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MATHEMATICAL MODELS FOR NATURAL

GAS FORECASTING

STEVEN R. VITULLO, RONALD H. BROWN1,
GEORGE F. CORLISS AND BRIAN M. MARX

ABSTRACT. It is vital for natural gas Local Distribution
Companies (LDCs) to forecast their customers’ natural gas de-
mand accurately. A significant error on a single very cold day
can cost the customers of the LDC millions of dollars. This pa-
per looks at the financial implication of forecasting natural gas,
the nature of natural gas forecasting, the factors that impact
natural gas consumption, and describes a survey of mathemati-
cal techniques and practices used to model natural gas demand.
Many of the techniques used in this paper currently are imple-
mented in a software GasDayTM , which is currently used by 24
LDCs throughout the United States, forecasting about 20% of
the total U.S. residential, commercial, and industrial consump-
tion. Results of GasDay’sTM forecasting performance also is
presented.

1 Introduction A natural gas Local Distribution Company (LDC)
faces many challenges in the business of supplying gas to its customers.
The gas supply system of an LDC consists of gate stations, compres-
sors, gas storage, and customers. The LDC must operate these systems
to assure delivery of gas in adequate volumes at required pressures un-
der all circumstances. For efficient, economical, and safe operation, the
daily gas demanded by the customers must be known in advance with a
relatively high degree of accuracy. Similar models are used to forecast
hourly demands and also monthly and longer term demands. This paper
discusses methods to predict aggregate daily demand of the customers
of an LDC.

The customer base of an LDC consists of many individual customers,
each with unique demand characteristics. Customers use gas for space
heating, known as heating load, for heating water, drying, cooking and
baking, and other processes, known as base load, and for electric power

1Director, GasDayTM Project.
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generation. Heating load is dependent on weather (most importantly
temperature) factors that affect consumption. Meanwhile, base load ac-
counts for other factors that are not weather dependent and tend to be
constant, although it may change over time with growth in customer
base. Heating load is challenging to forecast as it requires forecasts
of weather factors, and base load is difficult to forecast because it re-
quires knowledge of customer behavior. The customer base generally
is divided into four categories: residential, commercial, industrial, and
electric power generation [1]. In this paper, we discuss just residen-
tial, commercial, and industrial demand. The demand characteristics of
these three categories differ significantly. The residential customer de-
mands are typically temperature sensitive with increasing consumption
on weekends. A commonly used measurement for natural gas energy con-
sumption is a decatherm, equal to one million British thermal units [1].
A typical gas-heated Wisconsin residence consumes approximately one
decatherm of gas on a cold winter day. Commercial customers tend to
be temperature sensitive and decrease their gas use on weekends. In-
dustrial customers tend to be less temperature sensitive but also have
decreasing consumption on weekends. Additionally, customers are sub-
divided into two service contract groups. A firm customer has a service
contract which anticipates no service interruptions, and an interruptible
customer has a service contract that allows the LDC to interrupt service
during peak demand times. We do not discuss or model electric power
generators because electric power generated at one end of the country
can be transported to the other end of the country for end use. This
makes forecasting natural gas demand for electric power generation a
fundamentally different forecasting problem outside the scope of this
paper.

LDCs are required by state utility commissions to supply uninter-
rupted gas service to their firm customers in a cost-effective manner
during a peak day, the day on which maximum gas loads are experi-
enced. Since a large portion of natural gas is consumed for space heating,
natural gas consumption in many operational areas is heavily weather-
dependent [46]. Thus, the peak load day is likely to occur during the
coldest weather conditions. For example, a large natural gas utility may
have a heat-dependent load of approximately 10,000 decatherms per
degree Fahrenheit. This means that approximately 10,000 additional
decatherms of natural gas are consumed (for heating purposes) for each
degree Fahrenheit colder it gets. The contract price of natural gas has
varied in recent years from approximately $4.00 to approximately $15.00
per decatherm, whereas the spot market price of gas on a high demand



NATURAL GAS FORECASTING 809

day can be 10 times the contract price [17]. Thus, in this example,
$400,000 to $1,500,000 of additional cost is introduced for each degree
Fahrenheit the LDC overestimated the temperature during extreme cold
weather conditions, assuming the gas was purchased on the spot market
at 10 times the cost of gas purchased under contract. The large cost the
LDC incurs for buying gas on the spot market is passed directly to the
end customer. Accurate forecasting of air conditioning loads and of non-
temperature dependent gas demand (commonly referred to as baseload
gas) during warm weather conditions is equally important.

Historically, many methods have been used to predict daily demand
[29, 32, 33]. Gas controllers have used methods such as looking at use
patterns on similar historical days and scatter plots of use versus tem-
perature. Often these methods are applied successfully only by experts
with years of experience at the LDC.

Along with deregulation of gas prices came the need to forecast cus-
tomer demand for natural gas more accurately than before. Although
many of the larger LDCs have the ability to store or withdrawal gas
to cover their forecast error, the majority of LDCs do not have storage
capabilities, making their forecast accuracy critical. Many LDC’s have
developed mathematical formulas to predict gas demand with varying
degrees of success. These models are developed using historical demand
data and other historical data and information, such as weather condi-
tions and day of the week.

2 Mathematical models to forecast daily demand The most
common mathematical modeling techniques used to forecast daily de-
mand are multiple linear regression and artificial neural networks. This
section briefly presents these two methods used by GasDayTM, a fore-
casting software application licensed to 24 LDCs in the US. Section 3
and 4 present the factors used by GasDayTM that affect daily natural
gas demand and data quality, respectively. These sections focus on the
things we considered when building GasDayTM. Section 5 presents an
analysis of the performance of GasDay’sTM forecasts.

2.1 Multiple linear regression Multiple Linear Regression (MLR)
[15, 18] is one of the most commonly used methods for prediction mod-
els, and it has been applied to utility forecasting [19]. Suppose for N

days (1 ≤ k ≤ N), we have customer demand Si and M independent
factors, xk,j , for 1 ≤ k ≤ N and 1 ≤ j ≤ M we think may affect Si. The
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multiple linear regression model estimates

Sk ≈ Ŝk = β0 +

m∑

j=1

βjxk,j ,

where each βj is a parameter that specifies how the output is related
to the j input. Its accuracy is limited, however, by the assumption of a
linear relationship between the input factors and the output (gas demand
in this case). For the daily demand model, β0 may represent base load,
β1 may represent the use per heating degree day factor, and xi,1 may
represent Heating Degree Days, etc. GasDayTM has up to an eight day
forecasting horizon, with a separate MLR for each forecast horizon.

2.2 Artificial neural networks Artificial Neural Networks (ANN)
[36, 37, 41] are mathematical models which can approximate any (non-
linear) continuous function arbitrarily well [23, 24]. The ANN acquires
knowledge through a training process [42]. Modelers of gas consump-
tion have been attracted to ANN’s because of this capability of mapping
unknown nonlinear relationships between inputs and the output [27]. In
particular, the nonlinear properties of the ANN allow the direct input
of temperature, wind speed, and prior day temperatures into the ANN
nodes without accounting for interactions and the nonlinear response of
these impacts [8, 9, 10]. In addition, the training process builds an
input-output relationship that interpolates well to a situation that may
not exactly match the training data.

However, while an ANN is quite good at interpolating a solution that
was not presented during training, it is not as good at extrapolating
outside the domain of the training knowledge. For example, in the gas
estimation problem, this means that if the ANN model was not trained
with historical data from days of extreme weather, the model may not
perform well on such days. GasDayTM uses a separate ANN for each
forecasting horizon.

2.3 Dynamic model adaptation Combining multiple forecasts from
models such as artificial neural networks or multiple linear regression
can reduce errors arising from faulty assumptions, bias, or mistakes in
data [21]. Bates and Granger [6] suggest that combining several fore-
casts together tends to decrease forecasting error because the combined
forecast has equal to or frequently less variance than each of the compo-
nent forecasts, and Dickinson [14] provides a mathematical proof of this.
Armstrong [2] surveyed research on combining forecasts over the last 40
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years, concluding that to obtain the best combined forecast accuracy the
following guidelines should be considered.

• use different component forecast methods,
• use at least five component forecasts when possible,
• use equal weights unless you have strong evidence to support unequal

weighting of forecasts,
• use trimmed means,
• use different data, and
• use the track record and domain knowledge to vary the combination

weights.

Natural gas forecasting is an ideal case for combining forecasts, be-
cause the forecaster is not always certain which forecasting model is
most accurate. As discussed earlier, linear regression extrapolates bet-
ter than ANNs, but the ANNs often perform better on days similar to
ones in its training set. While our two component models (MLR and
ANN) each produce estimates of consumption, a weighted combination
of these models often yields improved results over the best of the compo-
nent model estimates. The combination of component model estimates
also helps to hedge the forecast since it tends on average to produce
estimates that deviate less from the actual consumption.

The model parameters for a ANN are fixed each time the model
is retrained. However, combining techniques can allow the forecasting
model to adapt dynamically each time it is run, by dynamically updat-
ing weights, for example, adjusting the weights to compensate for load
growth or behavioral changes in gas consumption between offline retrain-
ing of the underlying models. Applying dynamic model adaptation to
a daily load forecasting system can both reduce the daily average error
and reduce the worst case errors caused by unusual days not observed
in the training set.

3 Factors that affect daily demand In this section, we discuss
many factors that affect natural gas consumption [11, 30]. Additionally,
we show mathematical representations of these factors used as inputs to
the GasDayTM MLR and ANN models.

3.1 Modeling temperature effects The most significant factor for
modeling natural gas consumption is temperature, since most gas is used
for space heating. The daily average temperature and the daily gas con-
sumption for a region in Wisconsin versus day are shown in Figure 1.
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(The customer demand has been scaled to protect proprietary informa-
tion.)
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FIGURE 1: Daily average temperature and daily gas consumption for
a region in Wisconsin vs. day.

When temperatures are cold, as temperature increases, gas consump-
tion decreases in a nearly linear way, although once the ambient tem-
perature reaches approximately 55 to 65 degrees Fahrenheit, consump-
tion levels off. Once the average temperature reaches a certain tem-
perature, space heating no longer occurs; consumption levels are near
some constant value known as base load. This nonlinear characteris-
tic was observed long ago and used to define the Heating Degree Day
(HDD) [3, 4, 13] as

HDD k = max(0, Tref − Tk),

where Tk is the average temperature for the kth day, and Tref is the
reference temperature, historically set to 65◦F or 18◦C. Gas consump-
tion versus average temperature for individual days has been plotted
in Figure 2, which illustrates that gas consumption is approximately
proportional to HDD.
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FIGURE 2: The scatter plot of gas consumption vs. temperature.

The 2-Parameter Model: The demand for the kth day can be esti-
mated as the base load plus a heat load factor times the HDD k:

Ŝk = β0 + β1HDD k.

The 3-Parameter Model: Over time, the HDD reference temperature
has changed. One way to adjust for this change is to add a second HDD
factor to the model. Here we add the second HDD factor with a reference
temperature of 55◦F, which automatically generates an optimal HDD
reference temperature as illustrated in Figure 3.

The 5-Parameter Model: Heat loss is a dynamic process. Adding a
term for the HDD of the previous day can improve the accuracy of the
model. Adding a cooling degree term CDD k = max(Tk − Tref, 0) can
also improve the accuracy of the model. Both terms have been added
to the model

Ŝk = β0 + β1HDD 65

k + β2HDD 55

k + β3∆HDD k + β4CDD 65

k ,

where ∆HDD k = HDD k − HDD k−1.



814 S. R. VITULLO ET AL.

Temperature

D
em

an
d

55 65

FIGURE 3: Adding a second HDD term has the effect of allowing al-
gorithmic adjustment of the HDD reference temperature.

3.2 Modeling wind effects Another important factor is wind, be-
cause buildings lose more heat on a windy day than on a calm day. Wind
could be added as another term to the models above, but then the wind
effect would be the same at all temperatures, while it is well known that
the impact of wind increases with HDD. A common method that works
well is to use Heating Degree Days adjusted for Wind (HDDW). If WS
is wind speed in mph,

HDDW =





(
WS + 152

160

)
× HDD, WS ≤ 8

HDD, WS = 8
(

WS + 72

80

)
× HDD, WS > 8 .

3.3 Previous day demand Typically, the load forecasts are made for
the coming day before the current day’s gas day is complete. Thus, the
current day’s demand is not known. However, yesterday is over, so the
flow for that day may be known. Adding this and earlier daily flows
as inputs to the forecast model, making it autoregressive, can reduce
forecast error significantly.
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3.4 Modeling day of the week effects Gas consumption varies by
the day of the week. For example, on weekends, as residential con-
sumption increases, demand is typically more than offset by decreased
consumption of both commercial and industrial consumption. Gas load
forecasters have used many techniques to try to capture this effect, pri-
marily by adding day-of-the-week indicator model inputs.

Weekday/Weekend indicator: A binary indicator variable can be
added to the model to distinguish weekdays from weekends. That is,
the variable Weekend is 1 on Saturdays and Sundays and 0 on the other
days of the week. This term can be added to any of the models described
above.

Friday indicator: Since the industry definition of a gas day for a Friday
includes the Saturday morning start-up, typically demand for gas day
Friday is lower than the other weekdays, yet higher than Saturday and
Sunday demands. This effect varies from region to region at an LDC
and certainly across the country. This effect can be accounted for by
setting the indicator variable to a number between 0 and 1 on Fridays.

Sine/cosine indicators: Periodic phenomena can be represented by
Fourier series [38]. The days of the week are periodic with a period of
seven days, so we can use a day-of-the-week DOW variable to represent
the fundamental seven day frequency, 1 = Sunday, 2 = Monday, etc.:

sin

(
2πDOW

7

)
, cos

(
2πDOW

7

)
.

Seven day lag: Another technique for improving the demand forecast
includes both the demand and the temperature/HDD for the day seven
days ago, unless the day seven days earlier was a holiday.

3.5 Holidays and days around holidays Holidays and days near
holidays typically have lower demands than if the day was not a holiday.
One approach that can be used with or without the above mentioned
day of week adjustment is to average the residual errors in the training
data on specific holidays and adjust the demand forecast. For example,
if, after parameterizing our model, we evaluate the model on all of the
New Years Days in the training set and calculate the forecast error as
the demand forecast minus the actual flow, and calculate the average
errors, we can subtract this average error to adjust the forecast on New
Years Day.



816 S. R. VITULLO ET AL.

Holiday adjustments: Another common way to predict gas consump-
tion for a holiday is to pretend that the day is a Saturday. Days near
holidays also can be adjusted, i.e., the day before a holiday can be set
to a Friday, or when a holiday falls on a Monday, set the Sunday to
Saturday and set the holiday (Monday) to a Sunday. Models that use
demands from previous days are biased low on days after holidays, as
the low holiday demand is now an input to the model. This low holiday
demand can be adjusted by adding in the average error to make it act
like a non-holiday.

3.6 Other factors Many other potential factors exist, such as solar ra-
diation, cloud cover, precipitation, dew point, direction of the wind, tap
water temperature, bill shock, occupancy rates, industrial production
rates, and other econometric factors, to name a few. Some of these fac-
tors can be measured directly, while others cannot, or at least, cannot
be measured reasonably. Solar radiation and cloud cover affect tem-
peratures throughout the day. For example, the evening temperature
decrease is less on a cloudy day than on a clear day. Wind direction
has an effect, especially in coastal regions next to oceans or the Great
Lakes. The dew point is a measure of humidity, and more gas tends to
be consumed on humid days. Precipitation measures rain and snow fall.
Industrial production and other economic factors affect gas consump-
tion especially in parts of the country where there is a large industrial
concentration. For example, in Michigan the economic recession caused
a decrease in auto production, reducing gas consumption. Bill shocks,
as experienced in 2005 when hurricanes hit the Gulf of Mexico, cause
people to turn down their thermostats in an effort to reduce their bills
after having paid a large gas bills for their prior billing period or in
response to media coverage.

4 Data quality When building models from historical data, the
data quality of the training data set is critical. Most model fitting algo-
rithms, including MLR and the ANN training methods discussed above,
are designed to minimize the error standard deviation, a form of squared
error. If the training data contains errors, the model does not fit well.

Data cleaning: The best scenario is to start with good data, but
enough good historical data is not always available. We can use pre-
liminary demand forecast models to detect anomalous data, which can
be confirmed, and corrected or discarded before final models are devel-
oped [26, 28, 39, 40].
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Data disaggregation: Similarly, for some LDC’s, the only historical
demand data available may be (approximately) monthly, although daily
demand forecasts are required. It often is possible to use preliminary
demand forecast models to disaggregate monthly data into approximate
historical daily data before final models are developed [45]. Similar
techniques can be used to give good hourly demand forecasts in the
presence of unreliable hourly flow data [35].

Number of training days: Insufficient historical data can introduce
problems in training models to predict gas consumption. When train-
ing ANN’s, heuristically, ten times as many training set vector pairs
as weights in the ANN are needed. Otherwise, the ANN will “memo-
rize” the training vector pairs and will not generalize the trends in the
data well. This memorizing phenomena is known as over-training or
over-fitting. Similar problems occur with linear regression models if the
training data set is not large enough or sufficiently rich.

Growth in the customer base: Models are developed from a very
large experience base, but models for an LDC are trained on historical
data from that LDC. The most recent years of gas consumption history
tend to be most relevant. The older data is not a good indication of the
current customer base characteristics due to both customer base growth
(“growth” can be negative) and demand-side management. Because of
this non-stationary customer base, building a model to predict demand
for the next heating season is difficult, but growth adjustments can be
calculated [19, 20, 22, 25, 44].

Let us consider an example to illustrate this. Suppose a model is
built using data from the most recent five years from an operating area
with substantial growth. If all days in the training data set are equally
weighted, the model best predicts the load for the average customer base
in the training data set. The residual errors of the model is smallest for
the middle year. The errors tend to be positive (larger predictions than
actual demand) over the first two years of the training data, and tend
to be negative (smaller predictions than actual demand) over the last
two years of the training data. Our goal is to build a model to predict
demand for the coming heating season, but the model best predicts the
heating season three years prior.

This problem can be partially overcome by “growing” the older his-
torical data [12]. A simple way to grow historical data is to make it
all look like it occurred during the most recent heating season. This
is accomplished by calculating linear regression models for each heating
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season. The demands from heating seasons before the most recent can
be adjusted by adding a base-load factor to each day to make the base
loads the same as the most recent season and by adding additional de-
mand proportional to the HDD to each day to make the use per HDD
factor the same as the use per HDD for the most recent season. For
example, using only 2008–2009 data, we built a 2-parameter model

Ŝk = β2009

0
+ β2009

1
HDD k,

and using only 2007–2008 data, we built a 2-parameter model

Ŝk = β2008

0
+ β2008

1
HDD k.

We then grew the 2007–2008 heating season data as

Snew
k = Sk +

(
β2009

0
− β2008

0

)
+

(
β2009

1
− β2008

1

)
HDD k.

The “new” 2007–2008 demand data has the same base load and heat
load factor as the 2008–2009 data, but it is appropriate for the weather
of 2007–2008.

Flow vs. demand: Models built using flow (consumption) data pre-
dict flow. Models built using demand data predict demand. On most
days, flow equals demand. However, on days when the LDC interrupts
customers, or injects from storage, or when a hurricane disrupts an en-
tire region, the gas that flows through the city gate stations is less than
the demand for gas.

Figure 4 shows the actual flow versus temperature for a different oper-
ating area than Figure 2, which contains many interruptible customers.
The “bend over” effect at colder temperatures is caused by customers
being interrupted. To make a flow forecasting model predict demand,
the historical training data must be augmented with estimated inter-
rupted flow, so that the model built using this data predicts demand.

Operating areas: Forecast accuracies often can be improved by sub-
dividing the region for which demand forecasts are required into smaller
operating areas and forecasting each area with separately trained mod-
els. Smaller areas may benefit from more accurate average weather fore-
casts, from a more homogenous customer base, or from other factors.

Multiple weather stations: Forecast accuracies often can be im-
proved by using carefully tuned weighted averages of weather forecasts
from multiple stations in or near the target operating area.
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FIGURE 4: Flow versus temperature for an operating area with inter-
ruptible customers.

Generalization, interpolation, and extrapolation: Claims have
been made that ANN’s are excellent generalizers [24, 47]; that an ANN
can learn general trends from a training data set and then can make
valid estimates for an input that it has not seen before [7, 43]. This
is true if the input is similar to inputs in the training data, but it is
false if the input is not close to any of the inputs in the training data.
A better way to state the capabilities of an ANN is that it interpolates
well, but in general, it extrapolates unpredictably [5, 16]. In contrast,
the linear regression model extrapolates very predictably [31], and in
the gas demand forecasting case, quite well.

This implies that the ANN model forecasts gas demand estimates
well on days that are similar to historical days in the training set, and
not as well on days that are not similar to those in the training set.
This rightly brings up concerns for demand estimations on peak days
and even uncommon days (days that are significantly colder, warmer
or windier than normal, days that are much warmer or colder than the
previous day, etc.).

Figure 5 shows temperature versus wind for the training set (12 Nov.
1994 to 31 May 1997) and the testing set (1 June 1997 to 31 May 1998)
for an ANN trained for the 1997–1998 heating season. Even though
the 1997–1998 heating season was mild (El-Niño), the testing set (the
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heating season) contained many windy days that were not similar to
any days in the training set, which happened to include only two windy
days. Three approaches to solve this problem are (1) use more (and
older) training data, (2) fabricate additional training data, and (3) use
surrogate data from another operating area with similar customer base
and temperature characteristics.
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train dates:  12−Nov−94 to 31−May−97
test dates:  1−Jun−97 to 31−May−98

FIGURE 5: Temperature versus wind for the training and testing data sets.

Data weighting: In Milwaukee, WI, today’s average temperature is
within 8◦F of yesterday’s temperature about 80% of the time. However,
the challenge in natural gas demand forecasting is not the typical day,
but the unusual day. If we build models using equal weighting of all
the data, days where today’s temperature is more than 8◦F different
yesterday’s temperature will be weighted one fourth as important as
the other days. However, these are the days that LDC’s need good
forecasts, and forecasting is most difficult. When modeling natural gas,
a gas forecaster should consider identifying unusual days, such as today
much colder or warmer than yesterday, much colder or warmer than
normal, much windier than normal, etc., so these days can be weighted
more heavily in the model training process.
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5 GasDay performance The following presentation of GasDayTM

forecasting results is performed on 14 different operating areas for a
utility in the US. The models that generated these forecasts were trained
on September 14, 2009 so results shown from October 2009 through July
2010 are exclusive of the training data set. Their flow has been scaled
to protect their proprietary data. Figure 6 shows the scaled flow and
the GasDayTM estimated flow for a one-day-ahead forecast for January
2010.

Figure 7 shows the temperature and one-day-ahead temperature fore-
casts for January, which corresponds to the flow and flow estimate in
Figure 6. Figures 6 and 7 show time series for operating area one. For
January 7th, 16th, 19th, and 20th, GasDayTM had large forecast errors,
as shown in in Figure 6. On these days, the weather forecast error was
also several degrees. Hence, the accuracy of GasDay’sTM forecasts are
dependent on the accuracy of the weather forecasts used.

FIGURE 6: Flow and GasDayTM one-day-ahead estimated flow

Tables 1 and 2 show Mean Absolute Percent Error (MAPE) by month
for the 14 different operating areas. MAPE for the period of October
2009 through July 2010 is also reported. Table 1 and 2 show results
for the Linear Regression (LR), Artificial Neural Network (ANN), and
GasDay’sTM combined estimate (GD). We empirically observe the same
conclusions Bates and Granger [6] and Dickinson [14] assert. For the
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FIGURE 7: Temperature and one-day-ahead temperature forecast

period of October 2009 through July 2010 on 11 of 14 operating areas,
GasDay’sTM estimate is better than the best of the two component mod-
els, and all 14 GasDay estimates are better than the worst component
model. Operating areas 3, 9, and 14 contain large concentrations of in-
dustrial customers that have less heating load sensitivity, making them
harder to forecast.

6 Summary In this paper, we have emphasized the importance
for LDCs to make accurate natural gas demand forecasts and the finan-
cial consequences to their customers if they do not. Additionally, we
described two important model fitting algorithms used by GasDayTM

to forecast daily natural gas demand: multiple linear regression and
artificial neural networks. The impacts of temperature, wind, prior
day weather, previous day demands, day of the week, and holidays on
gas consumption have been discussed, along with common data quality
issues such as the length of the training data set, the differences be-
tween flow and demand, and customer base growth are also discussed.
In addition, we described the models and variables that are used by
GasDayTM to forecast LDCs consumption and the data quality issues
that must be addressed before good models can be trained. A survey
of GasDayTM performance results show that GasDayTM forecasts gas
consumption well.
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When applied properly, GasDayTM using a combination of multiple
linear regression and artificial neural networks is a very accurate tool for
forecasting daily gas demand.

1 2 3 4

Month LR ANN GD LR ANN GD LR ANN GD LR ANN GD

Oct.’09 8.83 9.36 8.72 12.40 11.53 10.02 14.59 16.61 13.30 6.52 5.76 6.06

Nov.’09 5.28 5.52 5.52 10.33 8.79 9.57 17.58 15.26 15.18 6.24 6.79 6.20

Dec.’09 4.48 5.21 5.05 5.45 5.09 5.72 11.62 14.33 11.54 3.68 3.89 4.13

Jan.’10 4.80 4.73 4.28 5.38 4.92 4.73 10.94 13.75 12.71 4.06 3.87 4.01

Feb.’10 7.57 6.47 4.76 3.22 3.22 3.86 9.79 7.61 8.68 4.90 3.29 3.86

Mar.’10 6.30 6.72 6.68 7.29 7.41 6.48 14.31 13.20 12.90 4.97 5.01 5.12

Apr.’10 9.86 10.27 8.66 10.64 8.65 11.41 29.84 31.99 29.34 8.14 8.08 8.66

May’10 5.81 6.23 6.07 10.84 14.79 12.16 31.12 28.93 27.43 6.94 5.51 6.10

Jun.’10 5.82 5.35 6.44 15.77 15.53 10.70 40.26 31.46 32.73 9.29 8.80 8.66

Jul.’10 5.29 5.36 6.27 20.23 20.81 11.99 32.91 31.13 31.67 5.82 5.96 5.46

Oct.’09 6.39 6.52 6.25 10.20 10.13 8.69 21.33 20.50 19.59 6.05 5.70 5.83

to Jul.’10

5 6 7 8

Month LR ANN GD LR ANN GD LR ANN GD LR ANN GD

Oct.’09 3.16 5.06 3.67 9.82 8.26 8.86 12.54 10.04 9.25 5.58 5.87 6.23

Nov.’09 8.66 13.12 9.73 5.30 5.06 4.42 11.21 11.98 8.86 11.66 9.65 9.78

Dec.’09 6.28 5.33 6.13 5.89 6.12 5.83 6.47 10.25 5.66 5.40 5.41 5.84

Jan.’10 5.78 6.51 6.15 4.60 4.34 4.41 4.79 4.81 4.01 3.42 2.35 2.70

Feb.’10 2.48 3.56 2.95 5.60 5.63 5.25 4.06 3.95 4.07 4.81 4.68 4.83

Mar.’10 4.18 4.40 3.02 7.27 7.12 7.08 8.51 12.12 8.22 4.14 4.16 4.62

Apr.’10 5.66 5.72 5.34 6.04 6.09 6.19 9.42 12.95 7.38 6.53 6.77 6.71

May’10 5.36 6.45 5.81 8.26 7.45 7.64 12.92 13.28 13.73 6.37 6.42 6.20

Jun.’10 3.16 3.33 3.44 7.30 8.02 7.38 11.19 7.19 8.30 7.66 7.96 6.23

Jul.’10 10.78 9.79 9.97 14.92 14.21 15.36 11.75 9.86 10.47 7.61 8.10 4.29

Oct.’09 5.58 6.34 5.64 7.53 7.25 7.27 9.33 9.69 8.03 6.31 6.13 5.73

to Jul.’10

TABLE 1: MAPE performance evaluation by month for the 2009/2010
heating season for 14 operating areas.
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9 10 11

Month LR ANN GD LR ANN GD LR ANN GD

Oct.’09 8.26 7.04 5.82 9.47 8.35 7.03 14.40 14.87 13.90

Nov.’09 7.02 7.57 6.39 8.11 10.36 9.51 8.41 9.96 8.09

Dec.’09 5.26 4.61 5.16 6.77 10.34 7.04 5.00 5.21 5.89

Jan.’10 5.33 4.99 5.17 4.86 4.89 5.70 4.48 4.25 4.32

Feb.’10 7.93 6.32 6.21 4.53 3.77 4.31 6.73 5.69 4.97

Mar.’10 11.66 9.61 8.68 8.70 8.84 7.80 5.78 5.88 6.45

Apr.’10 15.33 10.48 9.44 14.01 18.08 9.89 10.41 9.95 10.12

May’10 29.63 23.11 19.27 12.98 11.39 6.40 6.01 6.05 6.85

Jun.’10 28.87 26.20 17.65 13.83 21.50 8.54 6.55 5.72 6.61

Jul.’10 21.91 23.31 13.01 14.48 14.25 13.34 4.81 4.82 4.89

Oct.’09 14.15 12.36 9.70 9.80 11.20 7.98 7.25 7.24 7.22

to Jul.’10

12 13 14

Month LR ANN GD LR ANN GD LR ANN GD

Oct.’09 10.67 9.18 8.09 9.68 8.99 9.65 23.26 25.44 16.14

Nov.’09 6.33 5.28 5.58 11.68 10.73 9.19 16.30 17.44 16.70

Dec.’09 4.17 3.56 3.48 4.63 4.61 4.86 18.08 19.91 19.71

Jan.’10 4.59 4.38 4.02 3.92 3.76 4.17 9.49 10.14 8.28

Feb.’10 3.42 3.39 4.22 5.99 6.70 6.20 9.28 10.02 8.29

Mar.’10 6.39 6.59 5.49 5.67 5.77 5.99 10.98 10.45 9.66

Apr.’10 8.43 9.38 7.24 10.07 7.81 8.54 25.01 19.66 19.19

May’10 7.48 8.53 3.99 5.68 5.67 5.53 18.99 14.47 14.95

Jun.’10 8.13 7.20 4.92 4.56 4.67 4.59 17.20 15.26 16.04

Jul.’10 10.77 8.30 5.06 4.95 4.79 4.65 19.22 14.00 15.42

Oct.’09 7.07 6.60 5.21 6.67 6.33 6.33 16.83 16.00 14.47

to Jul.’10

TABLE 2: MAPE performance evaluation by month for the 2009/2010
heating season for 14 operating areas.
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