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Abstract
The bond between fiber-reinforced polymer and concrete substrate plays a key role in the performance of concrete
structures after strengthened by externally bonded fiber-reinforced polymer composite materials. The single shear pull-
out test is generally used to determine the interface characteristics, and various bond–slip models have been proposed
based on the results of this test. However, the sensitivity of the bond strength to the boundary conditions has not yet
been considered in the available models in the literatures. This article presents an experimental and numerical study tar-
geted at understanding the influence of the boundary conditions on the bond strength of the fiber-reinforced polymer/
concrete interface in the single shear pull-out test. The validated finite element analysis by experimental results is used
for the sensitivity study of the bond strength and stress state of the interface to the boundary conditions of the concrete
block. It is found that the constraint height of the concrete block at the loaded side is an influential parameter on the
stress state of the interface and the bond strength.
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Introduction

Externally bonded fiber-reinforced polymer (FRP)
plate/sheet for repairing/strengthening concrete struc-
tures has been widely used in civil engineering due to
good material properties of FRP composite materials
for this application.1–5 Main advantages of FRP com-
posites are their very high strength- and stiffness-
to-weight ratios, corrosion resistance, easy installation,
and outstanding fatigue behavior.6 Along with the
advantages, the use of externally bonded FRP plates/
sheets introduces a new and unique mode of failure in
the strengthened structures which is FRP debonding
from the concrete substrate. Debonding along the

FRP/concrete interface is one of the principal failure
mechanisms of concrete members externally strength-
ened with FRP.7–9

Although the interaction between the externally
bonded FRP and the concrete substrate plays a key role
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in the performance of concrete structures after strength-
ening, there are no universally accepted standards for
determining the bond behavior. Typical method of
finding the bond–slip (t-d) behavior of the FRP/con-
crete interface is the single shear pull-out test.10 In this
method, the in-plane shear stress is applied to the FRP/
concrete interface by applying a uniaxial tension load
in the plane of the FRP, typically in the strong or longi-
tudinal direction of the FRP fiber orientation. The ten-
sile strain gradient in the FRP (representing the shear
strain along the interface) is recorded and is used to
determine the bond–slip relation.11–17 The obtained
bond–slip relation is often used for nonlinear fracture
mechanics or cohesive crack models in numerical analy-
ses to predict FRP debonding from concrete substrate.
Empirical and analytical equations to calculate the
bond–slip relation are also developed using the results
from the single shear pull-out test.

It is observed in many experimental studies that
FRP debonding occurs in the concrete side at a few
millimeters from the FRP/concrete interface.18–20

Therefore, the stress state of the concrete close to the
interface affects the behavior of the FRP/concrete
interface. Also, it is proven by numerical analyses that
the FRP/concrete interface in the single shear pull-out
test does not represent the case of pure shear.21,22 The
boundary conditions of the concrete block is one of the
parameters that can change the stress state of the con-
crete close to the interface and, as a result, can change
the bond strength of the interface in the single shear
pull-out test. The effect of the boundary conditions of
the concrete block in the single shear pull-out test has
not been fully investigated.

In the present study, single shear pull-out tests were
conducted to find the bond strength and the interfacial
fracture energy of the bonded FRP to the concrete sub-
strate. Then, a finite element (FE) model using experi-
mental values was validated by test results to model the
FRP debonding failure in the single shear pull-out test.
The validated numerical model was used to study the
influence of the boundary conditions on the stress state
and the bond strength of the FRP/concrete interface.

Methods determining bond–slip
relationship

The bond–slip relationship from single shear pull-out
test is commonly derived in one of two ways: (a) from
direct measurement of axial strains of FRP or (b) from
indirect analytical solutions modified by test results. In
the former method, many strain gauges are attached
with small intervals along the FRP surface as shown in
Figure 1. Then, the bond stress and slip can be obtained
from the following equations10

ti =
tf Ef

Dx
(ei � ei�1) ð1Þ

di =
Dx

2
e0 + 2

Xi�1

j= 1

ej + ei

 !
ð2Þ

where ti is the average interfacial bond stress in the
increment i having length Dx, ei and ei�1 are the mea-
sured strain values of ith and (i 2 1)th gauges arranged
along the FRP sheet, Ef and tf are the elastic modulus
and thickness of the FRP plate/sheet, respectively, di is
the local slip between FRP plate and concrete at the
section i, e0 is the strain of the FRP plate at the free
end of the bonded area, and ej is the strain value of the
jth gauge.

It has been concluded from the available literature
that the direct method cannot produce accurate bond–
slip relationship and large irregular differences are
observed among the bond–slip curves along the bonded
length.10,23,24 For example, Figure 2 presents the local
bond stress–slip relationships at different locations
from the loaded end in a pull-out test reported by Dai
et al.10 The large scatter of the bond–slip behavior may
be due to the discrete nature of concrete cracks, random

Figure 1. Shear pull-out test.

Figure 2. Local bond stress–slip relationships at different
locations from loaded end.10
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distribution of concrete aggregates, local FRP compo-
sites defects during the application of strengthening sys-
tem in situ such as wrinkles and scratches,25,26 and/or
different concrete volumes attached to the FRP after
initial damage affecting the stiffness of the debonding
element. Mohammadi et al.27 used mathematical meth-
ods called white noise and Brownian motion to model
the variation of the interfacial fracture energy and a sys-
tematic method was developed to predict the load
capacity variation in FRP bonded concrete specimens.

A more stable analytical method to determine the
bond–slip behavior of the FRP/concrete interfaces
through single pull-out bond tests, without the neces-
sity of recording the strain distribution along the FRP
sheet, was proposed by Dai et al.10 In this method, the
local interfacial bond–slip models can be obtained from
the relationships between the FRP strain (ef ) and the
slip at the tip of pre-crack (d) as indicated in
equation (3)

ef =A(1� e�Bd) ð3Þ

After determining the values of parameters A and B
from the experimental data, the interfacial fracture
energy (Gf ) and the bond strength (tmax) can be calcu-
lated by

Gf = 0:5A2Ef tf ð4Þ

tmax = 0:5BGf ð5Þ

where tf and Ef are the thickness and the Young’s mod-
ulus of the FRP plate, respectively.

Faella et al.24 found that compared with direct
method, indirect method has superior stability and
robustness for calibrating the bond–slip relationship at
the FRP-to-concrete interface using experimental data
obtained through pull-out tests. In the present study,
the analytical method (equations (3)–(5)) was applied
to obtain the bond–slip behavior of the FRP/concrete
interface from the experimental results of the con-
ducted single shear pull-out tests.

Experimental program

Test setup and specimens

Figure 3(a) presents the test setup designed for the sin-
gle shear pull-out test. In this figure, parts 1 and 2 are
steel hollow structural section (HSS) 254 3 203 3 9.5
mm and HSS 203 3 254 3 9.5mm, respectively.
These two steel channels were fixed to the strong floor
by bolts. Part 3 was designed in a way to fill the room
between the two channels to prevent their movements
relative to each other and also provide an adjustable
height for the FRP plate. It is inevitable to have some

variations of concrete block height and adhesive thick-
ness among different specimens. Although these varia-
tions are very small, they may cause the line of action
of the applied tension force not to coincide with the
center of the FRP in horizontal direction. For this rea-
son, two small wheels sitting on thread bars were used
in this test setup to adjust the height of steel plates that
hold the FRP plate in order to have tension force direc-
tion as close as possible to the center of the horizontal
FRP plate. They also supported the steel plates to
remove the bending in the FRP plate due to the weight
of the steel plates. The wheels were used in order to
generate the least friction force against steel plate’s hor-
izontal movement during testing.28 The surfaces of the
steel plates, which contacted the FRP plate, were
roughened to prevent the sliding of the FRP plate dur-
ing the test. Figure 3(b) shows a picture of the entire
test setup.

The concrete block was placed on a rigid frame with
two steel reaction elements (Elements A and B shown
in Figures 3(a) and 4(a)) as boundary condition provi-
ders. Element A is a steel plate welded to the steel HSS,
which has same width and half-height of the concrete
block. The function of Element A is to prevent the hori-
zontal displacement of the concrete block during the
test. Element B is a steel plate welded with a steel roller
and is bolted to the steel HSS as shown in Figure 3. The
function of Element B is to prevent the vertical displa-
cement of the concrete block during test. Elements A
and B work together to prevent the rotation of the FRP
bonded concrete specimen during test.

Concrete block dimensions are 152 3 152 3 533
mm. The length and width of the bonded FRP plate
on the concrete block are 406 and 50mm, respectively.
A 25mm pre-crack between FRP and concrete was
produced by placing a 25mm wide tape between the
adhesive and the concrete block during specimen pre-
paration. The schematic of the specimen is shown in
Figure 4(a) and the picture of a specimen is shown in
Figure 4(b). The pull-out test was conducted under dis-
placement control with loading rate of 0.0127mm/s. A
MTS 201.20T hydraulic single ended actuator was used
to apply tensile force to the FRP plate.

Material properties

The mean unconfined compressive strength of concrete
at 28 days, f 0c = 33MPa, was obtained from compres-
sion test according to ASTM C39.29 The strengthening
system is Tyfo� UC laminate strips bonded by Tyfo S
(Saturate) epoxy as primer and Tyfo TC (Tack Coat)
epoxy as adhesive on the concrete substrate. The
mechanical properties of the strengthening system com-
ponents provided by manufacturer are presented in
Table 1.

Mohammadi and Wan 3
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Experimental results and bond–slip relationships

Six concrete specimens (CS1–CS6) were tested. The
applied load, FRP axial strains at different locations
and the slippage at the tip of pre-crack were recorded
during the test. The FRP strains were measured using
electrical resistance strain gauges attached to the FRP

plate surface along its centerline at intervals of 25mm.

A digital dial gauge was used to measure the relative

slip between the concrete and FRP at the pre-crack tip.

The indirect method (equations (3)–(5)) was applied in

order to obtain the bond–slip behavior of the FRP/

concrete interface.

Figure 3. Test setup: (a) schematic (mm) and (b) picture.
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The dial gage was not set correctly during the test of
specimen CS1, and therefore, the results of CS1 were not
used for the calculation. During the test of CS3, it was
observed that the FRP level was lower than the force
level, which caused some peeling loads on the FRP.
Therefore, the loading condition in the specimen CS3
was not same as the designed loading condition for this
test, and its results were also excluded from the following
calculations. The obtained curves of FRP strain versus
slip at the tip of pre-crack for the rest of specimens (CS2,
CS4, CS5, and CS6) are presented in Figure 5. The para-
meters A and B in equation (3) were obtained by the
regression of the experimental data. Then, parameters A
and B were used in equations (4) and (5) to find the bond
strength, tmax, and the interfacial fracture energy, Gf .
The results are presented in Table 2.

Numerical analysis

The commercial software ABAQUS/standard 6.13 was
used for the FE analysis. The plane stress four-node bilinear
two dimensional (2D) elements (CPS4R) were applied for
the modeling. The typical FE mesh is shown in Figure 6.

Material constitutive models

Concrete. The concrete material was modeled using
concrete damaged plasticity model. It assumes that the
two main failure mechanisms of concrete are cracking

in tension and crushing in compression.30 This model
can describe the nonlinear behavior of concrete includ-
ing failures in both tension and compression. It
assumes that the uniaxial tension stress–strain of con-
crete has a linear elastic relationship up to when the
tensile strength of concrete is reached. At this point,
the crack initiates in the concrete. Beyond the crack
initiation, a softening strain response represents the
crack propagation behavior that was assumed a linear
softening behavior in this study, as shown in Figure
7(a). Therefore, the elastic parameters required to
establish the first part of the stress–strain relationship
for concrete in tension before crack initiation are the
Young’s modulus, Ec (MPa), and the tensile strength, ft

(MPa), which were calculated by6

Ec = 4700
ffiffiffiffi
f 0c

p
ð6Þ

ft = 0:33
ffiffiffiffi
f 0c

p
ð7Þ

where f 0c (MPa) is the concrete compressive strength.
Fracture energy method was used to specify the strain
softening behavior of concrete in tension. The fracture
energy of concrete in tension, GF , is the area under the
softening curve and it was taken as equal to 0.12N/mm
consistent with the recommendations of Wittmann31

based on the concrete strength value.
The model proposed by Todeschini et al.32 as shown

in Figure 7(b) was used to represent the compressive
concrete behavior under uniaxial compression.

FRP and epoxy. FRP and epoxy were modeled using a
brittle cracking model. In the brittle cracking model,
the stress–strain curve is assumed to be linear up to its
ultimate strength, and the material loses all its load-car-
rying capacity suddenly at this point. The thicknesses
of FRP plate and epoxy are 1.5 and 1mm, respectively.

FRP/concrete interface. Since the debonding failure of
FRP/concrete joints is due to a moving crack within

Figure 4. Specimen: (a) schematic and (b) picture.

Table 1. Properties of strengthening system components.

Property Tyfo� UC
Laminate
Strip

Tyfo S Tyfo TC

Ultimate tensile
strength (MPa)

2790 72.4 22.7

Elongation at break (%) 1.8 5 1.88
Tensile modulus (GPa) 155 3.18 1.2
Layer thickness (mm) 1.5 – 1
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concrete close to and along the FRP/concrete interface,
a damage band was created separately from the rest of
the concrete in the numerical model to simulate the
FRP/concrete interface.33

Cracks in a FE model may cause singular stresses
and strains close to a crack tip, or a jump in displace-
ment across a crack. For the numerical estimation of
these non-smooth variables, there are two primarily dif-
ferent approaches. The first method is a polynomial
approximation based on FE shape functions and
requires the element mesh to conform to the
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Figure 5. FRP strain versus slip curves at the tip of pre-crack.

Damage Band
Pre-crackFRP

Figure 6. Typical FE mesh applied for numerical analysis.

Table 2. Experimental results from single shear pull-out test.

Specimen Maximum load, P (kN) A (e) B (mm21) tmax (MPa) Gf (N/mm)

CS2 41.51 0.00320 5.1 3.03 1.19
CS4 38.89 0.00321 4.9 2.94 1.20
CS5 45.60 0.00349 5.2 3.68 1.41
CS6 47.65 0.00350 5.1 3.63 1.42
Average 43.41 0.00335 5.07 3.32 1.30
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discontinuities. In addition, a refined mesh is essential
at the location close to the crack tip and remeshing is
required in order to model the evolution of interfaces,
for example, crack propagations. However, an effective
remeshing procedure can be difficult for complex geo-
metries because the elements must conform to the geo-
metry of the discontinuity or projection errors are
introduced. Moreover, this is computationally expen-
sive and not suitable for developing cracks. The second
method is the extended finite element method (XFEM)
that is based on enriching the polynomial approxima-
tion space with discontinuous functions, so that non-
smooth solutions can be modeled independent of the
mesh. In this study, the XFEM-based cohesive method
was used to model the damaged band as the FRP/con-
crete interface. The XFEM-based cohesive method is
based on the partition of unity property of FE shape
functions and enriching the cracked elements with addi-
tional degrees of freedom. This method is able to model
crack initiation and propagation along an arbitrary,
solution-dependent path in the bulk material, and crack
propagation is not tied to the element boundaries in a
mesh. In this method, it is needed to define a traction–
separation law for cracking behavior of the damage
band. The behavior of the damage band can be defined
by a bilinear traction–separation law that is shown in
Figure 8.18,34,35 Consequently, the stress–separation
curve is linear up to when the damage initiation criter-
ion is reached and then the post-cracking behavior is
presented by in a descending linear damage evolution
law. Therefore, the failure mechanism of the damage

band consists of two components: a damage initiation
criterion and a damage evolution law. The damage
initiation criterion uses the maximum traction to define
the beginning of the interface degradation. The area
under the traction–separation response is assumed
equal to the fracture energy required for separating the
unit area of the interface. The damage evolution law
uses the fracture energy concept to describe crack pro-
pagation behavior. In the present numerical analysis,
the bond strength, tmax = 3:32MPa, and interfacial
fracture energy, Gf = 1:3N=mm, according to the find-
ings of the experimental program as shown in Table 2,
were assumed as the crack initiation and propagation
criteria, respectively.

The initial stiffness of the interface, k, in Figure 8,
was calculated by equation (8)36

k =
G

t
=

1
ta
Ga

+ tc
Gc

ð8Þ

where Gc, Ga, tc, and ta are shear moduli, and thick-
nesses of the concrete and the adhesive, respectively. A
summary of applied material properties in the FE anal-
ysis is presented in Table 3.

The applied FE analysis in this study is able to pre-
dict the FRP debonding from concrete substrate. The
red color in Figure 9 shows the debonding cracks in the
model. There is a very good agreement between the
numerical and experimental results for FRP strain ver-
sus slip curves at the tip of pre-crack, as shown in
Figure 10. The predicted ultimate load by numerical
analysis was 45.59 kN which is very close to the average
of the experimental ultimate loads, 43.41 kN, presented
in Table 2.

Sensitivity analysis to the boundary
conditions

The numerical analysis shows that the FRP/concrete
interface is not under pure shear stresses in the single
shear pull-out test. Figure 11 shows the stress state of
the element of the damage band at the tip of pre-crack
when the initiation criterion is met. It can be seen in the

Figure 8. Bilinear traction–separation law.

Crack opening

GF

wc

ft

Strain, ε

St
re

ss

(a)

(b)

Figure 7. Concrete material models: (a) linear approximation
of concrete strain softening curve and (b) compressive behavior
model of concrete under uniaxial compression.6
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figure that there are normal stress components besides
the shear stress. The normal stress along y direction,
sy, which is perpendicular to the interface, is very small
compared to the shear stress, t, and the normal stress
along x direction, sx. Therefore, sy is neglected in the
following analysis.

Figure 12 shows the concrete substrate surface after
FRP debonding. As it can be seen, the debonding actu-
ally was initiated with concrete fracture. Since the FRP
debonding failure occurs in concrete close to the FRP/
concrete interface, it is reasonable to assume that when
the maximum principle stress in the element at the tip
of pre-crack reaches to the concrete tensile strength, ft,
the crack initiates in the element. Based on this assump-
tion and regarding that sy is negligible, the crack initia-
tion criterion can be defined as

ft =
sx,max

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx,max

2

� �2

+ t2
max

r
ð9Þ

Thus, the bond strength, tmax, as a function of con-
crete tensile strength and the maximum normal stress
component can be expressed as

tmax = 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ft �

sx,max

2

� �2

� sx,max

2

� �2
r

ð10Þ

Since sx,max is compressive stress with negative sign
(Figure 11), the bond strength, tmax, increases with

Table 3. Material properties applied in FE analysis.

Properties Concrete Damage band FRP Epoxy

Modulus of elasticity, E (GPa) 30.5 30.5 155 1.2
Tensile strength (MPa) 3.58 3.58 2790 22.7
Compressive strength, f 0c (MPa) 33.09 – – –
Shear modulus, G (GPa) 12.71 1.29 – –
Shear strength, tmax (MPa) – 3.32 – –
Fracture energy, Gf (N/mm) 0.12 1.30 – –
Poisson ratio 0.2 0.2 0.25 0.3

FE: finite element; FRP: fiber-reinforced polymer.

Figure 9. FRP debonding failure predicted by FE analysis.

Figure 10. Numerical and experimental FRP strain versus slip
curves at the tip of pre-crack.

Figure 11. Stress state of the element at the tip of pre-crack.
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increasing of the absolute value of sx,max. In the single
shear pull-out test, the boundary conditions of concrete
block may influence the normal stresses of the concrete
close to the interface and consequently the bond
strength. Although different boundary conditions are
used in the literature, the effect of that on the bond
strength of the interface has not been studied.

In order to study the sensitivity of the normal stress
components of the interface to the boundary condi-
tions, four different boundary conditions (Figure 13)
used in the literature were selected for the numerical
analysis in this study. Boundary condition a is a repre-
sentative of an experimental setup with the concrete
block fixed to the base and no constraint on the side
edges of concrete.11 In boundary condition b, the height
of the constraint on the edge of concrete is smaller than
half of the concrete block height.37 Boundary condition
c is the case that the height of the constraint is half of
the concrete height. It is the one used in the experimen-
tal test and numerical analysis in this study. In bound-
ary condition d, the height of the constraint is very
close to the concrete height.38

The normal stress, sx, of the element at the tip of
pre-crack in concrete before crack initiation is presented
in Figure 14 for the four selected boundary conditions.
As explained in the previous section, the behavior of
the concrete and damage band was assumed to be linear
before the beginning of the cracking. Since the normal
stresses in this figure are those in the model before the
crack initiation criterion is met (starting of the debond-
ing), the curves in this figure are linear. The normal
stress sx is sensitive to the boundary condition of con-
crete block at the load side. As the height of constraints
is increasing at this side, the absolute values of sx are
increasing as well. In summary, changing the boundary
conditions of concrete block results in changing the
maximum normal stress of concrete, and therefore
changing the measured bond strength in the single shear
pull-out test. Therefore, the boundary condition needs
to be considered as an effective parameter in the mod-
els. Since the single shear pull-out test results are often
used to study the FRP debonding from concrete struc-
tures, the boundary condition of the single pull-out test
should be carefully chosen to represent the real bound-
ary condition at the FRP/concrete interface in the real
structure in order to obtain the correct bond strength
for analyzing the real structure.

Conclusion

In the present study, the single shear pull-out test was
conducted to define the bond characteristics of the
FRP/concrete interface. Then, the experimentally
obtained values of the bond strength and interfacial
fracture energy were used in the FE analysis to numeri-
cally model the FRP debonding failure in the single
shear pull-out test. Using the results of the numerical
analysis, the stress state of the FRP/concrete interface
and the influence of the boundary conditions of the
concrete block on the stress state and bond strength of
the FRP/concrete interface were investigated. The

Figure 12. Concrete substrate surface after FRP debonding in
shear pull-out test.

h

P

Fixed support h

P

3h/4

a b
P P

c

h
h/2

d

h

c d

Figure 13. Selected boundary conditions for the sensitivity analysis: (a) fixed support, (b) constraint height = 3h/4, (c) constraint
height = h/2, and (d) constraint height = h.
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numerical analysis shows that the bond strength of the
interface is sensitive to the height of constraint of the
concrete edge at the loaded side. As the constraint
height increases, the bond strength of the interface
increases too. Therefore, boundary condition of the
concrete block is a determinative parameter in the bond
strength of the FRP/concrete interface in the single
shear pull-out test.
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