) and picolinic acid 
, .(Leuthauser et al., 1982), which are effective 
;: against neoplasms, may fit into this 
··mechanistic category based on their ability 

~,~ to bind metals strongly. 

.. Quinones and iminoquinones 

.: Quinone antibiotics have found widespread 
application in recent years in the treatment 
of malignancy (Mason,' 1982; Lown, 1982; 

. 1983; Waring, 1981). Results from extensive 
::. 1 studies, which principally involved anthra­

•"' ::".cyclines, mitomycins, streptonigrin, and 
_;••2L:;.saframycins, are summarized in Table VII. 

. >The toxicity, found to be oxygen dependent 
::<'. (Halliwell & Gutteridge, 1985a), apparently 
.,. _results from redox cycling of the quinone. 

Initial metabolic reduction to the semi­
quinone intermediate, which can bind to 
DNA (Sinha & Chignell, 1979) evidently is 
an essential step (Lown, 1982; Emanuel et 
al., 1984). The overall· process has been 
designated 'site-specific free-radical' gen­
eration (Bachur et al., 1982). Inhibition of 

. the rate of DNA scission was observed with 
·added catalase, superoxide dismutase and 
free radical scavengers (Lown, 1982). 
However, adriamycin bound to DNA is 
unable to participate in redox reactions 

(Youngman et al., 1984). Strand scission can 
occur in the absence of binding. 

Iminoquinones have not been as exten­
sively studied. Representative members are 
5-iminodaunorubicin (Lown et al., 1982), 
anthrapyrazoles (Fry et al., 1985), and 
actinomycin D (Halliwell & Gutteridge, 
1985a; Doroshow, 1983). Relevant character­
istics are intercalation, oxy radical forma­
tion, DNA cleavage, and oxygen depen­
dency. As in the quinone case, charge 
transfer has not been observed after 
intercalation (Emanuel et al., 1984; Sengupta 
et al., 1985). Evidence shows that redox 
cycling and radical generation are less facile 
with the imine analogues (Lown et al., 
1979). Several other anti-cancer agents, e.g., 
rhodamine 123 (Lampidis et al., 1983), and 
an oxidative metabolite of ellipticine 
(Paoletti et al., 1983), possess similar 
structures . 

Table VI contains the reduction potentials 
for a number of substances in this general 
category. The E112 values fall in the range, 
-0.20 to -1.09 V. A study revealed that the 
anti-tumor activity of 75% of the in­
vestigated iminobenzoquinones could be 
correctly classified based only on their 
reduction potentials (Hodnett et al., 1978). 
Also, the iminoquinones, which exhibit 
more negative reduction potentials than the 
quinones, were found to induce less DNA 
strand cleavage (Lown et (ll., 1982). The end 
product of anthrapyrazole reduction is the 
corresponding dihydro form (Showalter et 
al., 1986). 

Table VI Reduction potentials for some physiologically active 
quinones and iminoquinones. 

Compound 

Daunorubicin 
Adriamycin 
Mitomycin B 
Mitomycin C 
5-Imino-

daunorubicin 
Anthrapyrazoles 
Actinomycin D 

Reduction 
potential (V) 

-0.62 
-0.62 
-0.20 
-0.37 

-0.70 
-0.98 to -1.09 
-0.82 

Reference 

Rao et al., 1978 
Rao et al., 1978 
Rao et al., 1977a 
Rao et al., 1977b 

Lown ·et al., 1982 
Showalter et al., 1986 
Nakazawa et al., 1985 
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Table VII Characteristics of anti-cancer agents.a 

Generation of 
reactive DNA DNA 

Agent oxygen species bindingb cleavage 

Quinones + 
Metals + 
Bleomycin + 
Ionizing radiation + 
6-Mercaptopurine 
Alkylating agents + 
Ellipticined + 

a See the discussion for references. 
b Intercalation or covalent. 
c Nucleotide insertion. 
d And derivatives. 

The exact state in which these compounds 
generate oxy radicals at the active site is not 
established with certainty. Alternatively, the 
ultimate agent may be a metal complex (vide 
supra). 

Radiation 

Relevant biological effects are summarized 
in Table VII (Harman, 1962; Henriksen et 
al., 1976; Greenstock & Whitehouse, 1984). It 
is conceivable that indirect generation of 
oxy radicals also occurs. The nucleic acid 
bases are considerably more sensitive than 
the phosphate backbone to radiation (Green­
stock & Whitehouse, 1984). Purines are 
known to form N -oxy species readily on 
exposure to peroxide (Robins, 1967), which 
might then serve as CT precursors for 
radicals (Kovacic et al., in press). For 
example, adenine 1-oxide displays an E112 of 
-0.81 V, pH 1 (Dryhurst, 1977). Also, some 
forms of ionizing radiation apparently give 
rise to cationic species that alkylate cellular 
constituents (Seifter, et al., 1984). 

Correlation of reduction potential with 
physiological activity is not new. Examples 
include anti-cancer agents (Murray & Meyn, 
1985) and other categories (Hodnett et al., 
1978; Bogatskii et al., 1971). 

There are indications from prior reports 
that reduction potential in vivo may well be 
more favorable than in vitro (Kaye & 
Stonehill, 1952; Neta et al., 1985), Both di­
oxidine (E112 = -1.06 V) (Ryan et al., 1985) and 

·+ + 
+ + 
+ + 

+ 
+c + 
+ + 
+ + 

1-methyl-4-phenylpyridinium ion (cyper­
quat, MPTP metabolite) E112 = -1.09 V) 
(Ames et al., in press, a) which display 
rather negative values are reported to 
function by oxy radical generation via CT 
(Ryan et al., 1985; (MPTP) Markey et al., 
1985). Reversibility is more likely in vivo 
due to immobilization of the CT agent at the 
active site. 

Other considerations 

1. Role of oxygen. In our prior discussion, 
much evidence has been cited for the 
formation and involvement of activated 
oxygen species. It is generally believed that 
superoxide serves as a precursor. Support 
for this standpoint is provided by in­
vestigations on the beneficial influence of 
oxygen on drug and radiation effectiveness 
against cancer cells (Cadenas, 1985; Teicher 
et al., 1981; Gupta & Krishan, 1982). The 
conclusion was drawn that a common 
mechanistic pathway pertains for the 
diverse agents (Gupta & Krishan, 1982; 
Scheulen · & Kappus, 1984) in accord with 
the present thesis. Drug activity observed 
during hypoxia (Teicher et al., 1981) can be 
rationalized by reductive stress involving 
radical processes Gones, 1985). 

Free radicals derived from oxygen are 
increasingly implicated in the initiation and 
progression of various diseases, and in the 
toxic action of numerous drugs and chemi­
cals (Nelson, 1982; Holtzman, 1982; Sies, 



CHARGE TRANSFER-OXY RADICAL MECHANISM 207 

1985; Halliwell & Gutteridge, 1985). The 
following statement also reflects a unified 
approach: 'Several of the chemotherapeutic 
agents are thought to have both their 
therapeutic and toxic effects by causing an 
oxidative stress' (Holtzman, 1982). The 
natural phagocytic response to foreign 
bodies entails attack by activated oxygen 
entities (Baehner et al., 1982). 

2. Crucial differences between malignant and 
normal cells. As pointed out in the intro­
duction, an important feature of the 
carcinogen-anti-cancer theory is the cancer­
cell property of enhanced susceptibility to 
reactive oxygen-containing entities. This 
postulate, advanced quite some time ago, 
was based primarily on decreased levels of 
catalase. Since then, other enzymes which 
destroy these oxy species have been 
discovered and investigated (Willson, 1983). 

· The superoxide dismutase (SOD) enzyme 
. decomposes superoxide which is generated 

by aerobic metabolic reactions. Presumably, 
protection is thereby provided from the 
adverse effects of oxy radicals, such as 
hydroxyl, which can arise from the radical 
anion. In fact, various reports reveal 
inhibition of radiation carcinogenesis by 
SOD (Hall & Borek, 1983). A considerable 
number of studies have found decreased 
levels of SOD in malignant neoplastic 
tissues (Oberley & Buettner, 1979). Mn SOD 

lower in all cases vs. normal cells. The 
Cu-Zn SOD levels were diminished in 
many, but not all, tumors. Glutathione 
. peroxidase has also been the object of 
. attention. The basic premise (Kovacic, 1959) 
advanced more than 26 years ago has been 
confirmed (Alexander, 1983) and restated 
after the discovery of the protective role of 
SOD: 'If equal amounts of superoxide can 
be delivered to both cancer cells and normal 

then the cancer cell should be 
killed because it has lower 

Indeed, there is evidence 
that many of existing cancer treatments 

., .•. , ····"·'x .•.•.. ·.actually are using this rationale because 
many of the anti-cancer drugs have been 
shown to produce superoxide' (Oberley & 
Buettner, 1979). However, other in­
vestigators have failed to observe any • 

obvious relationship between resistance to 
ionizing radiation or radical-producing 
drugs and tumor cell content of the 
following enzymes: Cu-Zn SOD, Mn SOD, 
catalase, and glutathione peroxidase (Mark­
lund et al., 1982). These findings of large 
variations in the effectiveness of protective 
systems may partly account for the observed 
differences in response by cancer patients. 

Another feature of importance is the rate 
of production of superoxide by tumors. If 
the generation is similar to or greater than 
the case of normal cells, then the lowered 
levels of protective enzymes in the neo­
plasms would result in enhanced sensitivity 
to the additional oxidative stress. Investiga­
tors have shown that tumor cell mitochon­
dria do produce superoxide (Oberley & 
Buettner, 1979). In one case, the rate of 
formation was nearly the same as for normal 
tissue, whereas in another report there was 
a five-fold increase. 

Although chemotherapy and ionizing 
radiation have proved beneficial in the 
treatment of cancer, relapse and limited 
applicability are commonly seen (Rosen­
berg, 1980). There are a number of possible 
rationalizations (Kovacic, 1959). In the 
context of the theoretical interpretation, 
increased concentrations of oxy radicals may 
not be completely effective due to the 
survival of a small fraction of resistant 
cancer cells which then proliferate. This is 
reminiscent of the scenario which has been 
encountered repeatedly with drugs, in­
secticides, and herbicides. Furthermore, a 
fine balance would pertain since the radicals 
which are generated to combat malignancy 
are also capable of inducing the same 
condition. Several recent studies are in 
harmony with the dual role concept. For 
instance, the incidence of second cancers in 
an individual was increased after treatment 
of the primary ones with anti-cancer drugs 
(Huang et al., 1983). The induction of new 
neoplasms was observed as a delayed effect 
(Harris, 1979). By the same token, initiation 
of cancer should entail a certain degree of 
simultaneous inhibition. In fact, early 
investigators have reported precisely this 
type of refractory condition on application 
of carcinogens (Kovacic, 1959). 
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3. Alternate mechanisms. Although the oxy 
radical theory possesses many attractive 
features, clearly it presents an over­
simplified picture of a complex phenome­
non. A number of investigations reveal the 
important involvement of other factors, 
principally immunological reactions, inhibi­
tion of DNA synthesis, antimetabolite 
action, and DNA defect repair (Rosenberg, 
1980; Roberts & Thomson, 1979; Halliwell & 
Gutteridge, 1985a; Lumme et al., 1984; 
Paoletti et al., 1983; Cushman et al., 1984; 
Baez et al., 1983; Doerr et al., 1961; Remy et 
al., 1984; Ciccarelli et al., 1985). Specific 
examples of compounds that are generally 
believed to operate by other routes are 
methotrexate (antifolate) (Cole, 1970), a­
difluoromethylomithine (DFMO, ornithine 
decarboxylase inhibitor) (Metcalf et al., 
1978) and 5-fluorouracil (antipyrimidine) 
(Cole, 1970). It is noteworthy that evidence 
suggests the possibility of CT in some cases. 
For instance, conjugated iminium species 
derived from pyridoxal phosphate have 
been designated as intermediates in the 
reaction of DFMO with the enzyme (Metcalf 
et al., 1978). From X-ray data on the binary 
complex, N-1 protonation of the- pteridine 
portion of methotrexate to iminium is 
invoked (Bolin et al., 1982). From a study of 
the ternary. complex, the drug and NADPH 
were shown to be in close proximity 
(Matthews et al. 1978). NADPH might be 
oxidized by various routes including radical 
or CT mechanisms (Filman et al., 1982). A 
metal complex may also participate (Kova­
cic, 1984) in the case of the pyridoxal imine 
from DFMO. It is conceivable that several 
mechanisms operate in concert for certain 
agents. A recent unifying approach for 
antineoplastic agents entailed modification 
of DNA (Hemminki and Ludlum, 1984). 

4. Other biological activity. In addition to 
the anti-tumor property, the various agents 
can display other physiological activities; 
carcinogenic, mutagenic, cytotoxic, and 
teratogenic (Magee, 1982; Johnson et al., 
1980; Miller & Miller, 1983; Furst & 
Radding, 1984; Fry, 1983). There is a 
relationship between antineoplastic activity 
and the ability to function as drugs in other 

areas (Kinnamon et al., 1980). Perhaps some 
of these responses are also due to oxy 
radical formation via CT. 

5. Role of antioxidants. In prior sections, 
the approach entailed treatment of an 
established tumor. Alternatively, the prob­
lem can be attacked via prevention of 
initiation by decreasing the concentration of 
oxy intermediates. Anti-cancer agents in 
this category, which act as inhibitors of 
carcinogenesis, would generally be labeled 
as antioxidants (Demopoulos et al., 1980; 
Ts'o et al., 1977). A good deal of the work 
has involved phenolic types, such as 
butylated hydroxyanisole, selenium com­
pounds, vitamin E, vitamin C, and 
ethoxyquin. These substances are expected 
to be ineffective against existing neoplasms, 
and would act only to inhibit the formation 
of additional ones from normal cells. 

Here again, it is essential to bear in mind 
the element of specificity. To be effective the 
antioxidant must reach the site at which the 
harmful radicals are being generated. 
Various characteristics of the protective 
agent would come to bear, including 
hydrophobic and hydrophilic properies. 
Hence, it is not surprising that many 
studies reveal beneficial effects of anti­
oxidants, whereas others (Willet et al., 1984) 
do not. 

In conclusion, the theoretical scheme 
entails several features common to most 
anti-cancer agents: 

1. Binding to DNA by alkylation, complexa­
tion (minor groove), intercalation, or 
incorporation within the chain as a 
special purine. 

2. Presence of a charge transfer entity in the 
form of an iminium salt, metal complex, 
quinone, ArN02 or ArNO. 

3. Formation of toxic oxy radicals via 
superoxide generated by electron 
transfer. 

4. Attack of vital cellular constituents by 
oxy radicals resulting in death of the 
cancer. 

The carcinogen-anti -cancer paradox is ra­
tionalized on the basis of similar mechanisms 
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operating in both cases; many tumor cells 
are more susceptible than normal ones to 
the toxic effects of oxy radicals. Antioxidants 
appear to function by destroying harmful 
oxy species. 
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