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Abstract

Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of
‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of
additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully
understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards
and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex-
determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon
species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a
recently developed method to identify sex-specific genetic markers from restriction site-associated DNA
sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking
heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex
chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex
chromosome systems within the Chamaeleonidae. The sex-specific genetic markers identified here will be
essential in research focused on sex-specific, comparative, functional and developmental evolutionary
questions, further promoting C. calyptratus’ utility as an emerging model organism.

Introduction

It should not be surprising that we still lack basic knowledge of sex-determining mechanisms for many species
given the extensive variety observed among multicellular organisms (Bachtrog et al., 2014). Until recently,
cytogenetic methods to identify morphologically dissimilar, or heteromorphic, pairs of chromosomes that occur
in one sex but not the other were the predominant means of determining an organism's sex chromosome
system. Species where males are the heterogametic sex are said to have an XX/XY sex chromosome system, and
the inverse, female heterogamety, is called ZZ/ZW (Bull, 1983; Marshall Graves, 2008). The bulk of what we
know about sex chromosomes is mostly based on the handful of ‘exceptional’ taxa that exhibit heteromorphic
sex chromosomes [such as mammals and Drosophila (XX/XY) or birds (ZZ/ZW)]. Yet most vertebrate species lack
heteromorphic sex chromosomes having instead morphologically similar, or homomorphic, sex chromosomes,
or lacking sex chromosomes altogether, e.g. environmental sex determination (Devlin & Nagahama, 2002;
Matsubara et al., 2006; Stock et al., 2011; Gamble & Zarkower, 2014; Otto, 2014). Because standard cytogenetic
techniques cannot identify these homomorphic sex chromosomes, the sex chromosome systems of huge swaths
of the tree of life remain unknown and unstudied. However, recent advances in both cytogenetics and DNA
sequencing techniques have enabled the identification of sex chromosome systems in species with
homomorphic sex chromosomes, generating a renewed interest in discovering and cataloging the sex
chromosome systems of previously intractable taxa. These data are indispensable if we wish to fully understand
the evolutionary patterns and processes affecting the origins, degeneration and turnover of sex chromosomes.

Squamates (~10 000 species of lizards, snakes and amphisbaenians; Uetz et al., 2017) are an excellent model for
studying sex chromosome evolution as they exhibit a suite of sex-determining modes, including temperature-
dependent (TSD) and genetic (GSD) sex determination, with both female (ZZ/ZW) and male (XX/XY)
heterogamety, and numerous independent transitions among them (Bull, 1980; Wapstra et al., 2007,

Ezaz et al., 2009; Pokornd & Kratochvil, 2009; Gamble, 2010; Gamble et al., 2015). However, the sex-determining
systems of many squamate clades are poorly known, with knowledge limited to just one or two species (Pokorna
& Kratochvil, 2009; Gamble et al., 2015). Indeed, many squamate families do not have any species with known
sex-determining systems, for example Anguidae (glass and alligator lizards), Cordylidae (girdled lizards),
Corytophanidae (basilisks and casque-headed lizards), Gerrhosauridae (plated lizards), Shinisauridae (crocodile
lizards), Xantusiidae (night lizards) and Xenosauridae (knob-scaled lizards) (Gamble et al., 2015). This restricts
the usefulness of squamates as a model to study the pattern and process of sex chromosome evolution.
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Therefore, a concentrated effort to identify sex chromosome systems in these clades should be undertaken to
fill gaps in our knowledge.

Chameleons (Chamaeleonidae) are one of these poorly known squamates clades. Previous (including anecdotal)
evidence has suggested TSD in at least one chameleon species (Schmidt et al., 1994) but GSD in others

(Viets et al., 1994), with extensive variation in karyotypic formula (2n = 20-62) (Olmo & Signorino, 2005;
Rovatsos et al., 2017). Of the approximately 50 chameleon species that have been karyotyped (of ~203 sp. total)
(Olmo & Signorino, 2005; Rovatsos et al., 2015a, 2017), only three species in two genera have clearly
diagnosable heteromorphic sex chromosomes. In the late 1980s, eleven species of South

African Bradypodion were karyotyped and in one, Bradypodion ventrale , the chromosomal complement differed
between sexes (2n = 34 in males and 35 in females), leading the investigator to assume a ZZ/ZW system
[Gordon, pers. comm. to Olmo (in Olmo & Signorino, 2005)]. Unfortunately, these results were never published
and any subsequent conclusions based on these data should be treated with caution. Recently, however,
Rovatsos et al. (2015a) combined modern and classic cytogenetic techniques to provide two additional, well-
supported cases of female heterogamety in two species of Malagasy chameleons in the genus Furcifer.

Although species in two chameleon genera have ZZ/ZW sex chromosomes, it is unclear whether a ZZ/ZW system
is universal across Chamaeleonidae. Some vertebrate clades, including birds and mammals, show extreme
conservatism in sex-determining mechanisms (Ohno, 1967; Smith et al., 1999; Marshall Graves, 2006;

Ellegren, 2010). The prevailing theory within squamate reptiles is that sex chromosome systems are highly labile
(Ezaz et al., 2009), although this was recently challenged based on evidence from a few squamate clades with
relatively stable systems (Gamble et al., 2014; Rovatsos et al., 2014, 2015b, 2016). Yet, in general, we know very
little about sex chromosome systems across most squamate groups. As we gather more data from multiple
lineages within diverse clades, we are likely to make surprising discoveries, particularly in groups for which
stability has long been inferred (Gamble et al., 2017). Therefore, gathering data for a diverse subset of taxa
within major squamate clades is indispensable before we can accurately evaluate general hypotheses of
squamate sex chromosome evolution.

The goal of this study was to resolve the sex chromosome system in the veiled chameleon, Chamaeleo
calyptratus. This hardy species is endemic to the south-western Arabian Peninsula (Necas, 1999) but is now
exotic and invasive in Florida (Krysko et al., 2004) and Hawaii (Kraus & Duvall, 2004), likely due to its popularity
in the pet trade. Whether sex is determined in this species via TSD or GSD has been controversial, and two
independent, controlled breeding experiments came to conflicting conclusions regarding the effect of incubation
temperature on hatchling sex ratios (Andrews, 2005; Ballen et al., 2016). Published C. calyptratus karyotypes
failed to identify heteromorphic sex chromosomes, even using advanced cytogenetic techniques such as
comparative genomic hybridization (CGH) (Pokorna et al., 2011; Rovatsos et al., 2017).

Recent research has extolled C. calyptratus’ utility as a model for studying the comparative and functional
development of the vertebrate body plan, while more specifically being the only currently identified squamate
taxon (of the ~10 000 recognized species) available at a significantly early pregastrula stage at the day eggs are
laid (Diaz & Trainor, 2015; Diaz et al., 2015, 2017; Stower et al., 2015). Thus, identifying their sex chromosome
system fills an essential knowledge gap in chameleon reproductive life history and may provide insight into the
evolution of sexual dimorphism. Using a recently developed RADseq methodology combined with PCR validation
(Gamble & Zarkower, 2014; Gamble et al., 2015, 2017), we here report that unlike other members of the
Chamaeleonidae, C. calyptratus possesses an XX/XY sex chromosome system, revealing a novel transition in sex
chromosome systems within this family.
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Materials and methods

We constructed single-digest, restriction site-associated DNA sequencing (RADseq) libraries for 12 male and 12
female samples of captive bred C. calyptratus (Table S1). This species is sexually dimorphic throughout life; thus,
sexing is a simple process. At birth, all males have a conspicuous bump or spur on each heel that grows larger as
the animal ages and can be later combined with a suite of additional, secondary male sexual characteristics
(Andrews, 2005; Diaz et al., 2015). Additionally, all animals were dissected post-euthanasia and the gonadal sex
corroborated our external diagnosis. Most of the chameleons (32 of 37) used for RADseq and PCR validations
were siblings, labelled ‘Trainor Lab’ in Table S1. The Trainor Lab outcrosses chameleons by regularly introducing
new males to prevent inbreeding. Nevertheless, we obtained five additional animals from introduced
populations in South Florida, USA, labelled ‘Pet Trade’ in Table S1, to ensure our results were representative of
the species as a whole and not an anomaly limited to a single inbred family.

We extracted genomic DNA using the Qiagen DNeasy Blood and Tissue extraction kit from fresh tail or liver
samples. We constructed RADseq libraries following a modified protocol from Etter et al., 2011 (as described in
Gamble et al., 2015). In brief, we digested genomic DNA using a high-fidelity Sbfl restriction enzyme (New
England Biolabs), after which we ligated individually barcoded P1 adapters onto each sample's Sbfl cut site.
Next, we pooled samples into multiple libraries, sonicated and size-selected (200- to 500-bp fragments) using
magnetic beads in a PEG/NaCl buffer. Afterwards, we blunt-end repaired, dA tailed and ligated a P2 adapter
containing unique Illumina barcodes to each of the pooled libraries. We then amplified libraries using NEBNext
Ultra Il Q5 polymerase (New England Biolabs) for 16 PCR cycles and size-selected a second time (250- to 600 bp
fragments), again using magnetic beads in PEG/NaCl buffer. Finally, we pooled and sequenced libraries using
paired-end 125 bp reads on an lllumina HiSeg2500 at the Medical College of Wisconsin. Demultiplexed reads are
deposited at the NCBI Short Read Archive (SAMN08341003-SAMN08341026).

RADseq data were analysed using a previously described bioinformatics pipeline (Gamble & Zarkower, 2014;
Gamble et al., 2015, 2017), but in brief, (i) we filtered and demultiplexed raw Illlumina reads using the
process_radtags script from Stacks (Catchen et al., 2011) with forward reads trimmed to 110 bp; (ii) we
generated RADtags for each individual and identified candidate loci and alleles across all individuals from the
forward reads using RADtools 1.2.4 (Baxter et al., 2011); (iii) we utilized a customized python script

(Gamble et al., 2015) to identify putative sex-specific markers from the RADtools output. These are RAD markers
found in one sex but not the other. This script also produces a second list of ‘confirmed’ sex-specific RAD
markers, a subset of the initial list of sex-specific RAD markers; it excludes from further consideration any sex-
specific markers that also appear in the original reads files from the opposite sex; and lastly, (iv) we used
Geneious R10 (Kearse et al., 2012) to assemble forward and reverse reads into contigs for all confirmed sex-
specific RAD markers. We presume that these sex-specific loci are unique to the heterogametic chromosome (Y
or W), so that species with a surplus of male-specific RAD markers must logically have an XX/XY system, and vice
versa for a female heterogametic (ZZ/ZW) system (Gamble & Zarkower, 2014; Gamble et al., 2015;

Gamble, 2016). Our large sample size (n = 12m, 12f) should reduce the likelihood of false positives (Gamble &
Zarkower, 2014; Gamble et al., 2017).

We used PCR to validate the sex specificity of the sex-specific RAD loci, as has been performed in previous
studies (Gamble & Zarkower, 2014; Gamble et al., 2015, 2017; Fowler & Buonaccorsi, 2016; Gamble, 2016). This
included PCR in an additional eight males and five females that were not part of the RAD sequencing (Table S1).
PCR primers were designed using Geneious R10 (Table 1). Annealing temperatures ranged from 55 to 56°C.

Table 1. PCR primers used to validate sex-specific RADseq markers
Primer ID Sequence (5'-3')
Cham_M2-F CTG AAA GAC AAC CACCAAGCG
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Cham_M2-R | TAG GCATGC CAT TGG TGT GAT
Cham_M3-F | AGG AACTGT GTG AGT CTC AAT CA
Cham_M3-R | TTG CAC AAA AAG CTC AGA GCC
Cham_M11-F | GGG AAG GCT ATC AGG AAA CCC
Cham_M11-R | GTG GAC TGA GAG TGG TTC AGG
Cham_M12-F | CAA CCT CCT GCC AGG GAT TCT
Cham_M12-R | GAG GTG GAA GGA TTA GCC GAG
Cham_M13-F | ATT TGG GCA TCC TCA GGG AAG
Cham_M13-R | TGC TGT CTT CTT GAG CTG GTT

Results

We recovered 115 703 RAD markers, 91 378 with two or fewer alleles, which included 16 male-specific and two
female-specific markers. Of these, 13 were ‘confirmed’ male-specific RAD markers and two ‘confirmed’ female-
specific RAD markers. This excess of male-specific RAD markers suggests an XX/XY sex chromosome system. Of
the 13 putatively Y-specific PCR primer pairs we designed, five amplified in a sex-specific manner (Table 1),
producing a single bold band in each of the male samples (Fig. 1).

PCR Locus
Cham_M2 e s s e s s e o [T L TS —
Cham_M] mememmmss== L aw -

------------ - . - - -

Cham_Mil meemssssas = 00 01 cecceess=s
id kel -

Cham_N12 messssssess = __ .. &  csse-sssew_ Si

ppppppppppppppppppppppppppppppppppppp

Figure 1 PCR validation of five male-specific RADseq markers in the veiled chameleon, Chamaeleo calyptratus.
Primers amplified in a male-specific manner in the twenty males and seventeen females examined (see
Table S1). Specimen ID numbers are listed below each well.

Discussion

These results provide the first robust evidence of sex chromosomes in the genus Chamaeleo, increasing our
meagre knowledge concerning the phylogenetic distribution of sex chromosomes in the family Chamaeleonidae
(Fig. 2). The RADseq methodology used herein has been pivotal in discovering previously unknown sex
chromosome systems (Gamble & Zarkower, 2014; Gamble et al., 2015, 2017, In Press; Fowler &

Buonaccorsi, 2016). The discovery of XX/XY sex chromosomes in C. calyptratus implies that at least one
transition between ZZ/ZW and XX/XY systems has occurred within the Chamaeleonidae (Fig. 2). Our current
understanding of vertebrate sex chromosome evolution is biased towards groups such as mammals and birds,
which possess highly conserved, heteromorphic sex chromosome systems (e.g. Shetty et al., 1999; Marshall
Graves, 2006; Ellegren, 2010). Many other vertebrate clades, however, exhibit some degree of plasticity in sex-
determining mechanisms (Hillis & Green, 1990; Devlin & Nagahama, 2002; Gamble et al., 2015; Pan et al., 2016).
In general, reptiles have a high incidence of turnover between sex-determining mechanisms (Sarre et al., 2004;
Ezaz et al., 2009; Rovatsos et al., 2016), although recent work has discovered that a few, particularly diverse
squamate lineages in fact possess highly conserved sex chromosomes (Vicoso et al., 2013; Gamble et al., 2014;
Rovatsos et al., 2014, 2015b, 2016). Yet these clades appear to be exceptions to the rule. Recent work on
snakes, for example, which were previously assumed to all possess a ZZ/ZW sex chromosome system, revealed
that boas and pythons in fact possess independently derived XX/XY sex chromosome systems — overturning 50+
years of perpetuated orthodoxy (Gamble et al., 2017). Such studies illustrate that there is much more yet to
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discover and that we still lack basic information as to the distribution of different sex-determining systems
across large parts of the squamate phylogeny. As we continue to explore patterns of sex chromosome evolution
across reptiles (and in particular, across squamates), the current results support the theory that transitions
among squamate sex chromosome systems are more widespread than not (Ezaz et al., 2009;

Rovatsos et al., 2016).
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Figure 2 A time-calibrated phylogeny of the Acrodonta (modified from Tolley et al., 2013) displaying
relationships among chameleon genera. Sex chromosome systems, if known, are indicated by coloured circles to
the left of taxon names. Series of numbers under taxon names indicate diploid (2n) chromosomal complement
(when known), the number of described species within the lineage, the subset that have been karyotyped, and
the number that exhibit heteromorphic sex chromosomes (*the karyotypic data for Bradypodion remain
unpublished). An XX/XY sex chromosome system in the genus Chamaeleo (in bold) is reported here for the first
time, suggesting a transition between female and male heterogamety within the family.

See Acknowledgments for photograph credits.

The PCR validated male-specific loci (Table 1) will further promote the use of C. calyptratus as a laboratory
model for exploring sex-specific, comparative, functional and developmental evolutionary questions

(Diaz et al., 2015, 2017). Sex determination assays provide a way to sex embryos prior to the onset of
morphological sex determination or gonadogenesis, thus enabling researchers to study the development of
sexually dimorphic phenotypes. Such assays have been crucial in mouse and chicken developmental studies
(Hacker et al., 1995; Smith et al., 1999; McClive & Sinclair, 2001; Clinton, 2009), but few resources exist for the
other amniote taxa. Chamaeleo calyptratus is highly fecund with an average clutch size of 40-50 (and up to 90)
eggs and is easily bred in captivity, and embryos from early developmental stages such as pregastrulation and
preneurulation are easily obtained from recently laid eggs (Diaz et al., 2015, 2017). The ability to now accurately
sex these embryos is thus a powerful resource.
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Our PCR-based sex test in C. calyptratus will also be useful for studying possible sex reversal in embryos due to
environmental or maternal influence. Studies on the agamid, Pogona vitticeps, deftly illustrated that being able
to diagnose an individual's genotypic sex was crucial for recognizing the co-occurrence of TSD and GSD in the
same species, through identification of individuals with mismatched genotypic and phenotypic sex

(Quinn et al., 2007; Holleley et al., 2015). Recent findings suggest that embryonic sex in C. calyptratus may be

influenced by the interaction of incubation temperature and egg size (Ballen et al., 2016). These results conflict
with earlier observations of even sex ratios at a variety of incubation temperatures (Andrews, 2005). It is
reasonable to assume that if incubation temperature and egg size interact to influence sex that some proportion
of the resulting embryos would be sex reversed. The PCR primers provided herein (Table 1) provide a tool to
accurately identify these mismatched individuals and should help clarify the extent of environmental and/or
maternal influence on C. calyptratus sex determination.
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