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Chapter 13 

-Using Systematic Thinking 
to Choose and Evaluate Evidence 

Robert J. Griffin 

Robert J. Griffin is the director of the Center for Mass Media Research al 
Marque/le University, where he is a professor of journalism in the College of 
Communication and winner of the university 's premier award for sustained 
teaching e.xcellence. He has authored or coauthored articles and chapters on 
reporting about science, environment, and energy; he is lead editor of the book 
lnterpreting Public Jssues. His recent research focuses on risk communication 
and methods of leaching statistical reasoning to journalism students. 

"God does not play dice with the universe. " 

-Albert Einstein, c. 20th century 

"How can 1 be su re, in a world that 's constantly changing?" 

-The Rascals. c. 20th century 

"Be sure of it; give me the ocular proof . .. No hinge nor loop 
to hang a doubt on. " 

-W11ham Shakespeare (Othello III, 3), c. 16th century 

Uncertainty will always plague us. You can bet on that. For a joumalist, 
dealing with uncertainty is part of the job. Sometimes we feel uncertain 
because we sense that we lack enough k.nowledge of something we could 
know more about. Sometimes we feel uncertain because we cannot predict 
the seeming vagaries ofreal causal forces in the world as they influence card 
games, football games, volcanic eruptions, elections, human health, and 
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226 GRIFFIN 

other aspects of our surroundings ranging from the microscopic· to the cosmic 
(Kahneman & Tversky, 1982). ln either case, a journalist's audience usually 
wants at least enough ceitainty in the inforn1ation they are given so that they 
can deal with their world with sorne confidence (Eagly & Chaiken, 1993 ). 

Of course, if the audience's world ís in fact uncertain, a good journalist 
accurately points that out. For exaniple, the results ofpreelection political polls 
and other sample surveys of the pubhc are couched in sampling error. A 
joumalist who reports such a survey accurately and responsibly will always 
take into account the survey's margin of error_ when interpreting the poli for the 
audience. Similar! y, health risk estirnates are often posed as a range of prob
abilities that indicate a person's chance of being victimized by a given injury 
or illness. F or exarnple, the local health department m ight proclaim that a person 
who is not vaccinated might ha ve a 1 in 100 to 1 in 500 e han ce of catching the 
la test strain of flu. 

Due to the nature of scientific inquiry, there is always sorne degree of 
uncertainty in scientific findings. In fact, the scientist lives in a world in which 
absolute proof is virtually impossible. Yet, based on the fruits of scientific 
inquiry, govemment officials often have to make decisions affecting public 
policies, includiilg controversia! actions such as limiting the emissi.ons of 
greenhouse gases or requiring that additives be put into gasoline in certain cities 
to reduce urbana ir pollution. Judges and juries often ha veto determine, based 
on scientific evidence, whether plaintiffs have been hanned by hazards such as 
workplace carcinogens, defective products, or medica! malpractice. At best, 
these decisions are made only after carefully weighing the bulk and quality of 

scientífic findings that bear, pro and con, on the policy or judgment. 

CONFIDENCE GAMES 

E ven careful decisions can be corrupted by those who have a stake in misrep
resenting scientific certainty. Basically, there are at least two kinds of practi
tioners of these scientific "confidence games": those who present scientific 

results as being more certain than the findings warrant and those who want to 
dismíss even strong scientific findings because the results are less than abso
lutely certain. 

The fonner can include sorne scientists who have a professional stake in 
presenting findings that are noteworthy and sorne of the people who allege that 
they ha ve beeil victimized by tecbnology, products, or malpractice. The latter 
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can include sorne industry representatives whose job is to cast doubt on 
scientific revelations about deleterious effects of products, mectical practices, 
or manufacturing processes. These two sides often collide in the courts, wher_e 
judges have been given more and more discretion to act as what ·the U.S. 
Supreme Court terms gatekeepers of scientific evidence. For example, judges 
in product liability cases can exclude expert testimony if "there is simply too 
great an analytical gap between the data and the opinion offered," according to 
Chief Justice William Rehnquist (Biskupic, 1997, p. A2). As members of the 
fourth estate, joumalists will continue to have a responsibility to help ensure 
that governmental and judicial decisions are balanced and based on valid 
scientific evidence and principies. 

Of course, everyday people also have to make decisions based in part on 
scientific findings. These decisions can include which products to purchase, 
which scientific, technical, or environmental policies to support as cit:izens, and 
which changes in Iifestyles or habits might affect their personal health and 
safety. Confidence hucksters can muddy those choices as well. So, it is also part 
ofa reporter'sjob to help audiences sort empirical fact fromjunk science when 
people consider various consumer, political, and health-related options. In fact, 
people tend to rely a lot on the mass media as sources of information about 
health risks in particular (Freimuth, Edgar, & Hammond, 1987; Singer & 
Endreny, 1987). 

One ofthe best ways for ajournalist to discover whether scientific-sounding 
claims are valid is to subject them to the rigors of systematic thinking, that is, 
to the rules of evidence and reasoning scientists routinely apply to their 
investigations. Systematic think.ing does not require journa1ists to be experts in 
research methodology and mathematics, although sorne basic knowledge of 
scientific procedures and statistics is certainly helpful (see, e.g., Cohn, 1989; 
Meyer, 1991). In fact, contrary to what many may believe,journalists are not 
inherently math dummies. Fresbman college students going intojournalism are 
justas adept at math as the average college freshman (Becker & Graf, 1994). 
"lt is time to let the secret out," as Paulos (1995) wrote in his book, A 
Mathematician Reads the Newspaper. "Mathematics is not primarily a matter 
of plugging numbers into formulas and performing rote computations. It is a 
way of thinking and questioning that m ay be unfamiliar to many of us, but is 
available to almost all of us" (p. 3 ). 

So, mostjouma]ists should be ab1e to handle the kinds ofreasoningprocesses 
required to think systematically about the news and, because science and 
statistics underlie many news stories, they have an increasing responsibility to 
their aud.iences to do so. However, one of the most common practices of the 
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joumalistic craft-relying on anecdotal infonnation in gathering and presenting 
the news-can markedly interfere with a reporter's attempts toapply systematic 
thinking. 

THE STORYTELLERS 

Basically; the journalist's job is to tell a story. So it is quite natural for a 
journalist to think in terms of anecdotes to present the news. If there is a new 
treatment for diabetes, interview a few diabetics and fmd out ho~ that will make 
life easier for them. If the state health department warns people about health 
dangers from eating fish that might contain mercury or PCBs, tap sorne anglers 
on the shoulder and ask them if they are worried. If a new study shows that TV 
viewing influences the academic performance ofpreteens, ask sorne local grade 
school teachers what they have noticed. If a federal report shows that urbani
zation is seriously encroaching on land used to grow food, write a story that 
follows a fann family through years of economic struggles. 

The common .wisdom among joumalists is that anecdotes d.raw audience 
interest, humanize a news story and, because anecdotes tend to be vivid, mak.e 
the news memorable. Unfortunately, relatively little is known about the actual 
effects these techniques have on audiences. What is known suggests that 
joumalists should exercise sorne caution when employing anecdotal informa
tion in stories so as not to mislead audiences or themselves. 

Certain Examples, Uncertain Evidence 

Anecdotes can be fine examples, but they are usually poor evidence, especially 
in the news. It is easy for a reporter to assume that the grassroots quotes she 
just gleaned from a dozen motorists at the local filling station were notjust great 
copy for her story about gasoline taxes but typify a cross section of public 
opinion as well. Toa social scientist, those same interviews are a convenience 
survey of an unrepresentative sample of 12. In other situations, a reporter might 
find an example of a prominent local athlete who is struggling to overcome 
drug dependence to ilJustrate bis story on addiction in the cíty. To a social 
scientist, the athlete is strikingly atypical ofthe problems everyday people face. 

Problems multiply when journalists present anecdotal information directly 
as evidence. For example, Newsweek ran an article headline<L "Conspiracy 
mania feeds our growíng national paranoia, (Marin & Gegax, 1996-1997, p. 
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64). Claiming that "conspiracy paranoia is surrounding us," the article takes a brief 

yet critica! tour of sorne popular conspiracy theories. The news peg, as reflected in 
the headline, is that popular belief in conspi.racies is growing. "This great nation 
has always bad its share of conspiracy freaks .... But the ranks of the darkly deluded 
may be growing," the authors stated (p. 66). "Ciearly, something is heating up in 
the more tropical clímes of the American psyche/' Marin and Gegax concluded, 
based primarily on the following evidence cited in the article: 

• Three quarters of Americans believed that the government is somehow 
involved in conspiracy, according toa survey reported in George magazine. 

• America Online had begun a channel for fans of the paranormal and the 
paranoid. 

• Mel Gibson starred in a movie called Conspiracy Theory. 
• The editor ofThe Skeptical Inquirer, a publication that debunks the farout, 

said that there certainly seems to be a resurgence in sympathy toward 
conspiracy theory and an increase in paranoia. 

Most ofthe evidence is anecdotal and non e of it would support the conclusion 
that, nationally, paranoia and belief in conspiracies are growing. That conclu~ 
sion requires evidence that compares representative surveys of Americans at 
two points in time and asks about their beliefs in a variety of conspiracies. Such 
evidence might balance the anecdotal infonnation presented in the story and 
relegate it to what it is: example instead of evidence. 

Reliance on anecdotes might affect audiences in other ways as well. W ith 
our minds and our worlds filled with uncertaínties and our days filled with only 
24 hours, we often fall back on judgmental shortcuts, called heuristics, to make 
sense of things (Tversky & Kahneman, 1982). Heuristics are intuitive and can 
often bias our judgments. For example, people might overestimate the risks of 
cancer in the population if someone they k.now has the disease. Reading about 
a cancer case in the news will probably not have quite the effect on a person's 
judgment as would ftrSthand knowledge. Nonetheless, vivid anecdotes, which 
are a news staple, could influence a person'sjudgments ofrisks and should be 
employed carefully by joumalists. 

SYSTEMATIC THINKING ANO UNCERTAINTY 

The use of anecdotes by joumalists is certainly not goíng to disappear, but it is 
important to ~ather and present anecdotal information as examples rather than 
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evidence, to find typical examples instead of extreme cases to illustrate a story, 
and to coucb descriptíon within a context that sbows how representative or 
unrepresentative the cases may be. In most situatíons, th.is requires the system
atic gathering of representative data of sorne type. However, just because 
ínformatíon is in numerical form does not mean that it is necessarily any more 
representative than a typical verbal anecdote. In fact, undígested statistical 
information is often nothing more than a quantitative anecdote. 

Although we will probably never overcome all of our uncertainty about the 
world, the techniques of systematic thinking employed by scientists serve to 
reduce the uncertainty that is brought about by faulty reason~g and improper 
evidence. The next sections illustrate three steps to systematic thinking that 
journalists can employ in their daily work. 

As Compared to What? 

Joumalists often encounter raw statistics, sucb as the number ofpeople afflicted 
by heart disease or involved in automobile crashes annually. Sorne ofthese raw 
numbers can be quite astounding and equally misleading. For example, in 1992, 
The New York Times reported that four of America's largest cities-Los 
Angeles, San Diego, Dalias, and Phoenix---each tallied a record number of 
killings the previous year. As Arnold Bamett (1994) observed in Technology 
Review: 

The irnplication was that even one all-time high among such cities was un usual, 
Jet alone four. The report failed to point out, however, that all four ofthese cities 
al so reached new highs in population in 1991 ; th us, even i ftheír per cap ita murder 
rates had not changed since Cain slew Abel, their absolute 1991 murder tolls 
would. ha ve set new records. (p. 44) 

First Step: Find the Baseline 

Indeed, the frrst step in systematic thinking is to establish an appropriate 
baseline. A common means of establishing a baseline is totuma raw statistic 
into arate (e.g., 1 out ofevery 1,000) or percentage (e.g., .1%) by using an 
appropriate denominator. If The New York Times had used one of these 
techniques to establish a baseline, a different picture of urban murders might 
indeed ha ve emerged. Thus, baselines provide essential interpretive context for 
any raw statistic. 
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Baselines also give context to an anecdote, especially by helping audiences 
see how representative the case is. For example, in a feature on the growíng 
proportion of senior citizens who resort to suicide, Milwaulcee Journal Sentinel 
reporter Fran Bauer ( 1996) started the story with this brief account: 

Recently, an elderly man parked his car, wa1ked to the top of the High Rise 
Bridge, stepped over the guard rails and jumped to his death. 

Divers tried franrica\ly to rescue the man from the icy waters ofthe Milwaukee 
River below. But he died within minutes, a suicíde. 

For most, the case was quickly forgotten. 

Y et staristics tell a far grimmer story. (p. G 1) 

Bauer then gave readers context for the anecdote by including national data on the 
disproportionate upturn of suicides among older citizens, especially males, from 
1980 to 1992 and showing that, although persons aged 65 and older accounted for 
only 13% of the population, they made up nearly 20o/o of all suicides. In doing so, 
the reporter made ít clear that the proportion of suicides in the older.age group is 
notjust a simple reflection oftheir numbers in the population. The rest ofthe article 
discussed the factors such as isolat:ion, depression, changing cultural attitudes, and 
even longevity ítself that might contribute to suicides among the aging. 

To help bring this message home, the paper accompanied the story with a 
graphic titled "1994 Suicides by Age Group in Milwaukee County'' (Fig. 13.1 ). 
Unfortunately, however, that graphic confused the picture the reporter had so 
carefully presented in text. At first glance, the pie chart seems to show that 
suicides are decimating the young but are rare among the old. What caused this 
pie chart to go sour? Instead of depicting suicides in each age group on a per 
capita basis, as would be appropriate for the story, the chart shows the portian 
of the total nu.mber of suicides that occurred in each age group. In short, the 
graphic confuses the meaning of the story because it ignores the baseline, 
speci fically, the size of ea eh age group in the local popuJation. To better illustrate 
Bauer's trend story, the newspaper might have used a couple of charts-one 
portraying per capita suicides in each age group in 1994 and another showíng 
the same break.down for 1980. That way, two essential baselines are used: the 
population base and the prevalen ce of suicides ata comparative time in the past. 

Second Step: Make a Dynamic Comparison 

Despite its flawed graphic, the suicide article showed how comparing rates 
across groups and across time can reveal dynamic pattems that are otherwise 
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.1994 suicides 
by age group in 

Milwaukee County 

.......__TOTAL 
50 and older 

32.5% 
Source: Milwaukee County 
Medie<!! E.xaminer's office 

JOUI'J'\é!l Sentinel 

FIG. 13.1. 1994 Suicides by age group in Milwaukee County. 
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obscured when reporters employ only simple descriptions in the form of 
anecdotes, raw statistics, ore ven raw rates and percentages (e. g., reporti.ng only 
the overall suicide rate for the population in general). A phenomenon such as 
illness or suicide now beco mes a variable to be compared with another variable, 
such as age or sex differences, giving clues to sometimes subtle forces at work 
in sociecy and in human lives. Of course, as Cohn ( 1989) noted, these compari
sons can take many forms and must be rigorous and fair. However, looking for 
these dynamic comparisons is the second step in systematic thinkíng. By 
habítually ask.ing "as compared to what?" and searching carefully for solíd 
evidence ofthe answer, joumalists can get new insights into the news and avoid 
sorne flimsy or misleading conclusions. 

F or example, Disco ver magazine once reported that 90% of the people who 
survived airplane crashes had formed in their minds a plan of escape before the 
accident happened (N olan, 1986). Their recommendation? Look for the emergency 
exits and plan how to get off before you take off. This advice seems sensible 
enough., but it is not as factually based as it would seem. Note that Discover's 
advice is based on a comparison that is impüed but for which there is no evidence. 
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As Gilovich (1997) observed, it ís impossible to find out what percentage of 
the nonsurvivors had also formulated escape plans. In short, there is no way of 
knowing whether those who planned their way out actually fared any better. _ 

In another case, an Associated Press (1995) article about the success of 
cardiopulmonary resuscitation (CPR) appeared under the headline: "Bystand
ers' CPR Efforts Often Backfire, Study Says. '' The lead paragraph read: 
"Chicago-Bystanders who attempted CPR on cardiac arrest victims got it 
wrong more than half the time, reducing patients' already slirn chances of 
survival, a study found" (p. 6A). 

Notice that the clear implication of the newspaper headline and of the fust 
paragrnph is that peop1e who try todo CPR on a heart attack victim, but who 
do it improperly, are doing more hann to the victim than if they had done 
nothing at all . That is pretty important advice, advice with ethical and legal 
implications, a~ well as with implications for the life of the poor victim. 

The news item was based on an article by Gallagher, Lombardi, and Gennis 
(1995) that appeared in the Journal of the American Medica/ Association 
(JAMA). The brief Associated Press news story quotes one of the article's 
authors, John Gallagher of the Albert Einstein College of Medícine in New 
York, as stating that improperly administered CPR "does not seem to be any 
better than no c ·PR." He did not say that improperly administered CPR is worse 
than no CPR, which should have tipped off the reporter that something was 
arniss in the lead paragraph. 

An abstract of the JAMA article, then readily available to joumalists wíth 
Internet access, briefly explained the research method and basic fmdings of the 
study. Emergen e y hospital personnel, who anived at the scene of a cardiac arrest, 
recorded ·whether any bystanders had attempted CPR on the victim and, if so, 
whether the technique they used was effective, that is, whether it was performed 
according to medica! guidelines. The patient survíved if he or she was able to 
retum home from the hospital. The researchers also controlled for sorne other 
factors that might affect the outcome ofthe study. The abstract explained that: 

the survival statistíc for those receiving CPR was 19 out of 662 compared to 1 t 
out of 1405 who did not receive CPR .... Ofthose patients who received effective 
bystanderCPR, 14 out of305 survived (4.6%) compared with 5 out of357 (1.4%) 
who received CPRjudged to be ineffective. 

A careful reading of the numbers shows that only 0.8% (11/1,405) of the 
victims who received no CPR had survived. In situatíons like this, a simple but 
systematic jotting down of the numbers on a notepad, su eh as a reporter might 
ha ve done in .Fig. 13.2, can help jou.rnalists-and their audiences-understand 
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N&CPR I~t.Ne/CPR E{fed:'vve-CPR. 

o.B%~w~ 1.lf%~ÍN~ lf. 6% l«<"Vi»e.d, 

FIG. 13.2. JAMA number comparisons. 

what comparisons are being made. Although giving ineffective CPR might 
not real! y improve the victim 's odds of surviva] as compared to administering 
no CPR at all, it certainly does not "backfire" by "reducing patients' already 
slim chances of survival," as the story headline and lead had erroneously 
reported. 

Perhaps the statistics most in need of dynamic comparisons and reportorial 
finesse are vital statistics data representing health and disease, life and death. 
"They are much applied, misused, and misunderstood," stated Cohn (1989, p. 

74). "Yet these statistics can yield fascinating stories ifwe learn something of 
their power and limits and the rather special vocabulary of human Iives:' 
Cautioning that disease data are often applied too broadly to the population, 
Crossen ( 1 996) observed: 

One in five American men witl get prostate cancer. One in eight American 
women will get breast cancer. At least two mi Ilion Arnericans are manic-depres
síve, and more than two mili ion are schízophreníc. At least 60 million Americans 
have high blood pressure, 12 mi Ilion have asthma and four mí Ilion have Alzhe
imer's disease. One in three Americans is obese. 

With numbers like these, it is ama.i:ing there is anyone still here--let alone people 
living happy, healthy llves. Projections ofthe incidence of disease are rampant 
these days, as a growing number ofhealth advocacy groups compete for people' s 
limited attentíon and money. Most of the numbers are extrapolations or esti
mates:_at best. Y et as the media report thern, often uncritically and without 
context, these conjectures assume the mantle of quantifiable fact. (p. B 1) 

Crossen suggested that a better way to present information to people about 
risks of a disease is to project, for example, how risks vary by gender and age. 
Figure 13.3 illustrates data her story provided on the probability of developing 
cancer in 1 O, 20, and 30 years, and eventually formen and women of various 
ages who are currently free of cancer. The chart shows sorne very interesting 
pattems. For women, for example, the overall risk of getting cancer sometime 
in life actually decreases as they get older. The same is not true formen. Of 
course, heart and circulatory problems claim more human lives than does 
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cancer, Crossen said, and people should remember that, despite increasing 
longevity, no one lives forever. 

Figure 13.3 is an example of what statisticians call a multívariate ana/ysis. 
Tables such as these are very useful beca use they illustrate the ways different 
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factors (here, age and sex) might combine in different ways to produce different 
outcomes (here, the risk of cancer). Notice that this is a much more dynamic 
and realistic picture of the way life really is than one gets from the more 
crude descriptions provided by simple anecdotes and undigested statistics. 
However, because data such as these can become quite complicated for 
people to understand, journalists will need to become more adept at 
reasoning from data and interpreting data for audiences. Innova ti ve and 
clear graphic displays of statistical information ( e.g., Tufte, 1983, 1997; 
Utts, 1996; Wainer, 1997) are essential to t~at task. In particular, comput
ers and other new technologies offer exciting opportunities to use hy
pertext (Fredin, 19~7), animation, and interactive environments to help 
people understand data dynamics·. 

Error and Uncertainty 

Journalists also should remernber that even the most carefully gathered 
statistical information contains sorne uncertainty in the form of error. Sorne 
ofthe error rests in the techniques and measures used to gather the informa
tion, such as relying on the completeness of health department records, the 
precision of a medical test, ora person's ability or willingness to report 
illnesses, socially undesirable activities, or highly personal information to 
a survey interviewer. Sorne ofthe error rests ín extrapolating or generalizing 
from, for example, animal tests to humans or from a sample to the popula
tion. So, in making dynamic comparisons, it is important to take into account 
what the range of error might be. As a general rule, we should be cautious 
about small differences between groups, especially if the differences are 
only a few percentage points. They might simply be the result of error and, 
therefore, have no real meaning. If the data are from a well-designed 
probability sample survey (of people in a city, for example) or laboratory 
experiment in which subjects were randomly assigned to conditions (a 
placebo versus a new drug, for example), then a reporter can more readily 
get a handle on how much room to a11ow for error by relying on the reported 
statistical significance of the results or by applying the standard formula to 
determine the margin of error in surveys. Of course, even these statistical 
tests will not compensate for errors in the measures and techniques them
selves, so it is still wise to exercise sorne caution. 

So, a good revision of the question posed at the beginning of this section is 
this: "As compared to what, given error?" 
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SIDEBAR: 
EXAMPLES ANO SAMPLES, OR 

HOW A LITTLE HOMEWORK CAN GO A LONG W A Y . 

Parents from th~ Milwaukee suburb of Sborewood bad complained t.bat their 
seventh-grade offspring were being given an unusual amount ofhomework, so 
much so that their backpacks were becoming laden with books and too beavy 
for a kid to carry. 

So, to check out these parental allegations, reporters decided to compare the 
heaviness of the backpacks of Shorewood Intermedia te School students to the 
weight of back:packs carried by their peers at two schools in neighboring 
communities. In a large, color graphic that accompanied the front-page article 
("Full Load," 1997), the paper listed the weight of ea eh of the 14 backpacks 
sampled at eacb of the three schools a long with the average backpack weight 
at each school: 20.43 pounds atShorewood, 16.93 pounds at University School, 
and 11.93 pounds at Morse Middle School. The data are reproduced in Figure 
13 .4. The reporters concluded that "for the most part, the [Shorewo.od] parents 
were right." To further illustrate the point, the newspaper used an example as 
part of the. graphic: a photo of a student from the Shorewood school whose 
backpack was heavier (at 31 pounds) than any ofthe other backpacks from any 
of the schools. "What's it like carrying around 31 pounds?" asked a tag line 
above the student's photo. The answer, also illustrated, is that 31 pounds is 
equal to the weight ofnearly two bowling balls or 191 toy "beanie babies" and 
is greater than the weight of a Trek 750 bicycle. The story itself is peppered 
with quotes from students at the three schoo1s about what it is like to lug their 
burdens. 

All in all, the reporters endeavored to conduct a dynamic comparison across 
three schools and tried to use comparative data on the average weight of 
backpacks at each institution to provide a moderating context for the quotations 
from students. Without the weigh-ins, the entire story might have had to rely 
on the use of anecdotes as evidence instead of as examples. The interesting 
graphic tried to translate the weight ofbackpacks into tenns many readers rnight 
understand. 

Unfortunately, two enduringjoumalistic problems-using unrepresentative 
examples and unrepresentative samples-seemed to mar this otherwise laud
able effort: 

l. The illustration used the decidedly atypical backpack-the one that 
weighed more than any of the others and half again as m u eh as the average for 
Shorewood Intermediate School-rather than a typical backpack (the mean, 

(continued) 
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Sidebar (continued) 

lt' s tough being a backer ptdcer 
!t all began when sorne Shorewood parents complained how heavy their kids' 

backpacks have become bec.au.se of the amount of hOITie\NOrl< brought home. 
Do their concems carry ~ight? We found out. by weighing backpad:s from 14 
students from each of the schoo!s below. The results? Well, for the rnost: part the 

parents vvere righl And how do the kids feel about carrying all that \1\/eight? 
Sorne shrugged it off, but others said it feels like the -Neight of the wond. 
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FIG. 13.4. 

median and mode are 20 pounds) to represent that scbool. Joumalists too often 
use the atypical as an example, C)nd in this case the reader can too easily be 
confused about the average weight ofbackpacks at that school. 

2. Tbe reporters used wbat they described in the text of the story as a "very 
unscientific survey, (p. 1 A) to choose which backpacks to weigh. Although 
tbey did not describe how they selected backpacks, "unscientific" usualJy 
means "nonrandom sample, and opens tbe possíbility that expectations about 
fi.nding heavier backpacks at tbe Shorewood scbool might have unconsciously 
affected reporters' choices. A random sample of sorne type would probably not 
bave been too hard to conduct, especialJy given the effort reporters had already 
devoted to the story. And it would have given the reporters a big advantage: 
they would have hada means to control for sampling error. As it ís, there is no 
way to reduce the Iarge amount of uncertainty in their results. In short, it ís not 
clear what they actually found. In fact, had the same data been the result of a 
random sample, the results would show that the average backpack weíght at 
Shorewood Intermediate School is not different, beyond samplíng error, from 
the average backpack weights at University School, according toa statistical 

(con tinued) 
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Sidebar (continued) 
test called the "analysis ofvariance" commonly available on desktop computer 
statistical packages. The real fmding would be that Morse Middle School 
backpacks are the lightest and that, for the most part, the Shorewood parents 
were wrong. 

WHY ANO SO WHAT? 

Interpretation is an essential component of good reporting and usually requires 
answering the questíons "why?" and "so what?" The answer to the question 
"why?"-for example, "Why does urban sprawl affect water quality?'' or "Why 

would eating fatty foods increase a person 's risk ofheart attack?"--calls on the 
reporter to address cause-and-effect relation·s. Similarly, the answer to the 
question "so, what? .. -for example, "So, whatpolícy solutions can mitigate the 
effects of sprawl on water qualíty?" or "So, what personal actions can one take 
to lower the risk of a heart attack?"-also requires analysis of causality. 

Because people tend to base their preferences for solutions toa problem on 
their perceptions of what caused the problem (Diclier, 1987), it is important for 
reporters to present causal information carefully to audiences. Doing so means 
being especially alert to sorne ofthe common mistakes we aJI make in everyday 
causal reasoning. Many of these miscues stem from the need to quickly 

overcome uncertainties in our world in order to go about everyday Ji fe pressures 
that certainly affect reporters at least as muchas everyone else. For a reporter, 
however, taking a more careful and responsible approach to interpreting cau

sality requires taking a more systematic look at what causes wha4 adopting in 
less fonnal ways the standards of proof scientists require. 

Third Step: Use Causal Caution 

Dynamic comparisons reveal what are commonly known as correlations be

tween variables. ln the sciences, establishing a correlation between two vari
ables is an essential step in determining whether one may be a cause of the 
other. Suppose tbere were no correlation between being a cigarette smoker and 

having a higher risk oflung cancer. Under those conditions, smoking could not 
be a cause of lung cancer. However, the opposite ís not true: Simply showing 
an association between smoking and cancer did not prove that smoking con

tributed to the risk of lung cancer. Additional rigorous evidence was needed, 
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as is true with any area of scientific inquiry into causality. Along with showing 
correlation, eviden~e of ca~sality requi.res evidence that the alleged causal agent 
occurs prior to the condition it causes (e.g., that smoking precedes the devel
opment of cancers) and-the most difficult task-that other explanatíons are 
discounted or accounted for. 

"One ofthe first things they teach in introductory statistics is that correlation 
is not causation," quipped Sowell (1996, p. 11) in The Country Chronicle. "lt 
is also one ofthe first things forgotten." Remembering these rigorous standards 
of causal proof and adopting the caution they impart constitute the third step in 
systematic thinking. 

Correlation and Causal Contlusions. In everyday life we often jump 
to conclusions about causality. Sometimes those judgments are based oi'L wbat 
is, at best, incomplete or flimsy evidence of correlation, much of it anecdotal 
and based on what we happen to have noticed or experienced. Unlike the 
scientist, who relies on systematic sampling and statistical techniques, the 
layperson "must rely upon intuitions and subjective impressions based on 
limited access to ~elevant data," explained Ross and Anderson ( 1982, p. 140). 
The result is often a biased base on which to build causal conclusions. 

Sorne of those premature causal conclusions find their way, unexamined, 
into the media, as illustrated by the story about the effects on survival if 
passengers mentally map their emergency routes out of an aircraft. Sorne are 
even embarrassing for the media. Take, for example, the media' s response to 
infonnation proffered by various advocates for battered women including, 
ironically, the group Fairness and Accuracy in Reporting (F AIR) that reports 
of domestic violence rise 40o/o on Super Bowl Sunday. In short, the causal 
implication is that watching the Super Bowl makes men more likely to batter 
their female partners. As Hohler (1993) of The Boston Globe related: 

The image was alarming. M en across Arnerica, incited by booze, gambling losses 
and the body-slamrrUng explo1 ts of their football heroes, could make Super Bowl 
Sunday the worst day of the year for domestic violence. 

Activists trumpeted the warning, saying national studies supported their claim. 
Much of the nation' s media echoed the alarm. 

And NBC, heeding the prediction, aired as its only public service announcernent 
in the countdown to the Super Bowl a 20-second televisíon spot that dramatized 
for 40 mi Ilion viewers the horror of domestic violence. 

But in an ernbarrassing setback forthe campaign against domestic violence---and 
for the news media-sorne of the groups that pressured NBC to aír the free spot, 
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including Faimess and Accuracy in Reporting, acknowledged yesterday thaÚhey 
had based their predictions in part on incomplete, inaccurate or anecdotal 
in formation. (p. 1) 

According to Hohler, the media watchdog group F AIR had extrapolated the 
40% figure, which F AIR described as anecdotal, from a book of photo essays 
on domes tic violence. There were other errors in advocates' claims as wel.l, but 
there did not seem to be any sign.ificant, systematic evidence of an increase in 
domestic violence after the Super Bowl game . 

"People are extraordinarily good atad boc explanation," Gilovich ( 1991, pp. 
21-22) observed. "To live, it seems, is to explain, to justify, and to find 
coherence among diverse outcomes, characteristics, and causes." Gilovich 
noted that people can find parteros even in random phenomena-randomness 
being the ultima te in uncertainty and lack of correlation-and quickly explain 
the pattems in terms of their own preexisting theories and belíefs about 
causality. 

People can ha ve a number of intuitive, preexisting theories about causality 
(see, e.g., Hilton, 1988; Kahneman, Slovic, & Tversky, 1982). Ma~y concem 
human bebavior-the stuff that much reporting is rnade of. These intuitive 
beliefs can bias our perceptions of causality, especia lly when causes and effects 

are otherwise uncertain. For example, people tend to overestimate the role of 
forces inside the individual, such as personality, ability, disposition, and moti
vation, as causes of human behavior and to underestimate the role of enviren
mental or situational factors, such as the varied opportunities and obstacles that 
exist for people in different social classes. Heider (1958) called this bias the 
fundamental attribution error, and it affects us more when we interpret the 
behavior of others, as reporters tend to do, rather than our own. When applied 
to whole classes of people, the attribution ofbehavior to shared interna! states 
can form the basis for socia] stereotypes (Hamilton, 1979), such as we might 
ha ve of others of a different race or sex when we believe that whole groups of 
people are ínherently lazy, ignorant, insensitive, and so forth. Media portrayals 
migbt be associated with the ways audiences attribute to intemal or externa] 
causes the way members of certain groups in society behave (Griffin & Sen, 
1995). Attributional biases, of course, could have a 1ot of ram.ifications if they 
influence media content, audíence perceptions, and social policy. 

Although it would be nearly impossible for reporters to effectively counter
act all sources of error when making statements about "why" and "so what," 
adopting a more rigorous set of standards for causal proof will reduce the 
likelihood of inaccurate causal conclusions. To that end, here is a brief ovetview 
of the other steps scientísts take in finding evídence of causality. 
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The Right Time Slot. People develop causal beliefs because they re
peatedly witness ~e association between an event and something that follows 
it (Hilton, 1988). Scientists use the same approach, although more rigorously. 
In essence, a purported cause must be shown to precede its effect in real time, 
whether it be epochs or nanoseconds. Many scientific procedures, such as most 
controlled laboratory experiments or panel design surveys, directJy observe 
before-and-after changes as they happen. In many other cases, such as in 
geology or deep space astronomy, the evidence of before-and-after is often 
gathered indírectly. Sometimes, attempts are tpade to discem causal sequences 
from only one point in time, sucb as in a cross-sectional epidemiologícal or 
public opinion survey. In all cases, however, it is wise to be cautious about the 
evidence oftíme sequen ce. It is ofteil helpful for a reporter to determine whether 
the proposed order of the cause and effect variables could just as realistically 
be reversed. ' 

The Network. Most of the things that happen are the result of a variety 
of factors, many interwoven wíth one another. One of the most difficult tasks 
in systematic th~ing and investigation is to separate the influence of an 
apparent causal agent from other variables, often called confounds, which al so 
might affect the outcome attributed to the causal agent. 

Cohn ( 1989), for example, reJated the story of a scientist who proposed the 
possibility that left-banded batters were overrepresented among the best hitters 
in baseball because of hemispberic lateralization ofthe brain. A more baseball
savvy critic had a si.mpler explanation: Left-handed batters happen to enjoy a 
natural physicaJ advantage in the game, specificaJJy, most pitchers are right
handed, which gives left-handed batters an edge, and left-handed batters are 
already moving toward first base after they swing, making it easier for them to 
reach the base. 

Usually the simpler, more parsimonious explanation is preferred as long as 
it predicts the phenomenon-in this case, the better hitting performance of 
lefties in basebaJI-at Jeast as weJJ as the more complicated one. Of course, it 
is al so quite possible that both the scientist and the baseball-wise observer were 
right, because a phenomenon can (and usually does) have multiple causes. 
Thus, it is wise for a reporter to ask wbat other causal agents might be on the 
scene and how they have been accounted for. 

Here are sorne of the other conunon pattems of relationships among causal 
agents that a reporter might encounter. For convenience, the suspected causal 
agent will be referred to by its common nickname, X, the variable it apparently 
influences as Y, and the other dynamic variable in the míx as Z. X is also often 
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referred to as an indepe11dent variable, Y as a dependen/ variable, and Z as a 
thírd variable (no matter how many there are). 

Contingency. Sometimes a variable (Z) can work like a switch or cata
lyst for the relationship between X and Y. Only if Z takes on certain charac
teristics, for example, does X affect Y. In Fíg. 13.3, sex might be considered to 
be Z, age as X, and 1i fetime cancer risk as Y .lf Z ( sex) is female, then advancing 
age (X) decreases overall cancer risk (Y). IfZ (sex) is mal e, then age and overall 
cancer risk are unrelated. 

lntervening Variable. For a variable to effect change in another vari
able, the two must be functionally related. That is, the link between the variables 
should be clear and the processes by which X affects Y well defined. Sometimes 
X can affect Y only through an intervening variable Z that is the more proximate 
cause of changes in Y. Thus, intervention is like a chain of relationships. For 
example, researchers often look for, and find, differences in all sorts of social, 
psychological, and even health-related variables based on demographic differ
ences in the population. Flynn, Slovic, and Mertz ( 1994) found that white men 
perceive risks differently than white women and minority men and women. 
Yet, to explain why this difference occurs, the authors suggested that white 
males may simply feel more in control oftheir environment than everyone else, 
and that sense of control affects their perceptions ofbeing at risk. Thus, a sense 
of control is posed as an intervening variable (Z). In general, demographic 
variables often need su eh assistance. The alert reporter, trying to assess whether 
the services of an intervening variable are needed, might ask wbether it is crystal 
clear why X might affect Y. Take another look at Fig. 13.3 in that light. 

Lurking Variable. Thls one's a real con artist. In what is sometimes 
called a spurious relationship, the lurk:ing variable Z deceives yo u into thínking 
that X and Y are related when they really are not In reality, the lurkingvariable 
itself affects both X and Y, mak:ing them correlate with one another without 
any real connection between them. For example, suppose a study were to show 
that Internet users who browse on-line news services know more about inter
national c.urrent events than other Internet users. lt might indeed be tempting 
to say that their greater use of net news (X) is mak.ing these folks more savvy 
about what is happening in the world (Y). Might a Z be lurking about? Perhaps 
these folk.s are better educated than those who do not use the on-line news 
services. They might visit the on-line news sites as part of a partero of greater 
attention to a lot of news channels, including television, newspapers, and news 
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magazines. Their superior knowledge of international current events might be 
a byproduct of their educational preparation coupled with their use of these 
more tradítional news media. A good study will control for alternative possi
bilities such as this. 

In general, the authors of most scientific studies are very cautious about 
claíming causal relationships, preferring instead to claim not much more than 
association. Nonetheless, systematic thin.king on the part of a journalist can 
serve as a check on unwarranted causal claims. 

SUMMARY: PREPARI~G FOR THE 21ST CENTURY 

"So certain are yo u. " 

-Y oda, Star Wars, Century uncerta1n 

Computers, the Internet, and the other new cornmunication technologíes are 
changing the informatíon landscape. Por joumalists and the public_ alike, 
landmarks that used to identify trustworthy sources and valid infonnation are 
disappearing. For example, rumors can attain about the same status as news on 
the Internet, to the point that even veteran journalists have been befuddled. 
Whether new landmarks appear in this world of uncertain information is 
anyone's ·guess. If these trends continue, the new millennjum will require 
people to have cognitive tools, or at least considerable guidance, to verify what 
is va lid and what is not. More than ever, journalists will need to apply the tools 
of systematic thinkíng, tools that, by their grounding in the sciences, are 
effective in sorting out facts from fantasy, puffery, politics, and even the 
preening of scientists. 

F ortunatel y, there are many fme sources that joumalists can use to prepare 
themselves. Philip Meyer's now classic works, Precision Journalism (1979) 
and The New Precision Journa/ism (1991), continue to offer reporters superb 
guidance in the use of surveys, sampling, statistics, and related tools of the 
social sciences, and-just as valuable-guidance in the thinking that goes a long 
with usíng them. Víctor Cohn ( 1989) sirnilarly provided an excellent guide to 
reportíng a wide range of scientific controversies, methods, and thinking in 
News & Numbers, a book that includes a fine chapter on scientific uncertainty. 
Even though audiences might not generaHy be familiar with the role of 
uncertaínty in science, clear reporting of uncertainty may indeed help people 
understand it better (see Johnson & Slovic, 1995). 
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Unfortunately, the mass media have provided critica_! observers with a 
wealth of examples of how ~ot to report and display scientific and statisti_cal 
information. Journalists can learn a lot about how.to do things better-~d learn 
a lot about systematic thinking in the bargain-by read.ing books such as 

Paulos' A Mathematici.an Reads the Newspaper ( 1995), bis best-seller Innu
meracy: Mathematical fl/iteracy and its Consequences (1988), and Gilovich's 
How We Know What Isn 't So (1991). Jouma1ists a1so shou1d take advant.age of 
the movement within the teaching of statistics and mathematics that urges 
universities to ensure that col1ege graduales are quantitatively literate, that is, 

that they can apply mathematical thinking, beyond mere formulas, to everyday 
problems (Subcommittee on Quantitative Literacy Requirements, 1995). Vari

ous universities are responding to this need by offering courses incorporating 
or devoted to quantitative reasoning. The Chance Project at Dartrnouth College 
in Hanover, New Hampshire, has a wealth of examples of correct and incorrect 
quantitative reasoning in the news and also has a storehouse ofrelated teaching 
materia1s, all available on-line (www.dartmouth.edu/-chance). One superb 
how-to book that employs the systematic thinking approach to s~tistics and 
that defmitely belongs on the joumalist's bookshelf is Jessica Utts' very 
readable Seeing Through Stah'stics ( 1996). 

The growth of computer-assisted reporting will require journalists to think 
adeptly and systematically about the riumbers they encounter. ln fact, journal

ists without the requisite computer and quantitative sk.ills will probably fmd 
themselves ata real disadvantage in the journalism job market (Feola, 1995). 
The growth ofnew media, which overwhelmingly use visual displays to present 
information, will demand that reporters and illustrators become masterful at 
presenting quantitative information graphically and accurately. Computerized 

animation and interactive formats could help audiences understand dynamíc 
comparisons and even the influence of third variables. For example, one's 

chances of contracting heart disease at a given age might be illustrated by a 
curve on an attractive graph that changes as the viewer provides the computer 

program wíth different information about his or her own unique background 
and habits. The curve might be animated to show change based on lifesty1e 
alterations, such as stopping smoking or adopting a low-fat diet, that the viewer 
might be considering-and a range of uncertainty could be illustrated around 
the curve. Of course, to date, media have sometimes dístorted quantitative 
infonnation when presenting it graphically. Sorne fine books that show how to 
prepare valid, attractive, still-life graphic displays of data include Utt's Seeing 
Through Statistics ( 1996), Tufte 's Visual Explanations ( 1997), and especíally 
Tankard's "Visual Crosstabs" (1994) and Wainer's Visual Revelations ( 1997). 
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Journalists in the 21st century must be able to reason from verbal and 
quantitative infonnation, know how to assess what information is missing, be 
able to gather and validate the required information, be adept at understanding 
and explaining the uncertainty that scientific information inevitably contains, 
and be able to interpret information to nonexpert audiences verbally, quantita
tively, graphically and, most of all, accurately. These cognitive and communi
cation skills are absolutely essential if joumalísts are to meet their 
responsibilities to society and their audiences in the new millennium. 
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