Steinar Husebye

University of Bergen
Steffen Kudis
University of Heidelberg
Sergey V.Lindeman
Marquette University, sergey.lindeman@marquette.edu

Published version. Acta Crystallographica Section C, Vol. 51, No. 9 (1995): 1870-1875. DOI. © 1995 International Union of Crystallography. Used with permission.

Peter Strauch
University of Leipzig

cis-(Diethyldithiocarbamato)diiodo(phenyl)tellurium(IV), $\operatorname{PhTe}_{\left(\mathbf{S}_{2} \mathbf{C N E t}_{2}\right) \mathbf{I}_{2}, ~}^{\text {, }}$ and its Methoxy-Substituted Mixed $\mathbf{B r} / \mathbf{I}$ Analogue cis-Bis(0.4-bromo/0.6-iodo)-(diethyldithiocarbamato)(4-methoxyphenyl)tellurium(IV), $\boldsymbol{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}-$ $\left(\mathbf{S}_{\mathbf{2}} \mathbf{C N E t}_{\mathbf{2}}\right)\left(\mathbf{B r}_{0.4} \mathbf{I}_{\mathbf{0 . 6}}\right)_{\mathbf{2}}$

Steinar Husebye
Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway

Steffen Kudis
Department of Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Sergey V. Lindeman*
Institute of Organoelement Compounds, 28 Vavilov Street, Moscow 117813, Russia

Peter Strauch
Department of Chemistry, University of Leipzig, Talstrasse 35, D04103 Leipzig, Germany
(Received 15 December 1994; accepted 23 March 1995)

Abstract

The $\mathrm{Te}^{\mathrm{IV}}$ complexes $\mathrm{PhTe}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right) \mathrm{I}_{2}$, (1), and p $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\left(\mathrm{Br}_{0.4} / \mathrm{L}_{0.6}\right)_{2}$, (2), have been synthesized by reacting PhTeI_{3} with $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}$, and p $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{Te}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{I}$ with Br_{2}, respectively. In (2), both I atoms are partially replaced by Br atoms in a $3: 2$ ratio. The structures display distorted octahedral Te coordination with two symmetrically coordinated S atoms [Te-S 2.550 (2)-2.569 (2) \AA in three independent molecules of (1) and 2.523 (1) and 2.535 (1) \AA in (2)] and with two cis-disposed halogen atoms [Te-I 2.941 (1)2.986 (1) \AA in (1) and 3.003 (4) and 3.049 (3) \AA in (2); $\mathrm{Te}-\mathrm{Br} 2.962$ (8) and 2.967 (8) \AA in (2)] in equatorial positions. The aryl group is axial in both complexes [Te-C $2.137(6)-2.146$ (6) and $2.123(5) \AA$ in (1) and (2), respectively] and the second axial posi-
tion is occupied by a halogen atom of a neighbouring molecule [Te \cdots I 3.898 (1)-4.233 (1) \AA in (1); $\mathrm{Te} \cdots$ I 3.872 (3) \AA and $\mathrm{Te} \cdots \mathrm{Br} 3.676$ (6) \AA in (2); trans angles $\left.\mathrm{C}-\mathrm{Te} \cdots \mathrm{I}(\mathrm{Br}) 153.4(2)-177.7(2)^{\circ}\right]$ so that the molecules are joined into (quasi)centrosymmetric pairs by these secondary interactions.

Comment

The structures of three symmetrically independent molecules of (1) and the molecule of (2) are very similar. In all cases, the Te atom has a distorted octahedral (tetragonal bipyramidal) environment with the symmetrically coordinated bidentate S, S-chelate dithiocarbamate ligand and two cis-disposed halogen atoms in its equatorial plane. An aryl group is situated in one axial position (Figs. 1 and 2). The second axial site is weakly coordinated by a halogen atom of a neighbouring complex. It is interesting that the manner of molecular association is the same both in the two independent dimers of (1) (the first one is quasi-centrosymmetrical, and the second one is derived by a crystallographic centre of symmetry) and in the centrosymmetric dimer of (2) (Figs. 3 and 4). The comparative weakness of these additional interactions is manifested by their dependence on crystal packing effects: in the first dimer of (1) the $\mathrm{Te} \cdots \mathrm{I}$ contacts are 4.192 and 4.233 (1) \AA [trans angles $\mathrm{C}-\mathrm{Te} \cdots \mathrm{I} 153.4$ and $158.8(2)^{\circ} \mathrm{J}$, but in the second dimer of (1) and in (2) these contacts are substantially shorter, being 3.898 (2) and 3.872 (3) \AA, respectively [trans angles 170.2 (2) and $\left.175.6(1)^{\circ}\right]$. The $\mathrm{Te} \cdots \mathrm{Br}$ distance in (2) (corresponding to the dibromine-substituted minor component) is 3.676 (6) \AA [trans angle $\mathrm{C}-\mathrm{Te} \cdots \mathrm{Br} 177.7$ (2) ${ }^{\circ}$]. The above distances may be compared with the typical van der Waals contacts of 3.91 and $4.04 \AA$ for $\mathrm{Te} \cdots \mathrm{Br}$ and $\mathrm{Te} \cdots \mathrm{I}$, respectively (Bondi, 1964).

(I)

(II)

Generally, secondary bonding interactions of this type are rather common for $\mathrm{Te}^{\mathrm{IV}}$ complexes, especially for the aryl-substituted derivatives [in spite of the
widespread conception of a 'stereochemically active lone electron pair' in these compounds (Husebye, 1983)]. There are many examples, when some easily polarizable electronegative groups are situated at this 'empty’ place (see, for example, Husebye, Kudis \& Lindeman, 1995a), which would be impossible if the lone electron pair of the Te atom was really stereochemically active (occupies this 'empty' position). Apparently, in aryl-substituted $\mathrm{Te}^{\mathrm{IV}}$ complexes the lone electron pair may be considerably inert (e.g. localized in the s orbital of Te) due to the strong negative σ-inductive effect of the aryl group.

Fig. 1. Perspective views of the three symmetrically independent molecules of (1) in a uniform orientation, showing the labelling of nonH atoms. The alternative position for the disordered ethyl group in the first molecule (top) is shown by dashed lines. The second molecule (middle) is shown as inverted (relative to Table 1) for comparison with the other molecules. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Perspective view of (2) showing the labelling of the non-H atoms. The less populated Br -atom positions and the corresponding bonds are depicted by dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

The manner of valence coordination found in (1) and (2) is fairly new for $\mathrm{Te}^{\mathrm{IV}}$ compounds: there is only one example of a complex with the same type and geometry of coordination, dibromo $\left(O, O^{\prime}\right.$-dimethyldi-thiophosphato- S, S^{\prime})-p-methoxyphenyltellurium(IV), (3) (Chadha, Drake, McManus, Quinlan \& Sarkar, 1987), but the dithiophosphate ligand seems to exert a weaker trans influence than the dithiocarbamate one. Thus, the $\mathrm{Te}-\mathrm{S}$ distances in the complexes (1) [2.5502.569 (2) \AA] and (2) [2.523 and 2.535 (1) \AA] are noticeably shorter than in (3) (2.632 and $2.728 \AA$), and Te Br distances in (2) [2.962 (8) and 2.967 (8) A$]$ are much longer than in (3) (2.616 and $2.676 \AA$).

Moreover, in (1) and (2) the Te-S bonds are shorter than those of analoguous monohalogenobis(dithiocarbamato) complexes that have pentagonal coordination in the equatorial plane, evidently as a result of two 'pure' S-Te-Hal trans interactions [in (1) and (2) the trans angles $\mathrm{S}-\mathrm{Te}-\mathrm{I} / \mathrm{Br}$ are in the range $\left.151-162^{\circ}\right]$. For example, in the structure of bis(diethyldithiocarbamato)(iodo)(phenyl)tellurium(IV), (4) (Husebye \& Maartmann-Moe, 1994), the lengths of TeS bonds opposite to the halogen atom are 2.629 (1)2.661 (1) \AA (trans angles $\mathrm{S}-\mathrm{Te}-\mathrm{I}$ 141.1-143.0 ${ }^{\circ}$), and in bromobis(dimethyldithiocarbamato)(4-methoxyphenyl)tellurium(IV), (5) (Husebye, Kudis \& Lindeman, 1995b), they are 2.623 (1) and 2.629 (1) \AA (trans angle $\left.\mathrm{S}-\mathrm{Te}-\mathrm{Br} 142.1^{\circ}\right)$.

On the other hand, the $\mathrm{Te}-\mathrm{I}$ distances in (1) and (2) (2.941-3.049 \AA) are also shortened compared with those of (4) [3.100 (1) and 3.151 (1) Å]. This may be a result both of the smaller sterical overload of the octahedral complexes (1) and (2) and of the joint trans influence of the two thio ligands in the pentagonal bipyramidal complex (4).

The Te-I bonds in (1) and (2) also seem to be influenced by intermolecular interactions. While in the first (weakly bonded) dimer of (1) the Te-I bond lengths vary 'statistically' within the range 2.941 (1)-
2.952 (1) \AA, in the second (more strongly bonded) dimer of (1) the bridging $\mathrm{Te}-\mathrm{I}$ bond is $0.016(1) \AA$ longer than the terminal one, and in the dimer of (2) this difference increases to 0.046 (3) \AA. However, the TeBr distances are practically equal in (2) [2.962 (8) and $2.967(8) \AA$], though in (3) the bridging $\mathrm{Te}-\mathrm{Br}$ distance is markedly longer than the terminal one (2.676 and $2.616 \AA$, respectively), in good agreement with the shorter intermolecular $\mathrm{Te} \cdots \mathrm{Br}$ distance ($3.810 \AA$, transangle $\mathrm{C}-\mathrm{Te} \cdots \mathrm{Br} 159.4^{\circ}$).
The influence of the secondary bonds on the length of the trans-disposed $\mathrm{Te}-\mathrm{C}(\mathrm{Ar})$ bond is not so marked. In the three independent molecules of (1), the $\mathrm{Te}-\mathrm{Ph}$ bond lengths are practically equal within experimental accuracy [2.137(6)-2.146 (6) A]; in (2), the Te-Ar bond is even slightly shorter [2.123 (5) \AA], apparently as a result of the of the electronegative p-methoxysubstituent.
The orientation of the benzene group relative to the equatorial plane of the Te atom is staggered in both structures: one of the $o-\mathrm{C}$ atoms is situated between two halogen ligands, and the other is between two S atoms

Fig. 3. Perspective view of the two symmetrically independent dimers of (1) in the crystal [situated in a general position with an approximate non-crystallographic centre of symmetry (top), and derived by a crystallographic centre of symmetry (bottom)]. Intermolecular Te. I contacts are shown by dashed (longer) or unbroken (shorter) lines.

Fig. 4. Perspective view of the dimer of (2) in the crystal. The less populated Br -atom positions and corresponding bonds are depicted by dashed lines.
(see Figs. 3 and 4, Tables 3 and 4). The only exception is the first symmetrically independent molecule of (1), in which the phenyl group is turned facially towards the dithiocarbamate ligand, and each of its o-C atoms is placed between S and I atoms. This is a good example of the effect of packing on the molecular conformation. In any case, both conformers seem to have a minimum of steric strain.

The p-methoxyphenyl ligand in (2) has the usual flattened π-conjugated structure: the torsion angle $\mathrm{C}-\mathrm{C}$ O - C is only $15.0(9)^{\circ}$. A usual π-conjugated structure is also observed for the dithiocarbamate ligands: the $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}$ bond distances are $1.29(1)-1.34(1) \AA$; the twist along this bond does not exceed $3.6(5)^{\circ}$; the configuration of the N atoms is planar within 0.016 (8) \AA [the only exception is the disordered ligand in the first symmetrically independent molecule of (1) in which the twist along the $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}$ bond is $5-10(1)^{\circ} \mathrm{J}$. In all cases, the ethyl groups of the dithiocarbamate ligands have an anti orientation.

Experimental

(1) was synthesized from $\mathrm{Ph}_{2} \mathrm{Te}_{2}$ by addition of elemental I_{2} in chloroform solution, followed by treatment with an excess of $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Red crystals formed upon addition of n-hexane/diisopropyl ether and were then recrystallized from a ethanol/dichloromethane (1:1) mixture. (2) was synthesized by reacting $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) \mathrm{Te}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2} \mathrm{I}$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, with Br_{2}, dissolved in CCl_{4} (molar ratio 2:1). Recrystallization from a combination of ethanol/dichloromethane/toluene ($2: 1: 1$ volume) yielded a mixture of yellow crystals of $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right) \mathrm{Te}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\left(\mathrm{Br}_{0.4} / \mathrm{I}_{0.6}\right)$ (Husebye, Kudis \& Lindeman, 1995a) and red crystals of compound (2).

Compound (1)

Crystal data
$\left[\mathrm{TeI}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]$
$M_{r}=606.76$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$

Triclinic
$P \overline{1}$
$a=9.126(1) \AA$
$b=12.631$ (1) \AA
$c=24.532(4) \AA$
$\alpha=97.32(1)^{\circ}$
$\beta=99.59(1)^{\circ}$
$\gamma=105.46(1)^{\circ}$
$V=2643.0(6) \AA^{3}$
$Z=6$
$D_{x}=2.287 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 1.3 \theta$ scans
Absorption correction: numerical (Gaussian method)
$T_{\text {min }}=0.328, \quad T_{\text {max }}=$ 0.560

15345 measured reflections
15345 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0465$
$w R\left(F^{2}\right)=0.1138$
$S=1.221$
15321 reflections
465 parameters
H atoms: riding and rotating model with fixed $U_{\text {iso }}$ $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0468 P)^{2}\right.$ +8.0474 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Cell parameters from 24 reflections
$\theta=10-11^{\circ}$
$\mu=5.412 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.52 \times 0.22 \times 0.13 \mathrm{~mm}$
Red

9160 observed reflections

$$
[I>2 \sigma(I)]
$$

$\theta_{\text {max }}=29.96^{\circ}$
$h=0 \rightarrow 12$
$k=-17 \rightarrow 17$
$l=-34 \rightarrow 33$
3 standard reflections frequency: 120 min intensity decay: 2.8%

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$U_{\text {iso }}$ for $\mathrm{C} 4, \mathrm{C} 4^{\prime}, \mathrm{C} 5, \mathrm{C} 5^{\prime} ; U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ for others.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
Tel	0.73354 (5)	0.02302 (3)	0.16876 (2)	0.04526 (10)
[1	0.92681 (7)	0.13829 (4)	0.27996 (2)	0.06904 (15)
I2	0.41210 (6)	0.02446 (5)	0.16935 (3)	0.0782 (2)
S1	0.9671 (2)	-0.0167 (2)	0.13380 (9)	0.0659 (5)
S2	0.6416 (2)	-0.0939 (2)	0.06922 (9)	0.0681 (5)
N1	0.8650 (10)	-0.1736 (7)	0.0405 (3)	0.089 (2)
C1	0.8321 (9)	-0.1015 (7)	0.0779 (3)	0.064 (2)
C2	0.7529 (18)	-0.2398 (12)	-0.0098 (6)	0.138 (6)
C3	0.662 (2)	-0.3455 (15)	0.0023 (7)	0.211 (12)
C4 \dagger	1.050 (2)	-0.1625 (17)	0.0515 (8)	0.070 (5)
C4' \dagger	0.999 (2)	-0.2039 (16)	0.0450 (8)	0.064 (4)
C5 \dagger	1.145 (3)	-0.0831 (19)	0.0221 (10)	0.089 (6)
$\mathrm{C5}^{\prime} \dagger$	1.099 (3)	-0.1390 (18)	0.0122 (9)	0.080 (5)
C6	0.7774 (8)	0.1749 (5)	0.1362 (3)	0.0497 (14)
C7	0.6663 (9)	0.1911 (7)	0.0952 (4)	0.068 (2)
C8	0.6989 (11)	0.2880 (9)	0.0729 (4)	0.091 (3)
C9	0.8372 (13)	0.3663 (8)	0.0909 (4)	0.092 (3)
C10	0.9521 (13)	0.3489 (8)	0.1309 (4)	0.102 (4)
Cl 1	0.9207 (10)	0.2528 (7)	0.1531 (3)	0.081 (3)
Tel A	0.42807 (5)	-0.30588 (3)	0.17498 (2)	0.04752 (10)
I1A	0.21936 (9)	-0.41632 (5)	0.06601 (2)	0.0835 (2)
I2A	0.75325 (7)	-0.30277 (6)	0.17620 (3)	0.0887 (2)
S1A	0.1961 (2)	-0.26413 (15)	0.20876 (8)	0.0555 (4)
S2A	0.5170 (2)	-0.19752 (15)	0.27613 (8)	0.0572 (4)

[$\left.\mathrm{TeI}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]$ AND $\left[\mathrm{TeBr}_{0.8} \mathrm{I}_{1.2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right)\right]$

N1A	$0.2990(7)$	$-0.1071(5)$	$0.3013(3)$	$0.0551(13)$
C1A	$0.3334(7)$	$-0.1804(5)$	$0.2664(3)$	$0.0486(14)$
C2A	$0.4103(10)$	$-0.0396(7)$	$0.3519(3)$	$0.071(2)$
C3A	$0.4966(12)$	$0.0716(7)$	$0.3419(5)$	$0.095(3)$
C4A	$0.1450(10)$	$-0.0872(7)$	$0.2912(4)$	$0.070(2)$
C5A	$0.0377(11)$	$-0.1521(9)$	$0.3224(5)$	$0.090(3)$
C6A	$0.3861(8)$	$-0.4658(5)$	$0.2005(3)$	$0.0492(14)$
C7A	$0.3143(8)$	$-0.4849(6)$	$0.2450(3)$	$0.054(2)$
C8A	$0.2844(9)$	$-0.5911(7)$	$0.2587(4)$	$0.069(2)$
C9A	$0.3306(11)$	$-0.6711(7)$	$0.2312(5)$	$0.083(3)$
C10A	$0.4033(13)$	$-0.6510(7)$	$0.1876(5)$	$0.087(3)$
C11A	$0.4314(11)$	$-0.5472(6)$	$0.1709(4)$	$0.074(2)$
Te1B	$0.57840(5)$	$0.64404(3)$	$0.45639(2)$	$0.05111(11)$
I1B	$0.28098(6)$	$0.68444(4)$	$0.40896(3)$	$0.0754(2)$
I2B	$0.64634(9)$	$0.67357(5)$	$0.58167(2)$	$0.0821(2)$
S1B	$0.6218(2)$	$0.5893(2)$	$0.35799(8)$	$0.0638(5)$
S2B	$0.8263(3)$	$0.5849(2)$	$0.46319(8)$	$0.0654(5)$
N1B	$0.8203(7)$	$0.4686(5)$	$0.3648(2)$	$0.0548(13)$
C1B	$0.7658(8)$	$0.5394(5)$	$0.3910(3)$	$0.0521(15)$
C2B	$0.9376(8)$	$0.4215(6)$	$0.3932(3)$	$0.057(2)$
C3B	$0.8609(10)$	$0.3174(6)$	$0.4138(4)$	$0.072(2)$
C4B	$0.7658(11)$	$0.4249(8)$	$0.3044(3)$	$0.077(2)$
C5B	$0.8673(19)$	$0.4805(12)$	$0.2704(5)$	$0.137(5)$
C6B	$0.6907(8)$	$0.8186(5)$	$0.4622(3)$	$0.0514(15)$
C7B	$0.6465(10)$	$0.8945(6)$	$0.4969(3)$	$0.064(2)$
C8B	$0.7100(12)$	$1.0074(6)$	$0.4998(4)$	$0.075(2)$
C9B	$0.8148(12)$	$1.0450(7)$	$0.4683(4)$	$0.080(2)$
C10B	$0.8574(12)$	$0.9698(8)$	$0.4334(5)$	$0.092(3)$
C11B	$0.7949(10)$	$0.8555(7)$	$0.4301(4)$	$0.075(2)$
			0.0	

\dagger Occupancy $=0.5$.
Table 2. Selected geometric parameters $\left(\AA{ }^{\AA},{ }^{\circ}\right)$ for (1)

Te1-C6	2.137 (6)	Te $1 A-\mathrm{I} 1 A$	2.9422 (15)
Te1-S2	2.566 (2)	Te1A-I2A	2.9524 (9)
$\mathrm{Te} 1-\mathrm{Sl}$	2.569 (2)	$\mathrm{S} 1 A-\mathrm{C} 1 A$	1.735 (7)
Te1-I2	2.9408 (9)	$\mathrm{S} 2 \mathrm{~A}-\mathrm{C} 1 A$	1.728 (7)
Tel-Il	2.9477 (14)	$\mathrm{Te} 1 B-\mathrm{C} 6 B$	2.144 (7)
Tel-I2A	4.1922 (13)	$\mathrm{Te} 1 B-\mathrm{S} 1 B$	2.550 (2)
[2-Tel A	4.2326 (12)	$\mathrm{Te} 1 B-\mathrm{S} 2 B$	2.552 (2)
$\mathrm{S} 1-\mathrm{Cl}$	1.704 (8)	$\mathrm{Tel} B$ - $\mathrm{I} 1 B$	2.9697 (11)
S2-Cl	1.746 (8)	$\mathrm{Te} 1 B-\mathrm{I} 2 B$	2.9864 (10)
Te1A-C6A	2.146 (6)	$\mathrm{Te} 1 B-\mathrm{I} 2 B^{\text {i }}$	3.898 (2)
TelA-S1A	2.553 (2)	$\mathrm{S} 1 B-\mathrm{C} 1 B$	1.731 (7)
$\mathrm{Te} 14-\mathrm{S} 2 \mathrm{~A}$	2.561 (2)	$\mathrm{S} 2 B-\mathrm{C} 1 B$	1.736 (7)
C6-Te1-S2	91.4 (2)	S1A-Te1A-I2A	159.04 (5)
C6-Tel-S1	89.6 (2)	S2A-Te1A-I2A	88.50 (6)
$\mathrm{S} 2-\mathrm{Te}$ - S^{1}	70.48 (7)	I1A-Te1A-I2A	112.43 (4)
C6-Te1-I2	90.4 (2)	C6A-Te1A-I2	158.8 (2)
S2-Te1-I2	89.50 (6)	TelA-I2A-Tel	73.31 (3)
S1-Tel-I2	159.97 (5)	$\mathrm{C} 1 A-\mathrm{S} 1 A-\mathrm{Tel} A$	85.0 (2)
C6-Te1-I1	91.8 (2)	$\mathrm{C} 1 A-\mathrm{S} 2 A-\mathrm{Te} 1 A$	84.9 (2)
S2-Te1-Il	162.31 (5)	$\mathrm{C} 6 B-\mathrm{Te} 1 B-\mathrm{S} 1 B$	94.4 (2)
S1-Tel-I1	92.16 (6)	$\mathrm{C} 6 B-\mathrm{Te} 1 B-S 2 B$	95.7 (2)
12-Te1-I1	107.86 (4)	$\mathrm{S} 1 B-\mathrm{Te} 1 B-\mathrm{S} 2 B$	70.33 (7)
C6-Tel-I2A	154.3 (2)	$\mathrm{C} 6 B-\mathrm{Te} 1 B-\mathrm{Il} B$	88.1 (2)
Tel-I2-Te1A	72.75 (3)	S $1 B$-Te1B-I1B	91.02 (5)
$\mathrm{C} 1-\mathrm{Sl}-\mathrm{Tel}$	85.3 (3)	$\mathrm{S} 2 B$-Te1B-I1B	161.16 (5)
C1-S2-Tel	84.5 (3)	C6B-Te1B-I2B	89.8 (2)
C6A-Te1A-S1A	93.9 (2)	$\mathrm{S} 1 B-\mathrm{Te} 1 B-\mathrm{I} 2 B$	155.41 (5)
$\mathrm{C} 6 A-\mathrm{Te} 1 \mathrm{~A}-\mathrm{S} 2 \mathrm{~A}$	93.6 (2)	$\mathrm{S} 2 B-\mathrm{Te} 1 B-\mathrm{L} 2 B$	85.15 (5)
S1A-Te1A-S2A	70.62 (6)	$\mathrm{I} 1 B-\mathrm{Te} 1 B-\mathrm{I} 2 B$	113.36 (4)
C6A-TelA-I1A	88.6 (2)	$\mathrm{C} 6 B-\mathrm{Te} 1 B-\mathrm{I} 2 B^{\mathrm{i}}$	170.2 (2)
S1A-Te1A-I1A	88.40 (5)	$\mathrm{Te} 1 B-\mathrm{I} 2 B-\mathrm{Te} B^{\mathrm{i}}$	80.06 (4)
S2A-TelA-I1A	159.01 (5)	$\mathrm{C} 1 B-\mathrm{Sl} B-\mathrm{Te} 1 B$	85.6 (2)
C6A-Te1A-I2A	89.1 (2)	$\mathrm{C} 1 B-\mathrm{S} 2 B-\mathrm{Te} 1 B$	85.4 (2)
I2A-Tel-I2-Te1A		-0.64 (2)	
$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{S} 1-\mathrm{Cl}$		-7.1 (3)	
$\mathrm{S} 1-\mathrm{Te} 1-\mathrm{S} 2-\mathrm{Cl}$		7.0 (3)	
$\mathrm{Te}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$		11.3 (5)	
$\mathrm{Te} 1-\mathrm{S} 2-\mathrm{Cl}-\mathrm{S} 1$		-11.3(5)	
S2-Te1-C6-C11		-126.3 (7)	
S1-Te1-C6-C11		-55.8 (7)	
12-Te1-C6-C11		144.2 (7)	
I1-Te1-C6-C11		36.3 (7)	
S2-Te1-C6-C7		48.7 (6)	
S1-Tel-C6-C7		119.2 (6)	

Compound (2)
Crystal data
$\left[\mathrm{TeBr}_{0.8} \mathrm{I}_{1.2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\right.$ -
($\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$)]
$M_{r}=599.19$
Triclinic
$P \overline{1}$
$a=9.9482(12) \AA$
$b=10.428$ (3) \AA
$c=11.004$ (2) \AA
$\alpha=66.95$ (2) ${ }^{\circ}$
$\beta=65.934(11)^{\circ}$
$\gamma=75.94$ (2)
$V=954.4$ (4) \AA^{3}
$Z=2$
$D_{x}=2.085 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
numerical (Gaussian
method)
$T_{\text {min }}=0.151, T_{\text {max }}=$ 0.495

5544 measured reflections 5544 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 24 reflections
$\theta=12.6-14.8^{\circ}$
$\mu=5.386 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Flat prism
$1.04 \times 0.34 \times 0.14 \mathrm{~mm}$
Red

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0427$
$w R\left(F^{2}\right)=0.1245$
$S=1.108$
5521 reflections

$\mathrm{L} 2-\mathrm{Te} 1-\mathrm{C} 6-\mathrm{C} 7$	$-40.8(6)$
$\mathrm{I} 1-\mathrm{Te} 1-\mathrm{C}-\mathrm{C} 7$	$-148.7(6)$
$\mathrm{Te} 1-\mathrm{I} 2-\mathrm{Te} 1 A-\mathrm{I} 2 A$	$0.90(2)$
$\mathrm{I} 2-\mathrm{Te} 1 A-\mathrm{I} 2 A-\mathrm{Te} 1$	$0.63(2)$
$\mathrm{I} 2-\mathrm{Te} 1-\mathrm{I} 2 A-\mathrm{Te} 1 A$	$0.92(2)$
$\mathrm{S} 2 A-\mathrm{Te} 1 A-\mathrm{S} 1 A-\mathrm{C} 1 A$	$-9.0(2)$
$\mathrm{S} 1 A-\mathrm{Te} 1 A-\mathrm{S} 2 A-\mathrm{C} 1 A$	$14.2(3)$
$\mathrm{Te} 1 A-\mathrm{S} 2 A-\mathrm{C} 1 A-\mathrm{S} 1 A$	$-14.2(3)$
$\mathrm{Te} 1 A-\mathrm{S} 1 A-\mathrm{C} 1 A-\mathrm{S} 2 A$	$150.9(6)$
$\mathrm{S} 1 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 11 A$	$-138.4(6)$
$\mathrm{S} 2 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 11 A$	$62.5(6)$
$\mathrm{I} 1 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 11 A$	$-49.9(6)$
$\mathrm{I} 2 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 11 A$	$-28.5(5)$
$\mathrm{S} 1 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A$	$42.3(5)$
$\mathrm{S} 2 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A$	$-116.8(5)$
$\mathrm{I} 1 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A$	$130.7(5)$
$\mathrm{I} 2 A-\mathrm{Te} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A$	$10.1(2)$
$\mathrm{S} 2 B-\mathrm{Te} 1 B-\mathrm{S} 1 B-\mathrm{C} 1 B$	$-10.1(2)$
$\mathrm{S} 1 B-\mathrm{Te} 1 B-\mathrm{S} 2 B-\mathrm{C} 1 B$	$0.6(11)$
$\mathrm{C} 4 B-\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{S} 1 B$	$-0.5(10)$
$\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{S} 2 B$	$-15.7(4)$
$\mathrm{Te} 1 B-\mathrm{S} 1 B-\mathrm{C} 1 B-\mathrm{S} 2 B$	$15.7(4)$
$\mathrm{Te} 1 B-\mathrm{S} 2 B-\mathrm{C} 1 B-\mathrm{S} 1 B$	$-22.1(7)$
$\mathrm{S} 1 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 11 B$	$48.6(7)$
$\mathrm{S} 2 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 11 B$	$-112.9(7)$
$\mathrm{I} B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 11 B$	$133.7(7)$
$\mathrm{I} 2 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 11 B$	$153.4(6)$
$\mathrm{S} 1 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B$	$-136.0(6)$
$\mathrm{S} 2 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B$	$62.5(6)$
$\mathrm{I} B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B$	$-50.9(6)$
$\mathrm{I} 2 B-\mathrm{Te} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B$	
S	

Symmetry code: (i) $1-x, 1-y, 1-2$.

199 parameters
H atoms: riding and rotating model with $U_{\text {iso }}$ refined for groups

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0791 P)^{2}\right. \\
&+1.5737 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (2)

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
Te1	$0.04660(4)$	$0.03535(3)$	$0.76279(3)$	$0.04207(10)$
I1	$0.2362(3)$	$0.1281(3)$	$0.8664(3)$	$0.0528(5)$
Br1	$0.2023(7)$	$0.1392(7)$	$0.8806(7)$	$0.0484(10)$
I2	$-0.2112(4)$	$0.2143(3)$	$0.6845(4)$	$0.0488(3)$
Br2	$-0.2032(10)$	$0.2339(7)$	$0.6974(9)$	$0.0464(8)$
S1	$0.2269(2)$	$-0.18068(12)$	$0.7989(2)$	$0.0497(3)$
S2	$-0.02116(15)$	$-0.14714(13)$	$0.70432(15)$	$0.0486(3)$
O1	$0.4367(5)$	$0.3439(5)$	$0.1442(4)$	$0.0676(11)$
N1	$0.1525(5)$	$-0.3857(4)$	$0.7581(4)$	$0.0426(8)$
C1	$0.1226(5)$	$-0.2552(5)$	$0.7561(5)$	$0.0399(8)$
C2	$0.0623(6)$	$-0.4507(5)$	$0.7243(6)$	$0.0492(11)$
C3	$-0.0651(7)$	$-0.5157(7)$	$0.8526(7)$	$0.0620(14)$
C4	$0.2794(6)$	$-0.4749(5)$	$0.7929(6)$	$0.0524(11)$
C5	$0.4078(8)$	$-0.4848(10)$	$0.6640(9)$	$0.083(2)$
C6	$0.1879(6)$	$0.1311(5)$	$0.5539(5)$	$0.0435(9)$
C7	$0.1887(6)$	$0.2761(5)$	$0.5045(5)$	$0.0469(10)$
C8	$0.2744(6)$	$0.3428(5)$	$0.3689(6)$	$0.0527(11)$
C9	$0.3605(6)$	$0.2656(6)$	$0.2786(6)$	$0.0506(11)$
C10	$0.3622(6)$	$0.1227(6)$	$0.3279(6)$	$0.0516(11)$
C11	$0.2754(6)$	$0.0544(5)$	$0.4655(6)$	$0.0487(10)$
C12	$0.4960(8)$	$0.2801(9)$	$0.0375(7)$	$0.077(2)$

Table 4. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (2)

Tel-C6	2.123 (5)	Te1-Il	3.049 (3)
Tel-S1	2.5233 (15)	Tel-Bri ${ }^{\text {i }}$	3.676 (6)
Tel-S2	2.5349 (14)	Tel- $\mathrm{ll}^{\text {i }}$	3.872 (3)
Tel-Brl	2.967 (8)	S1-C1	1.726 (4)
Tel-Br2	2.962 (8)	S2-C1	1.737 (5)
Tel-I2	3.003 (4)		
C6-Tel-S1	92.63 (14)	S2-Tel-I2	84.78 (5)
C6-Tel-S2	94.87 (13)	C6-Tel-I1	87.84 (14)
$\mathrm{S} 1-\mathrm{Te}$ - S 2	71.27 (4)	S1-Tel-I1	80.04 (7)
C6-Tel-Brl	91.4 (2)	S2-Te1-I1	151.26 (7)
S1-Tel-Brl	84.62 (13)	I2-Tel-I1	123.92 (7)
S2-Te1-Br1	155.30 (13)	C6-Te1- Brl^{1}	177.7 (2)
C6-Te1-Br2	89.0 (2)	C6-Tel- $\mathrm{Il}^{\text {i }}$	175.64 (14)
$\mathrm{S} 1-\mathrm{Te} 1-\mathrm{Br} 2$	162.24 (9)	Tel-Il-Tel ${ }^{\text {i }}$	84.52 (7)
S2-Te1-Br2	90.98 (9)	$\mathrm{Te} 1-\mathrm{Brl}-\mathrm{Tel}{ }^{\text {i }}$	89.2 (2)
$\mathrm{Brl}-\mathrm{Te} 1-\mathrm{Br} 2$	113.03 (15)	C1-S1-Tel	86.2 (2)
C6-Tel-I2	88.7 (2)	C1-S2-Te1	85.6 (2)
S1-Tel-I2	156.04 (5)	S1-C1-S2	116.6 (3)
$\mathrm{S} 2-\mathrm{Te} 1-\mathrm{S} 1-\mathrm{Cl}$	-3.0(2)	$\mathrm{Br} 2-\mathrm{Tel}-\mathrm{C} 6-\mathrm{Cl1}$	-126.5 (4)
$\mathrm{S} 1-\mathrm{Te} 1-\mathrm{S} 2-\mathrm{Cl}$	3.0 (2)	I2-Tel-C6-C11	- 120.2 (4)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-1.9(7)	$\mathrm{I1}-\mathrm{Te} 1-\mathrm{C}-\mathrm{Cl1}$	115.8 (4)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	-3.3(7)	S1-Te1-C6-C7	-145.8 (4)
$\mathrm{Tel}-\mathrm{Sl}-\mathrm{Cl}-\mathrm{S} 2$	4.6 (3)	S2-Te1-C6-C7	142.8 (4)
$\mathrm{Te} 1-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	-4.6 (3)	$\mathrm{Br1}-\mathrm{Te} 1-\mathrm{C6}-\mathrm{C} 7$	-61.1 (4)
S1-Tel-C6-C11	35.9 (4)	$\mathrm{Br} 2-\mathrm{Te} 1-\mathrm{C} 6-\mathrm{C} 7$	51.9 (4)
S2-Tel-C6-C11	-35.6 (4)	[2-Te1-C6-C7	58.2 (4)
$\mathrm{Brl}-\mathrm{Tel}-\mathrm{C} 6-\mathrm{Cll}$	120.5 (4)	$\mathrm{I} 1-\mathrm{Te} 1-\mathrm{C} 6-\mathrm{C} 7$	-65.8 (4)

Symmetry code: (i) $-x,-y, 2-z$.
Both ethyl groups in one of the three independent molecules of (1) were disordered. For one of the ethyl groups the disorder was successfully resolved $\left[\mathbf{C}(4) / \mathrm{C}\left(4^{\prime}\right)\right.$ and $C(5) / C\left(5^{\prime}\right)$ were refined isotropically with occupancy factors of 0.5 for each position], but for the other, $\mathrm{C}(2), \mathrm{C}(3)$, it failed (anisotropic refinement gave very large amplitudes of the thermal motion of the atoms). An absorption correction
for (2) was made assuming that the crystal contains an equimolar ratio of Br and I atoms. The positions of the non-stoichiometrically replaced Br atoms were located in a difference Fourier synthesis. The I / Br occupancy factors were refined at an early stage (isotropic for all non- H atoms) by a least-squares procedure using the restrictions $U_{\text {iso }}\left(\mathrm{Br}_{j}\right)=$ $U_{\text {iso }}\left(\mathrm{I}_{j}\right), g\left(\mathrm{Br}_{j}\right)+g\left(\mathrm{I}_{j}\right)=1$ and $g(\mathrm{Br} 1)=g(\mathrm{Br} 2)$, and then fixed.

For both compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1060). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Chadha, R. K., Drake, J. E., McManus, N. T., Quinlan, B. A. \& Sarkar, A. B. (1987). Organometallics, 6, 813-819.
Husebye, S. (1983). Proceedings of the 4th International Conference on the Organic Chemistry of Selenium and Tellurium, Univ. of Aston, England, edited by F. J. Berry \& W. R. McWhinnie, pp. 298-378.
Husebye, S., Kudis, S. \& Lindeman S. V. (1995a). Acta Cryst. C51. In the press.
Husebye, S., Kudis, S. \& Lindeman S. V. (1995b). Acta Cryst. C51. In the press.
Husebye, S. \& Maartmann-Moe, K. (1994). European Crystallography Meeting, Dresden, Germany. Book of Abstracts 15, edited by P. Paufler \& M. Schenk, p. 236.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1875-1878

N - p-Tolylvanillaldimine, $\mathbf{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$

Branko Kaitner* and Gordana Pavlović

Chemistry Department, Laboratory of General and
Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. Kralja Zvonimira 8, 41000 Zagreb, Croatia
(Received 6 December 1994; accepted 24 February 1995)

Abstract

The title compound, 2-methoxy-4-(p-tolyliminomethyl)phenol, contains two phenyl rings bridged by a $\mathrm{C}=\mathrm{N}$ imino moiety, the planes of which are inclined at an

