Bis(diethyldithiocarbamato)(iodo)(4-methoxyphenyl)telluri $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}$, and its Isomorphous Partially Bromine-Replaced Analogue, p - $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}_{0.41} \mathrm{I}_{0.59}$

Steinar Husebye
University of Bergen
Steffen Kudis
University of Heidelberg
Sergey V.Lindeman
Marquette University, sergey.lindeman@marquette.edu

Published version. Acta Crystallographica Section C, Vol. 52 (1996): 424-429. DOI. © 1996 International Union of Crystallography. Used with permission.

Acta Cryst. (1996). C52, 424-429

Bis(diethyldithiocarbamato)(iodo)-(4-methoxyphenyl)tellurium(IV), \boldsymbol{p} $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}$, and its Isomorphous Partially Bromine-Replaced Analogue, $\boldsymbol{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}_{0.41} \mathrm{I}_{0.59}$

Steinar Husebye, ${ }^{a}$, Steffen Kudis ${ }^{b}$ and Sergey V. Lindeman ${ }^{c}$
${ }^{a}$ Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway, ${ }^{b}$ Department of Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, 69120
Heidelberg, Germany, and ${ }^{c}$ Institute of Organoelement Compounds, 28 Vavilov St., Moscow 117813, Russia
(Received 18 November 1994; accepted 6 April 1995)

Abstract

The $\mathrm{Te}^{\mathrm{IV}}$ complexes $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}$, (1), and $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Br}_{0.41} \mathrm{I}_{0.59}$, (3), have been synthesized by reacting $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{3}$ with the elementary halogens. The crystals of (1) and (3) are isomorphous with the I atom position in (3) partially replaced by a Br atom. The structures are pentagonal bipyramidal with four S atoms [$\mathrm{Te}-\mathrm{S} 2.624$ (1)2.733 (1) \AA] and the halogen atom [Te-I 3.169 (1) and 3.164 (1), $\mathrm{Te}-\mathrm{Br} 2.904$ (3) \AA] in equatorial positions. The p-methoxyphenyl group is axial [Te-C 2.211 (3) and 2.151 (4) A] and the second axial position is occupied by a halogen atom of a neighbouring molecule $[\mathrm{Te} \cdots \mathrm{I} 3.569$ (1) and 3.558 (4), $\mathrm{Te} \cdots \mathrm{Br} 3.476$ (9) \AA, bond angles C - $\mathrm{Te} \cdots \mathrm{I} 176.7$ (1) and 174.9 (4), C$\mathrm{Te} \cdots \mathrm{Br} 176.3(2)^{\circ} \mathrm{J}$ so that the molecules are joined into centrosymmetric pairs by this secondary coordination.

Comment

The structure of the isomorphous mixed Br / I complex (3) is quite similar to the structure of the pure iodine complex (1), therefore the discussion will focus on (1) and the corresponding structural parameters for (3) will be given in brackets, where necessary, with the exceptions of those peculiarities, which are an effect of the halogen-atom replacement.

(1)

(3)

The Te atom in the crystal (1) has pentagonalbipyramidal coordination with two bidentate chelating dithiocarbamate ligands, an I atom in the equatorial plane, and an aryl group in an axial position (Fig. 1). The second axial site is comparatively weakly coordinated by the I atom of a neighbouring complex unit, symmetrically related to the first one by an inversion centre $\left[\left(0, \frac{1}{2}, 1\right)\right.$ for the reference molecule], so that molecules of (1) are connected into dimers via two bridging iodine ligands (Fig. 2).
Such secondary bonding is rather common for $\mathrm{Te}^{\mathrm{IV}}$ compounds. The $\mathrm{Te}-\mathrm{I}$ and $\mathrm{Te} \cdots \mathrm{I}$ distances are

Fig. 1. Perspective view of (1) showing the labelling of non-H atoms. The minor component of the disordered ethyl group is shown by dashed lines. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Perspective view of the centrosymmetric dimer of (1). Disordered groups and H atoms are removed for clarity. Secondary intermolecular bonds are shown by thin lines.
not very different from each other $\{3.169(1)$ and 3.569 (1) \AA [3.164 (1) and 3.558 (4) \AA] $\}$ with the practically 'ideal' valence angle values for $\mathrm{C}-\mathrm{Te} \cdots \mathrm{I}$ $\left\{176.7(1)^{\circ}\left[174.9(4)^{\circ}\right]\right\}$ and $\mathrm{Te}-\mathrm{I} \cdots \mathrm{Te}\left\{92.75(1)^{\circ}\right.$ [89.6(1) ${ }^{\circ}$]\}. In the bromine-substituted complex (3) the corresponding $\mathrm{Te}-\mathrm{Br}$ and $\mathrm{Te} \cdots \mathrm{Br}$ distances are 2.904 (3) and 3.476 (9) \AA, and the $\mathrm{C}-\mathrm{Te} \cdots \mathrm{Br}$ and $\mathrm{Te}-\mathrm{Br} \cdots \mathrm{Te}$ angles are $176.3(2)$ and $95.7(2)^{\circ}$. The increased difference between the 'primary' and 'secondary' bond lengths in the Br analogue is in good agreement with the 'less soft' nature (weaker trans effect) of the Br ligand as compared with the I ligand. It is also possible that the occurrence of such dimers of (3) is a result of the isomorphous inclusion of its molecules in the crystalline matrix of (1).

In analogues of (1) investigated earlier, the secondary coordination of the $\mathrm{Te}^{\mathrm{IV}}$ atom at the seventh coordination site was found to consist of weak intermolecular $\mathrm{Te} \cdot \mathrm{C}$ contacts: in (2) [the Ph analogue of (1); Husebye \& Maartmann-Moe, 1994] two symmetrically independent molecules are paired off with Te . . S distances 3.597 (1) and 3.832 (1) \AA [trans angles C$\mathrm{Te} \cdots \mathrm{S} 166.2$ (1) and $154.9(1)^{\circ}$, respectively] and in the structure of chlorobis(diethyldithiocarbamato)(4-ethoxyphenyl)tellurium(IV), (4) (Husebye, Maartmann-Moe \& Steffensen, 1990), two symmetrically independent complex units are connected into centrosymmetrical 'dimers' by additional $\mathrm{Te} \cdot \mathrm{S}$ contacts of 3.705 (1) and 3.739 (1) \AA [trans angles $\mathrm{C}-\mathrm{Te} \cdots \mathrm{S} 162.3$ (1) and $161.7(1)^{\circ}$, respectively]. Moreover, there are some earlier examples of intramolecular $\mathrm{C}-\mathrm{Te} \cdots \mathrm{S}$ coordination (Husebye, Maartmann-Moe \& Steffensen, 1990). In the structure of bis(diethyldithiocarbamato)(iodo)methyltellurium(IV), (5) (Dakternieks, Di Giacomo, Gable \& Hoskins, 1988), molecules are connected into indefinite chains via very weak $\mathrm{Te} \cdots \mathrm{I}$ additional contacts of $4.299 \AA$ (trans angle C-Te...I 153.6° calculated using published coordinates).

The intramolecular $\mathrm{Te}-\mathrm{I}$ bond length in (1) is noticeably increased as compared with those found in (2) $[3.151$ (1) and 3.100 (1) \AA] and (5) [3.117 (1) \AA]; also, the $\mathrm{Te}-\mathrm{C}(\mathrm{Ar})$ bond, which is located trans to the strong secondary $\mathrm{Te} \cdots \mathrm{I}$ bond in (1), is significantly longer [2.211 (3) \AA] , and the endocyclic valence ipso-angle $\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16$ in the benzene ring is distinctly larger [$122.9(3)^{\circ}$] than the corresponding Te $\mathrm{C}(\mathrm{Ar})$ bonds [2.148(2) and 2.157 (2), $2.139(2)$ and 2.140 (2) \AA] and the $C-C-C$ angles $[119.5$ (2) and 120.1 (2), 119.4 (2) and 119.1 (2) ${ }^{\circ}$] in (2) and (4). These features are evidence of the significance of the stronger Te...I interaction in (1). It is possible that the formation of the by-product $\mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right) \mathrm{I}_{2}$ along with (1) in the reaction in question (see Experimental) occurs because of this weakening of the $\mathrm{Te}-\mathrm{Ar}$ bond with subsequent replacement of the aryl group by a further I ligand. It is noteworthy that in (3) the $\mathrm{Te}-\mathrm{C}(\mathrm{Ar})$ bond length $[2.151$ (4) \AA] and the valence angle C12-

C 11 - C 16 [119.9 (4) ${ }^{\circ}$] are much closer to those found in (4), evidently due to the large contribution of the more weakly 'secondary-bonded' Br-containing structure. In both cases the p-methoxyphenyl ligand has the usual planar π-conjugated structure; the torsion angle $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ is only $2.7(7)^{\circ}\left[1.6(9)^{\circ}\right]$ and the mean deviation of aromatic C atoms out of their mean plane is $0.003 \AA$ [$0.006 \AA$].

Both dithiocarbamate ligands are quite symmetrically coordinated to the Te atom, but the S atoms in the quasi-trans positions to the I atom (Br atom) are less distant from the Te atom than the atoms in the quasicis positions: $\mathrm{Te}-\mathrm{S} 1$ and $\mathrm{Te}-\mathrm{S} 3$ distances are 2.627 (1) and 2.626 (1) \AA [2.626 (1) and 2.624 (1) \AA], respectively, with corresponding $\mathrm{I}-\mathrm{Te}-\mathrm{S}$ bond angles of 141.85 (2) and $140.69(3)^{\circ}\left[141.9(1)\right.$ and $141.0(1)^{\circ}$ for I and 142.3 (2) and $140.1(2)^{\circ}$ for Br], while the $\mathrm{Te}-\mathrm{S} 2$ and $\mathrm{Te}-\mathrm{S} 4$ distances are $2.733(1)$ and $2.693(1) \AA$ [2.728 (1) and 2.690 (1) \AA], respectively, with I-TeS angles of $76.73(2)$ and $73.60(3)^{\circ} \quad[76.7(1)$ and $73.9(1)^{\circ}$ for I and $77.5(2)$ and $73.2(2)^{\circ}$ for Br]. As a result, the corresponding $\mathrm{C}-\mathrm{S}$ bond lengths and $\mathrm{C}-$ $\mathrm{S}-\mathrm{Te}$ bond angles inside the chelate cycles are also slightly different: 1.734 (4) and 1.739 (4) \AA [1.725 (5) and $1.731(5) \AA$] and $89.1(1)$ and $88.4(1)^{\circ}$ [89.2 (2) and $88.5(2)^{\circ}$] for the 'trans'-S, versus $1.699(4)$ and 1.704 (4) $\AA[1.697$ (5) and 1.704 (5) \AA] and 86.4 (1) and $86.9(1)^{\circ}$ [86.4 (2) and $86.9(2)^{\circ}$] for the ' cis '-S.

A similar distribution of bond lengths was found in (2) $[\mathrm{Te}-\mathrm{S}$ bonds are 2.626 (1)-2.661 (1) \AA in quasitrans positions and 2.693 (1)-2.717 (1) \AA in quasi-cis positions to the halogen atom], in (4) [2.642 (1)2.654 (1) \AA in quasi-trans and 2.681 (1)-2.731 (1) \AA in quasi-cis positions] and in (5) [2.646 (1) and 2.618 (1) \AA for the quasi-trans and 2.725 (1) and 2.691 (1) \AA for the quasi-cis positions]. Evidently, this feature is the result of a trans influence of the halogen substituent in the equatorial plane.

The presence of the comparatively large anisometric aryl substituent in an axial position in (1)-(4) results in substantial non-coplanarity of the equatorial substituents: the atoms eclipsed by the aryl ortho-CH groups are displaced away from the aryl group. So, in (1) $[(3)], \mathrm{S} 1$ and I1 [I1/Br1] are shifted away from the aryl group by $0.159(1) \AA[0.176(1) \AA$] and 0.111 (1) \AA $[0.029(6) / 0.110(8) \AA]$, respectively, with corresponding torsion angles $\mathrm{S}-\mathrm{Te}-\mathrm{C}-\mathrm{C}$ and $\mathrm{I}[\mathrm{Br}]-\mathrm{Te}-\mathrm{C}-\mathrm{C}$ $-25.8(3)[-25.3(4)]$ and $11.8(3)^{\circ}\left[13.4(4) / 12.6(4)^{\circ}\right]$, while the other atoms are shifted towards it by up to 0.197 (1) $\AA[0.171$ (1) $\AA]$ (S2 atom). The nonbonded distances $\mathrm{CH} \cdots \mathrm{S}$ and $\mathrm{CH} \cdots \mathrm{I}[\mathrm{Br}]$ are $2.84 \AA$ [$2.84 \AA$] and $2.84 \AA$ [2.79 and $2.75 \AA$]. In (2) and (4) the out-of-plane shifts of the equatorial atoms are 0.042 $0.243 \AA$ away from the aryl group when the $\mathrm{C}-\mathrm{C}-$ $\mathrm{Te}-X$ torsion angle is less than 45°, and $0.007-0.248 \AA$ towards it in other cases. The Te atom in (1)-(4) is shifted out of the equatorial plane towards the aryl lig-
and by 0.055 (1) \AA [$0.052(1) \AA$] in (1) [(3)], and by $0.011-0.017 \AA$ in (2) and (4).

On the other hand, in the less sterically extended Me derivative (5), the I and four S atoms are in the plane within $0.02 \AA$. The Te atom is shifted outside, not towards but away from the Me group by $0.122 \AA$. This might be considered as a result of larger localization of the Te lone electron pair and its repulsion with equatorial substituents.

Perhaps intramolecular repulsion between the ligands results in non-planarity of one of the dithiocarbamate chelate cycles in (1): the $\mathrm{S} 1, \mathrm{C} 1, \mathrm{~S} 2, \mathrm{Te} 1$ cycle is folded by $12.3(1)^{\circ}\left[12.2(2)^{\circ}\right]$ against the aryl ligand along the $\mathrm{S} \cdots \mathrm{S}$ line, whereas the other cycle is practically planar \{folding angle is $\left.1.8(1)^{\circ}\left[1.6(2)^{\circ}\right]\right\}$. Both dithiocarbamate ligands have a usual π-conjugated structure \{the $\mathrm{C} s p^{2}-\mathrm{N}$ bond distances are 1.317 (5)-1.332 (5) \AA, the twist along these bonds being no more than $5.6(3)^{\circ}$; the configuration of the N atoms is planar within $0.05 \AA$, excluding the disordered part - for the minor component the N atom is shifted to 0.20 (1) $\AA[0.18$ (1) \AA] out of plane of surrounding atoms\}. The orientation of the ethyl groups is quite different in the two dithiocarbamate ligands: anti in the S3-C10 ligand and syn in the S1-C5 ligand for the major component. The minor component of the disordered group also has an anti orientation of ethyl groups.

The role of the lone electron pair in the investigated structures is not very clear. The relatively strong secondary Te \cdots I interaction here gives a roughly $0.5 \AA$ shorter intermolecular contact than the sum of the respective van der Waals radii (Bondi, 1964) in the direction of the 'empty' axial position of the pentagonalbipyramidal coordination polyhedron of Te . So it is unlikely that the lone pair occupies this position as it would have shielded the halogen from the positively charged Te central atom. However, the lone pair (even if it is stereochemically inert in the sense that it does not occupy a position in the coordination polyhedron) probably has some antibonding character. This is shown by the long average Te-S bond distances of $2.668 \AA$ compared with the sum of the respective covalent radii of $2.41 \AA$ (Pauling, 1960).

Experimental

Compound (1) was obtained by an attempt to synthesize p $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right) \mathrm{I}_{2}$ by the following reaction:

$$
\begin{aligned}
& p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{3}+\mathrm{I}_{2} \rightarrow \\
& p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right) \mathrm{I}_{2}+\left[\mathrm{Et}_{2} \mathrm{NC}(\mathrm{~S}) \mathrm{S}\right]_{2} .
\end{aligned}
$$

However, our structural investigation shows that, in reality, the following process takes place:

$$
\begin{aligned}
& 2 p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{3}+\mathrm{I}_{2} \rightarrow \\
& 2 p-\mathrm{MeOC} \\
& 6
\end{aligned} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}+\left[\mathrm{Et}_{2} \mathrm{NC}(\mathrm{~S}) \mathrm{S}\right]_{2} .
$$

The compound $\mathrm{PhTe}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}$, (2) (Husebye \& MaartmannMoe, 1994), has been obtained in our laboratory (Bergen)
using this reaction. Moreover, there is evidence that $\mathrm{PhTe}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right) \mathrm{Cl}_{2}$ gave $\mathrm{PhTe}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Cl}$ on recrystallization (Dakternieks, Di Giacomo, Gable \& Hoskins, 1988). It is noteworthy that the compound $\mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}_{2}$ is also produced, along with (1), as a by-product. The dark green regularly twinned crystals were found by us to have the same structure as that recently published (Kumar, Aravamudan, Udupa \& Seshasayee, 1993).

Compound (3) was obtained from (1) in an attempt to realise the reaction:

$$
\begin{aligned}
& 2 p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{I}+\mathrm{Br}_{2} \rightarrow \\
& 2 p-\mathrm{MeOC}
\end{aligned} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right) \mathrm{BrI}+\left[\mathrm{Et}_{2} \mathrm{NC}(\mathrm{~S}) \mathrm{S}\right]_{2},
$$

as a product of partial halogen replacement. The target product of further halogen substitution was also synthesized, but as a minor and also mixed by-product $p-\mathrm{MeO}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)\left(\mathrm{Br}_{0.4} \mathrm{I}_{0.6}\right)_{2}$ (Husebye, Kudis, Lindeman \& Strauch, 1995).

Compound (1)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{IN}_{2} \mathrm{OS}_{4} \mathrm{Te}$	Mo $K \alpha$ radiation
$M_{r}=658.15$	$\lambda=0.71069 \AA$
Monoclinic	Cell parameters from 24
$P 2_{1} / n$	\quad reflections
$a=10.069(3) \AA$	$\mu=12.4-15.1^{\circ}$
$b=14.545(2) \AA$	$T=2.816 \mathrm{~mm}^{-1}$
$c=16.784(2) \AA$	Well formed prism
$\beta=90.59(2)^{\circ}$	$0.5 \times 0.2 \times 0.15 \mathrm{~mm}$
$V=2458.0(9) \AA^{3}$	Dark red
$Z=4$	

$$
D_{x}=1.779 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 0.7 \theta$ scans
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\text {min }}=0.167, T_{\text {max }}=$ 0.381

6746 measured reflections
6420 independent reflections
5101 observed reflections

$$
[I>2 \sigma(I)]
$$

$R_{\text {int }}=0.0247$
$\theta_{\text {max }}=29.96^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 20$
$l=0 \rightarrow 23$
3 standard reflections frequency: 120 min intensity decay: 6.5%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0321$
$w R\left(F^{2}\right)=0.0878$
$S=1.055$
6420 reflections
238 parameters
H atoms: riding and rotating model with fixed $U_{\text {iso }}$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0435 P)^{2}\right.$ $+0.2739 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.103$
$\Delta \rho_{\text {max }}=0.778 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.957 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors
from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Tel	0.07661 (2)	0.59420 (1)	0.88911 (1)	0.03667 (6)
I1	0.08866 (3)	0.38047 (2)	0.92510 (2)	0.05389 (8)
S1	0.19721 (10)	0.74969 (6)	0.92312 (6)	0.0492 (2)
S2	0.32308 (10)	0.57149 (7)	0.95592 (7)	0.0541 (2)
S3	-0.08417 (10)	0.71906 (7)	0.82925 (6)	0.0495 (2)
S4	-0.15063 (10)	0.52201 (7)	0.83068 (7)	0.0581 (3)
O1	0.3317 (4)	0.5438 (2)	0.5507 (2)	0.0720 (9)
N1	0.4212 (4)	0.7304 (2)	1.0061 (2)	0.0618 (9)
N2	-0.3140 (3)	0.6502 (3)	0.7740 (2)	0.0622 (9)
C1	0.3256 (4)	0.6876 (2)	0.9668 (2)	0.0454 (8)
C2	0.5334 (4)	0.6791 (4)	1.0432 (3)	0.0675 (12)
C3	0.5050 (6)	0.6465 (4)	1.1249 (3)	0.0790 (15)
C4	0.4335 (7)	0.8300 (4)	1.0091 (4)	0.0580 (14)
C5	0.3725 (10)	0.8668 (7)	1.0830 (6)	0.098 (3)
C4'	0.387 (2)	0.8285 (13)	1.0478 (14)	0.078 (5)
C5 ${ }^{\prime}$	0.461 (2)	0.9007 (14)	1.0086 (13)	0.093 (6)
C6	-0.1965 (4)	0.6316 (3)	0.8074 (2)	0.0493 (8)
C7	-0.4150 (5)	0.5775 (4)	0.7632 (4)	0.084 (2)
C8	-0.3962 (6)	0.5217 (5)	0.6886 (4)	0.107 (2)
C9	-0.3517 (5)	0.7438 (4)	0.7493 (3)	0.0754 (14)
C10	-0.4262 (6)	0.7949 (5)	0.8143 (4)	0.099 (2)
C11	0.1680 (3)	0.5795 (2)	0.7706 (2)	0.0364 (6)
C12	0.2087 (4)	0.6564 (2)	0.7322 (2)	0.0449 (7)
C13	0.2652 (4)	0.6473 (3)	0.6572 (2)	0.0468 (8)
C14	0.2778 (4)	0.5619 (3)	0.6237 (2)	0.0484 (8)
C 15	0.2357 (5)	0.4847 (3)	0.6652 (2)	0.0601 (11)
C16	0.1800 (5)	0.4957 (3)	0.7400 (2)	0.0554 (10)
C17	0.3840 (6)	0.6178 (4)	0.5070 (3)	0.083 (2)

Table 2. Selected geometric parameters $\left.\left(A^{\circ}\right),{ }^{\circ}\right)$ for (1)

Te1-C11	2.211 (3)	N1-C4'	1.63 (2)
Tel-S3	2.626 (1)	N2-C6	1.332 (5)
Tel-S1	2.627 (1)	N2--C9	1.472 (6)
Tel-S4	2.693 (1)	N2-C7	1.476 (7)
Te1-S2	2.733 (1)	C2-C3	1.481 (7)
Tel-I1	3.1689 (7)	C4-C5	1.49 (1)
Tel-I1 ${ }^{\text {i }}$	3.569 (1)	C4'- $\mathrm{C} 5^{\prime}$	1.45 (3)
$\mathrm{Sl}-\mathrm{Cl}$	1.734 (4)	C7-C8	1.505 (8)
S2-C1	1.699 (4)	C9-C10	1.523 (8)
S3-C6	1.739 (4)	C11-C16	1.329 (5)
S4-C6	1.704 (4)	C11-C12	1.357 (5)
$\mathrm{O} 1-\mathrm{Cl} 4$	1.371 (4)	C12-C13	1.393 (5)
$\mathrm{Ol}-\mathrm{Cl} 7$	1.407 (6)	C13-C14	1.371 (5)
N1-C1	1.317 (5)	C14-C15	1.390 (6)
N1-C4	1.455 (7)	C15-C16	1.389 (6)
N1-C2	1.485 (5)		
$\mathrm{C} 11-\mathrm{Te} 1-\mathrm{S} 3$	89.05 (8)	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2$	121.4 (4)
$\mathrm{C} 11-\mathrm{Te} 1-\mathrm{S} 1$	94.78 (8)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	115.0 (4)
S3-Tel-S1	76.67 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4^{\prime}$	118.2 (8)
$\mathrm{Cl1}-\mathrm{Te} 1-\mathrm{S} 4$	89.68 (8)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4^{\prime}$	115.1 (8)
S3-Te1-S4	67.18 (4)	C6-N2-C9	122.1 (4)
S1-Tel-S4	143.50 (3)	C6-N2-C7	120.9 (4)
$\mathrm{C} 11-\mathrm{Te} 1-\mathrm{S} 2$	88.45 (8)	C9-N2-C7	116.9 (4)
S3-Te1-S2	142.59 (3)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	122.2 (3)
S1-Tel-S2	66.36 (3)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{Sl}$	120.3 (3)
S4-Te1-S2	150.09 (3)	$\mathrm{S} 2-\mathrm{Cl}-\mathrm{S} 1$	117.5 (2)
C11-Tel-Il	93.50 (8)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	113.3 (4)
S3-Tel-I1	140.69 (3)	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	110.5 (7)
$\mathrm{S} 1-\mathrm{Te}$ - Il	141.85 (2)	$\mathrm{C} 5{ }^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{N} 1$	109 (2)
S4-Te1-Il	73.60 (3)	N2-C6-S4	121.6 (3)
$\mathrm{S} 2-\mathrm{Te}$ - 11	76.73 (2)	N2-C6-S3	120.9 (3)
Cll-Tel-I1 ${ }^{\text {i }}$	176.75 (8)	S4-C6-S3	117.5 (2)
S3-Tel-I1 ${ }^{\text {i }}$	88.38 (3)	N2-C7-C8	113.3 (5)
S1-Tel-I1 ${ }^{1}$	86.55 (3)	N2-C9-C10	112.1 (4)
S4-Tel- $\mathrm{ll}^{\text {i }}$	87.50 (3)	C16-C11-C12	122.9 (3)
S2-Te1-I1 ${ }^{\text {i }}$	94.79 (3)	$\mathrm{C} 16-\mathrm{C} 11-\mathrm{Te} 1$	118.5 (2)
I1-Tel-I1 ${ }^{\text {i }}$	87.25 (1)	C12-C11-Tel	118.6 (2)
Tel-Il-Tel ${ }^{\text {' }}$	92.75 (1)	C11-C12-C13	118.6 (3)
$\mathrm{Cl}-\mathrm{Sl}-\mathrm{Tel}$	89.1 (1)	C14-C13-C12	119.8 (3)

$\mathrm{Cl}-\mathrm{S} 2-\mathrm{Tel}$	86.4 (1)	$\mathrm{Ol}-\mathrm{Cl4}-\mathrm{Cl} 3$	125.4 (4)
C6-S3-Tel	88.4 (1)	$\mathrm{O}-\mathrm{C14-C15}$	114.8 (3)
C6-S4-Tel	86.9 (1)	C13-C14-C15	119.7 (3)
C14-O1-C17	118.2 (4)	C14-C15-C16	119.3 (4)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4$	123.3 (4)	C11-C16-C15	119.6 (4)
C11-Tel-I1-Tel ${ }^{\text {i }}$	-176.84 (8)	C9-N2-C6-S3	3.9 (6)
S2-Tel-S1-C1	-4.7 (1)	C7-N2--C6-S3	-173.5 (4)
S1-Tel-S2-C1	4.8 (1)	Tel-S4-C6-S3	1.3 (2)
S4-Tel-S3-C6	0.8 (1)	Tel-S3-C6-S4	-1.3(2)
S3-Tel-S4-C6	-0.8(1)	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	-84.0 (6)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	173.2 (4)	C6-N2-C9-C10	-92.8 (6)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	0.2 (6)	S3-Tel-C11-C16	-129.0 (3)
$\mathrm{C} 4{ }^{-}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	-152.7 (9)	$\mathrm{Sl}-\mathrm{Te} 1-\mathrm{Cl1}-\mathrm{Cl} 6$	154.5 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 1$	-6.2 (7)	S4-Tel-C11-C16	-61.8 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 1$	-179.2 (3)	$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{C} 16$	88.4 (3)
$\mathrm{C}^{\prime}-\mathrm{Nl}-\mathrm{Cl}-\mathrm{Sl}$	28 (1)	11-Tel-C11-C16	11.8 (3)
Te1-S2-C1-S1	-7.6 (2)	$\mathrm{S} 3-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{C} 12$	50.7 (3)
Tel-S1-C1-S2	7.8 (2)	$\mathrm{S} 1-\mathrm{Tel}-\mathrm{Cl1}-\mathrm{C} 12$	-25.8 (3)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-87.0 (6)	S4-Tel-C11-C12	117.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	96.5 (7)	$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{Cl2}$	-91.9(3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C}^{\prime}-\mathrm{C} 5^{\prime}$	-114(1)	$\mathrm{I} 1-\mathrm{Te} 1-\mathrm{C} 11-\mathrm{Cl} 2$	-168.5 (3)
C9-N2-C6-S4	-176.3 (3)	$\mathrm{C} 17-\mathrm{Ol}-\mathrm{Cl} 4-\mathrm{C13}$	2.7 (7)
C7-N2-C6-S4	6.3 (6)	$\mathrm{C} 17-\mathrm{Ol}-\mathrm{C} 14-\mathrm{Cl5}$	-176.3 (5)
Symmetry code: (i) $-x, 1-y, 2-z$.			
Compound (3)			
Crystal data			
$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{Br}_{0.41} \mathrm{I}_{0.59} \mathrm{~N}$	$\mathrm{OS}_{4} \mathrm{Te}$	Mo $K \alpha$ radiation	
$M_{r}=638.88$		$\lambda=0.71069 \AA$	
Monoclinic		Cell parameters fr	- 24
$P 2_{1} / n$		reflections	
$a=10.060$ (1) \AA A		$\theta=12.3-15.2^{\circ}$	
$b=14.363$ (2) \AA		$\mu=3.022 \mathrm{~mm}^{-1}$	
$c=16.705$ (4) \AA		$T=293$ (2) K	
$\beta=90.63$ (1) ${ }^{\circ}$		Well formed prism	
$V=2413.5$ (7) \AA^{3}		$0.34 \times 0.30 \times 0.22$	mm
$Z=4$		Orange	
$D_{x}=1.758 \mathrm{Mg} \mathrm{m}^{-3}$			
Data collection			
Enraf-Nonius CAD-4 diffractometer		4946 observed reflections$[I>2 \sigma(I)]$	
		$R_{\text {int }}=0.0295$	
Absorption correction: numerical (Gaussian		$\theta_{\text {max }}=29.97^{\circ}$	
		$h=-14 \rightarrow 14$	
method)		$k=0 \rightarrow 20$	
$T_{\min }=0.270, T$	ax $=$	$l=0 \rightarrow 23$	
0.527		3 standard reflections	
7362 measured reflections		frequency: 120 min	
7003 independent reflections		intensity decay: 9.0%	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0435$
$\omega R\left(F^{2}\right)=0.1337$
$S=1.097$
6958 reflections
248 parameters
H atoms: riding and rotating
model with fixed $U_{\text {iso }}$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0289 P)^{2}\right.$
$+7.1090 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 24
$\theta=12.3-15.2^{\circ}$
$\mu=3.022 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Well formed prism
$0.34 \times 0.30 \times 0.22 \mathrm{~mm}$ Orange

4946 observed reflections
$>2 \sigma(I)$
$\theta_{\text {max }}=29.97^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 20$
$l=0 \rightarrow 23$
standard reflections intensity decay: 9.0%
$(\Delta / \sigma)_{\max }=0.015$
$\Delta \rho_{\max }=0.795 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.702 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}) for (3)
$U_{\text {iso }}$ for C 4 to $\mathrm{C}^{\prime} ; U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}$ for all others.

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
Tel	0.07756 (3)	0.59273 (2)	0.89269 (2)	0.03612 (8)
$11 \dagger$	0.0961 (4)	0.37600 (9)	0.9248 (3)	0.0481 (3)
$\mathrm{Br} 1 \dagger$	0.0873 (10)	0.3944 (2)	0.9258 (6)	0.0482 (7)
S1	0.19602 (13)	0.75076 (8)	0.92758 (8)	0.0478 (3)
S2	0.32506 (14)	0.57135 (9)	0.95857 (9)	0.0526 (3)
S3	-0.08385 (12)	0.71828 (9)	0.83189 (8)	0.0483 (3)
S4	-0.14804 (13)	0.51882 (10)	0.83256 (10)	0.0557 (3)
01	0.3343 (5)	0.5448 (3)	0.5539 (2)	0.0712 (12)
N1	0.4230 (5)	0.7324 (3)	1.0092 (3)	0.0608 (12)
N2	-0.3113 (4)	0.6486 (4)	0.7755 (3)	0.0578 (12)
C1	0.3265 (5)	0.6889 (3)	0.9691 (3)	0.0445 (10)
C2	0.5355 (6)	0.6816 (5)	1.0440 (4)	0.067 (2)
C3	0.5102 (7)	0.6468 (5)	1.1267 (4)	0.078 (2)
C4 \dagger	0.4356 (9)	0.8326 (6)	1.0117 (6)	0.059 (2)
C4' \dagger	0.387 (2)	0.8323 (15)	1.0502 (15)	0.063 (5)
C5 \dagger	0.3775 (13)	0.8710 (10)	1.0858 (8)	0.100 (4)
$\mathrm{C5}^{\prime} \dagger$	0.469 (3)	0.9056 (19)	1.0084 (16)	0.086 (7)
C6	-0.1947 (5)	0.6297 (4)	0.8093 (3)	0.0477 (11)
C7	-0.4121 (6)	0.5746 (5)	0.7650 (5)	0.075 (2)
C8	-0.3944 (8)	0.5183 (7)	0.6903 (6)	0.105 (3)
C9	-0.3484 (6)	0.7431 (5)	0.7512 (4)	0.069 (2)
C10	-0.4247 (8)	0.7928 (6)	0.8147 (5)	0.093 (2)
C11	0.1683 (4)	0.5803 (3)	0.7772 (3)	0.0388 (9)
C12	0.2113 (5)	0.6576 (3)	0.7367 (3)	0.0437 (10)
C13	0.2689 (5)	0.6488 (3)	0.6612 (3)	0.0450 (11)
C14	0.2800 (5)	0.5618 (4)	0.6274 (3)	0.0490 (11)
C15	0.2385 (7)	0.4850 (4)	0.6683 (3)	0.0614 (15)
C16	0.1807 (6)	0.4931 (4)	0.7430 (3)	0.0525 (12)
C17	0.3855 (8)	0.6203 (5)	0.5101 (4)	0.080 (2)

\dagger Partial occupancy (see below).

Table 4. Selected geometric parameters $\left.\left(A^{\circ}\right),{ }^{\circ}\right)$ for (3)

Tel-C11	2.151 (4)	$\mathrm{N} 1-\mathrm{C} 2$	1.461 (7)
Tel-S3	2.624 (1)	$\mathrm{N} 1-\mathrm{C} 4^{\prime}$	1.63 (2)
Tel-S1	2.626 (1)	N2-C6	1.325 (6)
Tel-S4	2.690 (1)	N2-C9	1.464 (8)
$\mathrm{Te} 1-\mathrm{S} 2$	2.728 (1)	N2-C7	1.478 (8)
Te1-Brl	2.904 (3)	C2-C3	1.494 (9)
Tel-Il	3.164 (1)	C4- 55	1.48 (1)
Tel- Brl^{1}	3.476 (9)	C4 ${ }^{\prime}$ - 5^{\prime}	1.51 (3)
$\mathrm{Te} 1-11^{\text {i }}$	3.558 (4)	C7-C8	1.50 (1)
S1-C1	1.725 (5)	C9-C10	1.497 (9)
S2-C1	1.697 (5)	C11-C12	1.372 (6)
S3-C6	1.731 (6)	C11-C16	1.383 (7)
S4-C6	1.704 (5)	C12-C13	1.398 (7)
O1-C14	1.371 (6)	C13-C14	1.377 (7)
O1-C17	1.409 (8)	C14-C15	1.364 (8)
N1-Cl	1.329 (6)	C15-C16	1.388 (8)
N1-C4	1.45 (1)		
C11-Te1-S3	88.7 (1)	Tel-I1-Te1 ${ }^{1}$	89.58 (8)
$\mathrm{C} 11-\mathrm{Te} 1-\mathrm{Sl}$	94.3 (1)	$\mathrm{Te} 1-\mathrm{Brl}-\mathrm{Te} 1^{\text {i }}$	95.7 (2)
S3-Te1-S1	76.66 (4)	$\mathrm{C} 1-\mathrm{Sl}-\mathrm{Tel}$	89.2 (2)
C11-Tel-S4	89.8 (1)	$\mathrm{C1}-\mathrm{S} 2-\mathrm{Tel}$	86.4 (2)
S3-Tel-S4	67.09 (4)	C6-S3-Tel	88.5 (2)
S1-Tel-S4	143.41 (4)	C6-S4-Tel	86.9 (2)
C11-Tel-S2	87.6 (1)	$\mathrm{C} 14-\mathrm{Ol}-\mathrm{Cl} 7$	118.7 (5)
S3-Tel-S2	142.34 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	123.1 (5)
S1-Tel-S2	66.29 (4)	$\mathrm{C1}-\mathrm{N} 1-\mathrm{C} 2$	121.6 (5)
S4-Tel-S2	150.30 (4)	$\mathrm{C} 4-\mathrm{Nl}-\mathrm{C} 2$	114.7 (5)
$\mathrm{Cl1}-\mathrm{Te} 1-\mathrm{Brl}$	94.4 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C}^{\prime}$	117.5 (9)
S3- $\mathrm{Te} 1-\mathrm{Br} 1$	140.1 (2)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C}^{\prime}$	116.5 (9)
$\mathrm{Sl}-\mathrm{Te} 1-\mathrm{Brl}$	142.3 (2)	C6-N2-C9	122.0 (5)
$\mathrm{S} 4-\mathrm{Te} 1-\mathrm{Br} 1$	73.2 (2)	C6-N2-C7	120.4 (5)
$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{Br} 1$	77.5 (2)	C9-N2-C7	117.5 (5)
C11-Tel-Il	92.6 (1)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	121.7 (4)
S3-Te1-Il	140.98 (9)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{Sl}$	120.6 (4)
S1-Tel-Il	141.90 (9)	$\mathrm{S} 2-\mathrm{Cl}-\mathrm{Sl}$	117.7 (3)
S4-Tel-Il	73.92 (9)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	113.3 (6)

S2-Tel-Il	76.65 (8)	N1-C4-C5	111.1 (9)
$\mathrm{Brl}-\mathrm{Tel-Il}$	1.9 (3)	$\mathrm{C}^{\prime}-\mathrm{C4}^{\prime}-\mathrm{NI}$	107 (2)
C11-Tel-Brl ${ }^{\text {i }}$	176.3 (2)	N2-C6-S4	122.0 (4)
S3-Tel-Brl ${ }^{\text {i }}$	90.1 (1)	N2-C6-S3	120.5 (4)
$\mathrm{S} 1-\mathrm{Tel-Br1}{ }^{\text {i }}$	88.9 (1)	S4-C6-S3	117.5 (3)
$\mathrm{S} 4-\mathrm{Te} 1-\mathrm{Br} 1^{\text {i }}$	86.4 (2)	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	113.5 (6)
$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{Brl}{ }^{\text {i }}$	95.5 (2)	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{Cl0}$	112.2 (6)
$\mathrm{Brl}-\mathrm{Te} 1-\mathrm{Brl}{ }^{1}$	84.3 (2)	C12-C11-C16	119.9 (4)
$11-\mathrm{Te} 1-\mathrm{Br}{ }^{\text {i }}$	86.11 (9)	C12-C11-Tel	121.0 (3)
C11-Tel-I1 ${ }^{\text {i }}$	174.9 (1)	$\mathrm{Cl} 6-\mathrm{Cl1}-\mathrm{Te} 1$	119.1 (3)
S3-Tel-Il ${ }^{1}$	86.41 (6)	C11-C12-C13	120.5 (5)
S1-Tel-I1 ${ }^{1}$	85.79 (6)	C14-C13-C12	119.2 (5)
S4-Tel-I1 ${ }^{\text {i }}$	87.11 (8)	$\mathrm{C15-C14-O1}$	115.6 (5)
S2-Tel-I1 ${ }^{\text {i }}$	97.06 (8)	C15-C14-C13	120.1 (5)
$\mathrm{Brl}-\mathrm{Tel}-\mathrm{Il}^{\text {i }}$	88.6 (2)	O1-C14-C13	124.3 (5)
I1-Tel- $\mathrm{ll}^{\text {i }}$	90.42 (8)	C14-C15-C16	121.1 (5)
$\mathrm{Br} 1^{1}-\mathrm{Tel}-\mathrm{ll}{ }^{1}$	4.35 (6)	C11-C16-C15	119.1 (5)
Cll-Tel-I1-Tel ${ }^{1}$	-175.9 (1)	C7-N2-C6-S3	-172.7(5)
$\mathrm{S} 2-\mathrm{Te}$ - $\mathrm{S} 1-\mathrm{Cl}$	-4.0 (2)	Te1-S4-C6-S3	1.3 (3)
$\mathrm{S} 1-\mathrm{Te} 1-\mathrm{S} 2-\mathrm{C} 1$	4.1 (2)	Te1-S3-C6-S4	-1.4 (3)
S4-Tel-S3-C6	0.8 (2)	C6-N2-C7-C8	-84.9 (8)
S3-Tel-S4-C6	-0.9 (2)	C6-N2-C9-C10	-94.0 (7)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	172.7 (6)	S3-Tel-Cl1-C12	51.2 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	2.2 (8)	S1-Tel-C11-C12	-25.3 (4)
$\mathrm{C} 4{ }^{\prime}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 2$	-153(1)	S4-Te1-- $11-\mathrm{Cl2}$	118.3 (4)
$\mathrm{C} 4-\mathrm{Nl}-\mathrm{Cl}-\mathrm{Sl}$	-8.6 (9)	S2-Tel-C11-C12	-91.3 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-179.1 (5)	$\mathrm{Brl}-\mathrm{Te} 1-\mathrm{Cl1}-\mathrm{Cl2}$	-168.6 (4)
$\mathrm{C} 4{ }^{\prime}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{S} 1$	25 (1)	$\mathrm{H}-\mathrm{Te} 1-\mathrm{Cl1}-\mathrm{Cl2}$	-167.8 (4)
$\mathrm{Te} 1-\mathrm{S} 2-\mathrm{Cl}-\mathrm{S} 1$	-6.4 (3)	S3-Tel-C11-C16	-127.6 (4)
$\mathrm{Te} 1-\mathrm{Sl}-\mathrm{Cl}-\mathrm{S} 2$	6.6 (3)	S1-Tel-C11-C16	155.9 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-87.8 (7)	S4-Tel-C11-C16	-60.5 (4)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	97.9 (9)	S2-Tel-C11-C16	89.9 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	-115 (2)	$\mathrm{Br1}-\mathrm{Te} 1-\mathrm{Cl1}-\mathrm{Cl} 6$	12.6 (4)
C9-N2-C6-S4	-176.4 (4)	$\mathrm{I} 1-\mathrm{Tel}-\mathrm{Cl} 1-\mathrm{Cl} 6$	13.4 (4)
C7-N2-C6-S4	6.9 (8)	$\mathrm{C} 17-\mathrm{Ol}-\mathrm{Cl} 4-\mathrm{C15}$	-176.8(6)
C9-N2-C6-S3	3.9 (7)	$\mathrm{C17-O1-C14-C13}$	1.6 (9)

Symmetry codes: (i) $-x, 1-y, 2-z$.
The DIFABS procedure (Walker \& Stuart, 1983) was applied for the absorption correction for (1) giving a sufficiently better result compared with other methods. The absorption correction was made for (3) assuming that the crystal contained an equimolar ratio of $\mathrm{Br}-$ and I -containing analogues. The position of the non-stoichiometric Br atom was located in a difference Fourier synthesis. The I / Br occupancy factors $(\mathrm{g}$) were refined first in the isotropic approximation for these atoms with the following restrictions: $U_{\text {iso }}(\mathrm{Br})=U_{\text {iso }}(\mathrm{I}), g(\mathrm{Br})+g(\mathrm{I})=1$ and $\mathrm{Te}-\mathrm{I}=3.169$ (1) \AA [as was found in the pure I analog (1)], and then fixed. In both structures, one of the ethyl groups is partially disordered. The two positions $\mathrm{C} 4, \mathrm{C} 5$ and $\mathrm{C} 4^{\prime}, \mathrm{C} 5^{\prime}$ were refined isotropically (occupancy factors 0.7 and 0.3 , respectively, were adjusted empirically). Refinement was on F^{2} for all reflections [except for 45 flagged by us for potential systematic errors for compound (3)].

For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: NAl148). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Dakternieks, D., Di Giacomo, R., Gable, R. W. \& Hoskins, B. F. (1988). J. Am. Chem. Soc. 110, 6762-6768.

Husebye, S., Kudis, S., Lindeman, S. V. \& Strauch, P. (1995). Acta Cryst. C51, 1870-1875.
Husebye, S. \& Maartmann-Moe, K. (1994). 15th European Crystallography Meeting, Dresden, Germany. Book of Abstracts, edited by P. Paufler \& M. Schenk, p. 236.

Husebye, S., Maartmann-Moe, K. \& Steffensen, W. (1990). Acta Chem. Scand. 44, 139-143.
Kumar, R. K., Aravamudan, G., Udupa, M. R. \& Seshasayee, M. (1993). Acta Cryst. C49, 1328-1330.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 224. Ithaca: Cornell University Press.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
group in one axial position (Fig. 1) and the second axial site seems to be weakly π-coordinated by a dithiocarbamate ligand of a neighbouring complex unit $\left[\mathrm{Te} \cdots \mathrm{C} 4^{\mathrm{i}} 3.751(3) \AA, \mathrm{C} 7-\mathrm{Te} \cdots \mathrm{C} 4^{\mathrm{i}} 170.2(1)^{\circ}\right.$; symmetry code: (i) $-x, 1-y,-z]$, symmetrically related to the original one by an inversion centre $\left[\left(0, \frac{1}{2}, 0\right)\right.$ for the reference molecule] (Fig. 2). The atoms surrounding C4 ${ }^{i}$ are nearly equidistant from the neighbouring (original) Te 1 atom $\left[\mathrm{Te} \cdots \mathrm{S} 3^{i} 4.164(1), \mathrm{Te} \cdots \mathrm{S}^{\mathrm{i}} 4.017\right.$ (1) and $\mathrm{Te} \cdots \mathrm{N} 2^{\mathrm{i}} 4.025(3) \AA$] and the $\mathrm{C} 4^{\mathrm{i}}$ atom itself is shifted by 0.044 (3) \AA towards this Te atom from the equatorial coordination plane of its 'own' $\mathrm{Te} 1^{\mathrm{i}}$ atom [the dihedral angle between the mean plane of equatorial Te substituents and the mean plane of the C4 dithiocarbamate group is $4.8(1)^{\circ}$; the other dithiocarbamate group is coplanar with the equatorial plane within $\left.1.6(1)^{\circ}\right]$. As a result, molecules of (1) are joined into dimeric associations in the crystal (Fig. 2).

