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Abstract 

Aim: The mitochondrial electron transport chain is the major source of 

reactive oxygen species (ROS) during cardiac ischemia. Several mechanisms 

modulate ROS production; one is mitochondrial Ca2+ uptake. Here we sought 

to elucidate the effects of extra-mitochondrial Ca2+ (e[Ca2+]) on ROS 

production (measured as H2O2 release) from complexes I and III. 

Results: Mitochondria, isolated from guinea pig hearts, were pre-incubated 

with increasing concentrations of CaCl2 and then energized with the complex I 

substrate Na+-pyruvate or the complex II substrate Na+-succinate. 

Mitochondrial H2O2 release rates were assessed after giving either rotenone or 

antimycin A to inhibit complex I or III, respectively. After pyruvate, 

mitochondria maintained a fully polarized membrane potential (Δψ, assessed 

using rhodamine 123) and were able to generate NADH (assessed using 

autofluorescence) even with excess e[Ca2+] (assessed using CaGreen-5N), 

whereas they remained partially depolarized and did not generate NADH after 

succinate. This partial Δψ depolarization with succinate was accompanied by a 

large release of H2O2 (assessed using amplex red/horseradish peroxidase) 

with later addition of antimycin A. In the presence of excess e[Ca2+], adding 

cyclosporine A to inhibit mitochondrial permeability transition pore (mPTP) 

opening restored Δψ and significantly decreased antimycin A-induced H2O2 

release. 

Conclusions: Succinate accumulates during ischemia to become the major 

substrate utilized by cardiac mitochondria. The inability of mitochondria to 

maintain a fully polarized Δψ under excess e[Ca2+] when succinate, but not 

pyruvate, is the substrate may indicate a permeabilization of the 

mitochondrial membrane which enhances H2O2 emission from complex III 

during ischemia. 

Keywords: complex III, mitochondrial permeability transition pore, 

succinate, Ca2+ 

Introduction 

Several key factors are involved in the injury sustained during 

cardiac ischemia and reperfusion (IR). Of these, production of reactive 

oxygen species (ROS) plays a very important role. Mitochondria are a 

major source of ROS in cardiomyocytes. In physiological states, ROS 

are formed during mitochondrial respiration but they are normally 

maintained at low levels by the endogenous matrix antioxidant 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.020
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defenses [1, 2]. This small amount of ROS makes mitochondria very 

important for normal cellular function. In contrast, when ROS 

production exceeds the capacity of the scavenging system, as during 

ischemia, oxidative stress and concomitant damage occurs, leading to 

cell dysfunction and cell death. 

Another key event in the injury sustained during IR is 

Ca2+overload in the cytosol and organelles [3]. Even though Ca2+ is a 

crucial second messenger in modulating cellular function, extra-

mitochondrial Ca2+ (e[Ca2+]) overload is detrimental to mitochondrial 

function because it leads to opening of the mitochondrial permeability 

transition pore (mPTP), release of cytochrome c and other apoptotic 

factors, and apoptosis/necrosis [4, 5]. Excess e[Ca2+] also induces 

injury by enhancing ROS emission and vice versa [6], although 

isolated mitochondrial studies have furnished discordant results for the 

concept of Ca2+-induced ROS production. This variation likely stems 

from the different approaches and experimental conditions utilized. 

Nonetheless, a marked increase in ROS and excess accumulation of 

e[Ca2+] and subsequently mitochondrial Ca2+ (m[Ca2+]) during 

ischemia occur in parallel, as we have shown previously in isolated 

perfused hearts undergoing 30 min of global ischemia followed by 

reperfusion [7–10]. Interestingly, in these studies, we observed two 

phases of increased ROS (mainly superoxide anion, (O2
˙−)), one upon 

initiating ischemia, and another during late ischemia (last 5 min). The 

latter phase was associated with irreversible IR injury because 

treatments that reduced IR injury caused less increase in ROS during 

the second phase with no effect during the first phase [7–9]. However, 

it is unknown if these two phases of increased ROS are derived from 

similar or different mitochondrial sources, and if excess 

e[Ca2+]/m[Ca2+] influences either or both of them. 

O2
˙− is generated in the mitochondrion during cardiac ischemia 

from the electron transport chain (ETC) along the inner mitochondrial 

membrane (IMM) [11]. The ETC sustains progressive damage during 

ischemia as evidenced, in part, by a decrease in complex I activity 

during early ischemia [12, 13], and a decrease in complex III activity 

during late ischemia [13]. This causes electron leak and generation of 

O2
˙−. The main sources of O2

˙− in highly metabolic cells are complexes 

I and III [14–17]. It remains uncertain which, if either, of these two 

complexes plays a major role in excess ROS production during 
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ischemia. Moreover, dynamic changes in the mitochondrial 

environment during ischemia (gradual increase in Ca2+, change in 

available metabolites, impairment of ETC complexes) may shift O2
˙− 

generation between complexes I and III as ischemia progresses. 

Therefore, in the present study we examined for changes in the 

dismutated product of O2
˙−, H2O2, under conditions that may mimic the 

mitochondrial environment during early ischemia (low e[Ca2+], 

impaired complex I, and pyruvate as the dominant substrate) or late 

ischemia (high e[Ca2+], impaired complex III, and succinate as the 

dominant substrate [18, 19]). We observed a large increase in H2O2 

release rate from complex III in succinate-supported mitochondria at a 

high e[Ca2+], a condition that occurs during late ischemia. 

Furthermore, we monitored changes in mitochondrial bioenergetics 

that may modulate H2O2 release (O2 consumption, membrane potential 

(Δψ) and NADH) to help unravel the different potential mechanisms of 

ROS production under physiological (normal Ca2+) and pathological 

(high Ca2+) conditions. 

Materials and Methods 

All experiments were performed in accordance with the National 

Institutes of Health (NIH) Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 85–23, revised 1996) and were approved 

by the Institutional Animal Care and Use Committee of the Medical 

College of Wisconsin. 

Mitochondrial isolation 

Heart mitochondria were isolated from ketamine-anesthetized 

(50 mg/kg IP) guinea pigs (250–350 g) as described previously [20–

22]. Briefly, ventricles were excised, placed in an isolation buffer 

(buffer A) that contained (in mM) 200 mannitol, 50 sucrose, 5 KH2PO4, 

5 MOPS, 1 EGTA, and 0.1% BSA (all chemicals from Sigma, St. Louis, 

MO, USA), with pH adjusted to 7.15 with KOH. Ventricles were then 

minced into 1-mm3 pieces. The suspension was homogenized in 

isolation buffer containing 5 U/ml protease (Bacillus licheniformis, 

Sigma, St. Louis, MO, USA), followed by differential centrifugation, and 

the final pellet was re-suspended in isolation buffer and kept on ice. 
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Protein content was determined by the Bradford method [23]. 

Mitochondrial suspension volume was adjusted to have 12.5 mg 

protein/ml. All isolation procedures were conducted at 4°C and all 

experiments were conducted at room temperature (25°C). For 

experiments, mitochondria were suspended in experimental buffer 

(buffer B) that contained (in mM) 130 KCl (EMD Chemicals, Gibbstown, 

NJ, USA), 5 K2HPO4, 20 MOPS, 0.001 Na4P2O7 and 0.1% BSA (all 

chemicals from Sigma, St. Louis, MO, USA), pH 7.15 adjusted with 

KOH to a final concentration of 0.5 mg protein/ml. This insured that 

only 40 μM of EGTA was carried over from the isolation buffer (buffer 

A). 

Mitochondrial O2 consumption 

O2 consumption was measured polarographically using a 

respirometry system (System S 200A, Strathkelvin Instruments, 

Glasgow, Scotland). Respiration was initiated by adding 10 mM of the 

complex I substrate Na+-pyruvate or the complex II substrate Na+-

succinate (Sigma, St. Louis, MO, USA). State 3 respiration was 

determined after adding 250 μM ADP (Sigma, St. Louis, MO, USA), and 

state 4 respiration was measured after complete phosphorylation of 

ADP to ATP. The respiratory control index (RCI) was calculated as the 

ratio of the rate of state 3 to state 4 respiration. Only mitochondria 

with an RCI of 10 or above with pyruvate or an RCI of 3 or above with 

succinate were used in the experiments. To assess effects of e[Ca2+] 

on O2 consumption, different [CaCl2] (0, 50, 75, 100 μM) were added 

to the mitochondrial suspension before addition of substrates. 

Experimental protocol for fluorescence measurements 

Mitochondria were suspended in the respiration buffer (buffer B) 

which contained the appropriate fluorescent probe to assess levels of 

either H2O2, Δψ, or e[Ca2+] while autofluorescence was used to 

monitor NADH. Increasing [CaCl2] (0–100 μM) were added to the 

mitochondrial suspension (taking into account the amount of residual 

EGTA of 40 μM we estimate 100 μM CaCl2 ≈ 120 nmole CaCl2 /mg 

protein). This was followed by addition of 10 mM of either Na+-

pyruvate or Na+-succinate. Then either the complex I blocker rotenone 

(10 μM; Sigma, St. Louis, MO, USA) or the complex III blocker 
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antimycin A (5 μM; Sigma, St. Louis, MO, USA) was added. In some 

experiments rotenone was added before adding succinate. Additional 

information on the protocols are given in the results section and the 

individual figures. 

Mitochondrial fluorescence measurements 

Mitochondria were suspended in buffer B in a 1 ml cuvette inside 

spectrophotometer (QM-8, Photon Technology International, 

Birmingham, NJ, USA). The rate of H2O2 release was measured using 

amplex red (12.5 μM, Molecular Probes, Eugene, OR, USA) in the 

presence of 0.1 U/ml horseradish peroxidase (Sigma, St. Louis, MO, 

USA) at excitation and emission wavelengths of 530 and 583 nm, 

respectively [21, 22]. H2O2 levels were calibrated over a range of 10–

200 nM H2O2 (Sigma, St. Louis, MO, USA) added to buffer B in the 

absence of mitochondria and in the presence of amplex red and 

horseradish peroxidase. Changes in mitochondrial Δψ were monitored 

in the presence of the fluorescent dye rhodamine 123 (50 nM; 

Molecular Probes, Eugene, OR, USA) at excitation and emission 

wavelengths of 503 and 527 nm, respectively [21, 22]. Changes in 

e[Ca2+] were monitored using the fluorescent probe CaGreen-5N 

hexapotassium salt (100 nM; Molecular Probes, Eugene, OR, USA) at 

excitation and emission wavelengths of 503 and 532 nm, respectively 

[24]. Mitochondrial NADH autofluorescence was monitored at an 

excitation wavelength of 350 and dual emission wavelengths of 460 

nm and 405 nm. The ratio of 460/405 represents NADH [21]. 

Statistical analysis 

Where appropriate, data are presented as mean ± SEM. Traces 

are representative for several experiments as indicated in figure 

legends. All data were compiled using Microsoft Excel and analyzed 

using one-way ANOVA and the Student-Newman-Keuls post hoc for 

multiple comparisons. The level for statistical significance was set to 

5%, two tailed. 

Results 
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H2O2 release rates were measured in isolated mitochondria with 

added CaCl2 under two substrate conditions (Fig. 1). Complex I can 

produce O2
˙− by two mechanisms, the first of which is forward electron 

transfer (FET) when complex I is blocked (Fig. 1A). To test how added 

CaCl2 affects H2O2 release, mitochondria were pre-incubated with 50, 

75, or 100 μM CaCl2 in the presence of 40 μM of EGTA carried over 

from the isolation buffer. Mitochondria were then energized with Na+-

pyruvate followed by rotenone (10 μM) to inhibit complex I. In the 

absence of added CaCl2 (0 μM CaCl2), rotenone increased H2O2 release 

to 0.46±0.05 pmole/mg/s. Addition of CaCl2 caused a concentration-

dependent increase in rotenone-induced H2O2 release rate; e.g. the 

presence of 100 μM CaCl2 increased rotenone-induced H2O2 release by 

~2 fold to 0.85±0.13 pmole/mg/s. The second mechanism of O2
˙− 

generation from complex I is reverse electron transfer (RET) from 

complex II to complex I with succinate as the sole substrate (Fig. 1B, 

between 100–200 s). Succinate without added CaCl2 caused a much 

larger increase in H2O2 release rate (9.18±0.66 pmole/mg/s). Added 

CaCl2 caused a concentration-dependent decrease in RET-induced H2O2 

release to as low as 0.17±0.04 pmole/mg/s after adding 100 μM 

CaCl2. 

 

Fig. 1 Time dependent changes in H2O2 release rates in isolated 

mitochondria assessed using amplex red with horseradish peroxidase 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.020
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Panel A shows H2O2 levels from inhibited complex I in pyruvate-energized 

mitochondria. Panel B shows H2O2 levels from complex I due to reversed electron 

transfer and from inhibited complex III in succinate-energized mitochondria. Panel C 

shows H2O2 levels from inhibited complex III in pyruvate-energized mitochondria. 

Panel D shows H2O2 levels from inhibited complex III in succinate-energized 

mitochondria but with rotenone added after succinate to prevent reverse electron 

transfer. Panel E shows H2O2 levels from inhibited complex III in succinate-energized 

mitochondria but with rotenone added before succinate to prevent reverse electron 

transfer. CaCl2 was added before any other additions at time 0. Numbers indicate 

mean values ± (SEM) of pmole H2O2 emission/mg/s. The number of animals used 

ranged between 6–8 per group. Panel F shows a summary of the effects of added 

CaCl2 on rates of H2O2 release under the four conditions (pyruvate, succinate, 

succinate first followed by rotenone, or rotenone first followed by succinate) with 

antimycin A. Columns represent mean values ± (SEM) of pmole H2O2 emission/mg/s. 

* indicates significant change in H2O2 release rate from inhibited complex III under 

high e[Ca2+] in succinate or succinate/rotenone vs. pyruvate or rotenone/succinate-

energized mitochondria. Abbreviations: MIT, mitochondria (0.5 mg/ml); PYR, pyruvate 

(10 mM); SUC, succinate (10 mM); ROT, rotenone (10 μM); AA, antimycin A (5 μM). 

The other major source of O2
˙— generation is complex III. To 

study effects of Ca2+ on H2O2 release from complex III, mitochondria 

were pre-incubated with different [CaCl2] and then energized with 

either pyruvate (Fig. 1C) or succinate (Fig. 1B); this was followed by 

antimycin A (5 μM) to block complex III. In pyruvate-energized 

mitochondria with no added CaCl2, adding antimycin A enhanced H2O2 

release to 1.41±0.08 pmole/mg/s. Addition of CaCl2 caused a 

concentration-dependent increase in antimycin A-induced H2O2 release 

rate; e.g. the presence of 100 μM CaCl2 increased antimycin A-induced 

H2O2 release by ~2 fold to 2.6±0.39 pmole/mg/s. In succinate-

energized mitochondria and in the absence of CaCl2, the high rate of 

H2O2 release (9.18±0.66 pmole/mg/s) due to RET decreased to 

1.17±0.11 pmole/mg/s after adding antimycin A. However in the 

presence of 100 μM CaCl2 the rate of antimycin A-induced H2O2 release 

increased markedly by ~40 fold (compared to antimycin A-induced 

H2O2 release in the absence of added CaCl2) to 50.15±4.84 

pmole/mg/s. With 75 μM CaCl2, the rate of antimycin A-induced H2O2 

release increased slightly compared to no added CaCl2 and this was far 

less than that observed with addition of 100 μM CaCl2. 

These experiments (Fig. 1B) showed that elevated CaCl2 

markedly enhances H2O2 release from complex III in succinate-

energized mitochondria. However, succinate induces RET and therefore 

in the next set of experiments we used a similar protocol as in Figure 
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1B but also added rotenone to inhibit RET. Succinate was given first 

followed by rotenone, and then by antimycin A (Fig. 1D). Even though 

rotenone almost completely blunted RET-induced H2O2 release 

(10.36±0.72 pmole/mg/s before rotenone, 0.38±0.04 pmole/mg/s 

after rotenone), antimycin A, in the presence of 100 μM CaCl2, still 

caused a marked increase in H2O2 release (69.5±11.41 pmole/mg/s) 

compared to the slight increase in H2O2 release (1.07±0.1 

pmole/mg/s) with no added CaCl2. Interestingly, switching the order 

by adding rotenone before succinate (Fig. 1E) led to a different result, 

i.e., the marked increase in antimycin A-induced H2O2 release in the 

presence of 100 μM CaCl2 was not observed (0.96±0.08 pmole/mg/s 

in the absence of CaCl2, and 1.37±0.06 pmole/mg/s in the presence of 

added 100 μM CaCl2). 

A summary of the effects of added 100 μM CaCl2 on rates of 

H2O2 release is shown under the four conditions (pyruvate, succinate, 

succinate followed by rotenone, rotenone followed by succinate) with 

inhibited complex III with antimycin A (Fig. 1F). The main observation 

from the above experiments is that Ca2+-induced H2O2 release rate 

from complex III is substrate-dependent, i.e., excess e[Ca2+] induced 

a larger increase in H2O2 release rate in succinate vs. pyruvate 

conditions, and this Ca2+-induced effect was completely abolished 

when rotenone was added before adding succinate. Therefore, in the 

following experiments we focused only on these three conditions; i.e., 

effects of added CaCl2 in pyruvate vs. succinate vs. rotenone followed 

by succinate-energized mitochondria with inhibited complex III 

(conditions that mimic those in Figures 1C, 1B, and 1E, respectively). 

Because the results above showed differential effects of added 

CaCl2 on H2O2 release from complex III based on the experimental 

conditions, we monitored m[Ca2+] uptake by the disappearance of 

e[Ca2+] into the matrix using CaGreen-5N. The same timeline protocol 

and conditions were used as in the H2O2 experiments. Adding pyruvate 

promoted m[Ca2+] uptake (decrease of e[Ca2+]) at each added [CaCl2] 

(Fig. 2A). Adding antimycin A resulted in a small but significant 

concentration-dependent extrusion of Ca2+. With succinate (Fig. 2B), 

m[Ca2+] uptake was slower than that observed with pyruvate (Fig. 2A) 

with any added CaCl2. In the presence of 100 μM CaCl2, succinate-

energized mitochondria took up less Ca2+ than did pyruvate-energized 

mitochondria (Fig. 2A vs. vs.2B).2B). Again, antimycin A resulted in 
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Ca2+ extrusion that was dependent on m[Ca2+] uptake, except with 

added 100 μM CaCl2 where m[Ca2+ uptake was already impaired with 

succinate as the substrate (Fig. 2B). In mitochondria first treated with 

rotenone (at time 0 s to prevent succinate-induced RET), m[Ca2+] 

uptake after succinate was faster and greater (Fig. 2C) than that with 

succinate alone, and appeared in a pattern that was similar to that of 

pyruvate alone (Fig. 2A). Adding antimycin A after succinate caused a 

more pronounced concentration dependent Ca2+ extrusion compared to 

that after pyruvate (Fig. 2C vs. vs.2A2A). 

 

Fig. 2 Time dependent changes in extra-mitochondrial Ca2+ assessed using 

CaGreen-5N  

Isolated mitochondria were energized with pyruvate (Panel A), succinate (Panel B), or 

succinate in the presence of rotenone (Panel C). Rotenone was added to the 

mitochondrial suspension at time 0. Mitochondria were pre-incubated with increasing 

[CaCl2]. The number of animals used ranged between 6–8 per group. All figures have 

the same scale. Abbreviations: MIT, mitochondria (0.5 mg/ml); PYR, pyruvate (10 

mM); SUC, succinate (10 mM); ROT, rotenone (10 μM); AA, antimycin A (5 μM). 

Movement of Ca2+ into and out of the mitochondria is dependent 

on the Δψ and the Ca2+ gradient. Thus Δψ was also monitored using 

the same timeline protocol and conditions as above. Mitochondria 
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displayed a depolarized Δψ when pre-incubated with added CaCl2. 

Addition of pyruvate led to complete Δψ repolarization regardless of 

the added CaCl2 (Fig. 3A). In contrast, adding succinate to 

mitochondria pre-incubated with CaCl2 led to a slower recovery of Δψ 

than after adding pyruvate, and at 100 μM CaCl2 Δψ did not polarize 

(Fig. 3B). With rotenone added before succinate (to inhibit RET) a full 

Δψ polarization after adding succinate (Fig. 3C) occurred. The 

m[Ca2+]-induced changes in Δψ with rotenone given before succinate 

were similar to those with pyruvate alone (Fig. 3A vs. vs.3C).3C). 

Adding antimycin A caused Δψ depolarization with all substrates 

regardless of the added CaCl2, except in the presence of 100 μM CaCl2 

after succinate (Fig. 3B) because mitochondria were almost maximally 

depolarized. 

 

Fig. 3 Time dependent changes in mitochondrial inner membrane potential 

assessed using rhodamine 123 

Isolated mitochondria were energized with pyruvate (Panel A), succinate (Panel B), or 

succinate in the presence of rotenone (Panel C). Rotenone was added to the 

mitochondrial suspension at time 0. Mitochondria were pre-incubated with increasing 

[CaCl2]. The number of animals used ranged between 6–8 per group. All figures have 

the same scale. Abbreviations: MIT, mitochondria (0.5 mg/ml); PYR, pyruvate (10 
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mM); SUC, succinate (10 mM); ROT, rotenone (10 μM); AA, antimycin A (5 μM); 

CCCP, carbonyl cyanide-m-chlorophenylhydrazenone (4μM). 

Because 100 μM CaCl2 completely prevented Δψ polarization 

after succinate, we used a lower concentration of 80 μM CaCl2, which 

allowed for a complete Δψ polarization with time after adding 

succinate (Fig. 4A). Antimycin A was then added before (at 200 s) or 

after (at 400 s) full Δψ polarization. Correspondingly, H2O2 release 

(Fig. 4B), measured under the same timeline protocol and conditions, 

was markedly increased when antimycin A was added at 200 s before 

Δψ became completely restored (Trace 1), whereas it was significantly 

reduced when antimycin A was added at 400 s when Δψ was 

completely repolarized (Trace 2). 

 

Fig. 4 Effect of membrane potential and extra-mitochondrial Ca2+ on H2O2 

release due to complex III inhibition 

Time dependent changes in mitochondrial inner membrane potential assessed using 

rhodamine 123 (Panel A) and H2O2 generation assessed using amplex red with 

horseradish peroxidase (Panel B) in succinate-energized mitochondria. Mitochondria 

were pre-incubated with 80 μM CaCl2. Antimycin A was added at 200 s in Trace 1 and 

at 400 s in Trace 2. Panels C and D show time dependent changes in H2O2 levels in 

succinate-energized mitochondria. In Panel C, mitochondria were not pre-incubated 
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(Trace 1), pre-incubated with 100 μM CaCl2 (Trace 2), or pre-incubated with 4 μM 

CCCP (Trace 3). In Panel D, mitochondria were not incubated (Trace 1), pre-incubated 

with 100 μM CaCl2 (Trace 2), or pre-incubated with 100 μM CaCl2 + 25 μM ruthenium 

red (Trace 3). The number of animals was 3 per group. Abbreviations: MIT, 

mitochondria (0.5 mg/ml); CON, control (H2O); CCCP, carbonyl cyanide-m-

chlorophenylhydrazenone (4μM); RUR, ruthenium red (25 μM); SUC, succinate (10 

mM); AA, antimycin A (5 μM). 

To test if the more rapid rate of H2O2 release at a partial Δψ 

depolarization is a result of the partially depolarized Δψ or the 

impediment in m[Ca2+] uptake, we mimicked the conditions above by 

using either the uncoupler carbonyl cyanide-m-

chlorophenylhydrazenone (CCCP, Sigma, St. Louis, MO, USA) (Fig. 4C) 

to depolarize Δψ (similar to depolarization observed with 100 μM 

CaCl2), or the m[Ca2+] uniporter inhibitor ruthenium red (Sigma, St. 

Louis, MO, USA) (Fig. 4D) to block m[Ca2+] uptake. In mitochondria 

pre-incubated with 4 μM CCCP (Fig. 4C, Trace 3), adding antimycin A 

after succinate did not promote a large increase in H2O2 release as was 

observed when mitochondria were pre-incubated with 100 μM CaCl2 

(Fig. 4C, Trace 2). In mitochondria pre-incubated with 25 μM 

ruthenium red (Fig. 4D, Trace 3), adding antimycin A after succinate 

did not promote a large increase in H2O2 release as observed when 

mitochondria were pre-incubated only with 100 μM CaCl2 (Fig. 4D, 

Trace 2). 

The observed Δψ depolarization, impaired m[Ca2+] uptake, and 

high rate of H2O2 generation after adding antimycin A in the presence 

of high [CaCl2] and with succinate as the substrate may indicate a 

substantial role for mPTP opening. To test this, cyclosporine A (CsA, 

0.5 μM, Sigma, St. Louis, MO, USA) was used to inhibit mPTP opening 

(Fig. 5). Adding CsA before succinate led to a full Δψ polarization (Fig. 

5A), greater m[Ca2+] uptake (Fig. 5B), and a significantly lower rate of 

H2O2 release after antimycin A (Fig. 5C). 
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Fig. 5 Role of mitochondrial permeability transition pore in H2O2 release due 

to complex III inhibition 

Time dependent changes in mitochondrial inner membrane potential (Panel A), extra-

mitochondrial Ca2+ (Panel B), and H2O2 levels (Panel C) in succinate-energized 

mitochondria. In all panels, mitochondria were either not pre-incubated (Trace 1), pre-

incubated with 100 μM CaCl2 (Trace 2), or pre-incubated with 100 μM CaCl2 + 0.5 μM 

cyclosporine A (Trace 3). The number of animals was 3 per group. Abbreviations: MIT, 

mitochondria (0.5 mg/ml); CON, control (H2O); CSA, cyclosporine A (0.5 μM); SUC, 

succinate (10 mM); AA, antimycin A (5 μM). 

The increase in H2O2 under succinate and elevated e[Ca2+] 

conditions could be attributed to changes in the redox state (NADH). 

Therefore, NADH levels were monitored in mitochondria energized 

either with pyruvate (Fig. 6A), succinate (Fig. 6B), or rotenone given 

before succinate (Fig. 6C) at no added CaCl2 (Trace 1) or in the 

presence of 100 μM CaCl2 (Trace 2). Pyruvate led to an increase in 

NADH in the presence of 100 μM CaCl2 similar to that observed with no 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.020
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/figure/F5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/figure/F6/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Free Radical Biology and Medicine, Vol. 56 (March 2013): pg. 193-203. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

15 

 

added CaCl2 (Fig. 6A). Succinate, however, increased NADH only with 

0 μM added CaCl2 (Fig. 6B). Interestingly when rotenone was given 

before succinate, NADH gradually increased before even adding 

succinate with or without CaCl2 (Fig. 6C). Later addition of succinate 

did not further increase NADH. In a modified protocol (Fig. 6D), 

mitochondria were pre-incubated with either 0 μM CaCl2 (Trace 1) or 

100 μM CaCl2 (Trace 2) and then energized with succinate. Rotenone 

was then added followed by pyruvate in order to supply mitochondria 

with NADH without having a forward electron flow from complex I. 

Again, rotenone caused a gradual increase in NADH in mitochondria 

pre-incubated with 100 μM CaCl2, and pyruvate caused an additional 

small increase in NADH. When the same protocol was used but with 

amplex red to measure H2O2, antimycin A still caused a large increase 

in H2O2 in mitochondria pre-incubated with 100 μM CaCl2 (Fig. 6E). 

 

Fig. 6 Time dependent changes in NADH assessed using autofluorescence 

Isolated mitochondria were energized with pyruvate (Panel A), succinate (Panel B), or 

succinate in the presence of rotenone (Panel C). Rotenone was added to the 

mitochondrial suspension at time 0. In a modified protocol, isolated mitochondria were 

energized with succinate, and then rotenone was added followed by pyruvate (Panel 

D). A similar protocol was used but with the addition of antimycin A after all other 

additions and in the presence of amplex red to measure H2O2 (Panel E). Mitochondria 
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were pre-incubated with either 0 μM CaCl2 (Trace 1) or with 100 μM CaCl2 (Trace 2). 

The number of animals ranged between 6–8 per group. All NADH figures have the 

same scale. Abbreviations: MIT, mitochondria (0.5 mg/ml); CON, control (H2O); PYR, 

pyruvate (10 mM); SUC, succinate (10 mM); ROT, rotenone (10 μM); AA, antimycin A 

(5 μM). 

Table 1 summarizes effects of added CaCl2 on mitochondrial O2 

consumption during state 2 respiration (the state at which all 

experiments were conducted) and on RCI. State 2 respiration was 

monitored for 2 min before adding ADP to mimic the conditions in the 

above experiments (2 min between adding the substrate and adding 

antimycin A). Added CaCl2 increased state 2 respiration with pyruvate 

and with rotenone plus succinate in a concentration-dependent 

manner. With succinate alone, CaCl2 increased state 2 respiration in a 

concentration-dependent manner except with 100 μM added CaCl2 in 

which state 2 respiration decreased in the first minute only and then 

increased in the second minute in a concentration-dependent manner. 

Table 1 also shows that CaCl2 decreased RCI in a dose dependent 

manner under all substrate conditions even though mitochondria still 

exhibited well-coupled oxidative phosphorylation. 

 

Discussion 

In this study we compared effects of Ca2+ on mitochondrial H2O2 

emission from complexes I and III under different experimental 

conditions. These included utilizing substrates for complexes I and II, 

increasing e[Ca2+], and the use of archetypical inhibitors of complexes 

I and III. We found a large rate of H2O2 emission due to complex III 

inhibition under conditions of elevated e[Ca2+] and succinate as the 

only substrate, and that these conditions are conducive for mPTP 

opening as evidenced by Δψ depolarization, mitochondrial inability to 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.020
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/table/T1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542420/table/T1/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Free Radical Biology and Medicine, Vol. 56 (March 2013): pg. 193-203. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

17 

 

take up and retain Ca2+, and the reversal of these effects with CsA. 

The novel finding is that prior, but not later, blockade of complex I 

with rotenone completely prevented mPTP opening and the subsequent 

increase in H2O2 release rate from inhibited complex III. 

Complex III is the main source of ROS during late 

ischemia 

Excess in m[Ca2+] loading and ROS emission are often 

purported to be the two major factors causing cardiomyocytes death 

during IR injury [25]. In our previous studies of isolated perfused 

hearts undergoing 30 min of global ischemia [7–10], we observed a 

gradual accumulation of m[Ca2+] throughout ischemia. On the other 

hand, ROS (mainly O2
˙−) increased at two distinct time periods, an 

early phase within seconds upon initiating ischemia, and a late phase 

during the last 5 min of ischemia. The late phase was associated with 

an irreversible IR injury because treatments that reduced IR injury 

caused less increase in ROS during the second phase with no effect 

during the first phase. Therefore, we asked if these two phases of 

increasing ROS originate from the same/different sites of 

mitochondria, and if excess Ca2+ influences any or both of them. 

First, despite the reduction in O2 delivery during ischemia, there 

is still a considerable amount of O2 present, therefore total anoxia is 

unlikely to exist even with clinically important ischemia [11]. Thus, 

cardiomyocytes can generate ROS during ischemia as we and others 

have shown [7–10, 26, 27]. Mitochondria are the main source of ROS 

generation in cardiomyocytes during ischemia [11]. Mitochondria 

generate O2
˙− from several sites [28] but the main sources in 

cardiomyocytes are complexes I and III of the ETC [1, 29]. Complex I 

generates O2
˙− by two modes [1, 28]; the first occurs when a high 

NADH/NAD+ (FET) is accompanied by inhibition of complex I at the 

ubiquinone (Q) binding site [30–33]. The second mode occurs due to 

RET, a condition in which a highly reduced Q pool by succinate is 

associated with a high proton motive force [1, 33–36], which causes 

electrons to flow from complex II to complex I and to reduce NAD+ to 

NADH [37]. RET supports high O2
˙− generation in the absence of ETC 

blockers [30, 38–42]. We propose that the early phase of ROS (O2
˙−) 

increase that we observed in our previous isolated heart studies occurs 
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from complex I in the FET mode because: a) complex I activity 

decreases immediately upon initiating ischemia [13]; b) there is a 

sudden increase in NADH upon initiating ischemia that parallels the 

sudden increase in O2
˙− [7, 8, 43, 44]; c) this increase in ROS is not 

due to RET mode because succinate levels are not high during early 

ischemia [19]; and d) the increase in m[Ca2+] during ischemia 

prevents RET likely due to the Ca2+-induced decrease in Δψ [38, 45]. 

Indeed, O2
˙− generation by RET is highly dependent on Δψ such that a 

10 mV decrease in Δψ eliminated O2
˙− generation by RET [46]. 

However, as ischemia progresses the ratio of NADH/NAD+ 

decreases (less redox state) [8, 9] while succinate rises into the mM 

range [18, 19]. By late ischemia, m[Ca2+] exceeds physiological levels. 

More importantly, complex III activity declines upon initiating ischemia 

and continues to decline gradually throughout late ischemia [13], 

which causes electrons to leak and generate O2
˙−. Our current study 

shows that under conditions similar to those mentioned above and 

observed during late ischemia (high Ca2+, high succinate, impaired 

complex III), we recorded the highest mitochondrial H2O2 release (Fig. 

1B). Therefore, we propose that the large increase in H2O2 observed in 

our isolated mitochondrial study, which occurs due to complex III 

inhibition, represents the second phase of ROS production that we 

observed in our previous isolated perfused heart studies during late 

ischemia [7–10]. The large increase in H2O2 release observed in this 

study under the conditions noted above (high Ca2+, high succinate, 

impaired complex III) cannot be attributed to RET because: a) the 

high e[Ca2+] markedly reduced Δψ and as such prevented RET; and b) 

the large increase in H2O2 occurred even when rotenone was added 

after succinate to prevent RET (Fig. 1D). It could be argued that the 

[CaCl2] used in our study are extremely high. However, mitochondria 

can sequester large amounts of Ca2+, e.g. up to 400 nmole/mg protein 

[24], a much higher value than the maximum amount of CaCl2 added 

in the present study, i.e. 120 nmole/mg protein, before collapse of Δψ. 

This was evident in our study as mitochondria were able to handle 

excess Ca2+ as shown by a reasonably high RCI with the substrate 

pyruvate. Indeed, it was reported that at a high range of Ca2+ load (up 

to 500 nmole/mg protein) mitochondria could maintain m[Ca2+] 

between 1–5 μM [47]. This is likely ascribed to the rapid buffering via 

calcium-phosphate complex formation [48] or to other strong buffering 

components in the matrix. Moreover, we used 10 mM of Na+-pyruvate 
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or Na+-succinate which likely led to less m[Ca2+] accumulation due to 

activation of mitochondrial Na+/Ca2+ exchanger [49], which would 

extrude matrix Ca2+. 

Complex III generates H2O2 under depolarized Δψ 

We have shown here that increasing e[Ca2+] affects H2O2 

release from complexes I and III. Unexpectedly, complex III inhibition 

caused a much larger H2O2 release in succinate than in pyruvate-

energized mitochondria pre-incubated with high e[Ca2+]. We 

hypothesized that this is attributed to differences in Δψ between these 

two conditions (pyruvate with high e[Ca2+] vs. succinate with high 

e[Ca2+]). Normally, a high proton motive force is associated with an 

increase in the probability of O2
˙− formation because semi-Q, which is 

capable of one electron reduction of O2, becomes long lived when Δψ 

is sufficiently high [50]. Interestingly, this was not the case in our 

current study where high H2O2 release rates from complex III occurred 

under succinate with high e[Ca2+], conditions in which was almost 

completely dissipated. This was further supported by the experiments 

in which we used a lower e[Ca2+] (80 μM), chosen so that if the period 

before adding antimycin A was extended, then Δψ would recover 

completely (Fig. 4A) and mitochondria would sequester much of the 

added e[Ca2+] (data not shown). Intriguingly, early addition of 

antimycin A, when Δψ was depolarized and e[Ca2+] was elevated, led 

to a large increase in H2O2 release, but when addition of antimycin A 

was delayed until Δψ was fully polarized and much of the e[Ca2+] was 

sequestered, H2O2 release was much reduced. These findings may 

initially indicate that inhibiting complex III in mitochondria with 

partially depolarized Δψ and/or elevated e[Ca2+] leads to marked H2O2 

release. However, adding the uncoupler CCCP to mimic high Ca2+-

induced Δψ depolarization did not cause a similar H2O2 release rate 

from inhibited complex III (Fig. 4C, Trace 3). Also, m[Ca2+] uptake 

and not e[Ca2+] appeared to instigate the large rate of H2O2 release 

from complex III in succinate-energized mitochondria, because 

preventing m[Ca2+] uptake with ruthenium red significantly reduced 

H2O2 release from inhibited complex III (Fig. 4D, Trace 3). It is 

important to note that succinate-energized mitochondria were able to 

establish a fully polarized Δψ (Fig. 3B) when pre-incubated with 50 

and 75 μM CaCl2, and did not generate the large increase in H2O2 
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release observed with 100 μM CaCl2. However, from the experiment in 

which 80 μM CaCl2 was present, one can deduce that even at the lower 

concentrations of CaCl2, early addition of antimycin A when Δψ is still 

depolarized may lead to a large increase in H2O2 release, i.e. if 

antimycin A was added between 100–120 s (Fig. 3B, Trace green). 

High Ca2+ and succinate induce mitochondrial 

permeability 

Although the above findings may seem paradoxical, i.e., 

significant H2O2 release from inhibited complex III in mitochondria with 

Ca2+-and not CCCP-induced depolarized Δψ, these results may indicate 

a role for mPTP opening [51–53] in the loss of Δψ, subsequent 

accumulation of e[Ca2+] with succinate, and a probable cause for the 

high H2O2 release rate from inhibited complex III. Indeed, this was 

confirmed by using CsA, an effective inhibitor of the mPTP in heart 

mitochondria [54], which restored Δψ (Fig. 5A), enabled succinate-

energized mitochondria to take up and retain Ca2+ (Fig. 5B), and 

reduced antimycin A-induced H2O2 release (Fig. 5C). In fact, our 

findings agree with another study [55] which showed mPTP to mediate 

Ca2+-induced ROS generation in brain mitochondria despite the 

inhibition of respiration, loss of Δψ and NADH. However, our present 

study shows that even before addition of antimycin A, Ca2+ induced 

mPTP opening only in succinate but not pyruvate-energized 

mitochondria. This is probably due to the lack of RET-induced NADH 

generation by complex I (Fig. 6B), which may lead to the loss of the 

NADH inhibitory effect on the mPTP reported earlier [56]. An 

alternative mechanism may involve the role of Δψ in mPTP opening as 

it was reported that increased Δψ depolarization is both necessary and 

sufficient to trigger mPTP opening [57]; however our experiments 

cannot resolve if Δψ depolarization precedes or if it is a consequence 

of mPTP opening. It is also possible that succinate impairs the m[Ca2+] 

buffering capacity which leads to more available free Ca2+ that 

stimulates mPTP opening as was suggested in another study [58]. 

Nonetheless, caution must be taken when the results obtained in the 

current study (isolated mitochondria) are projected on the whole 

heart. While the conditions of high Ca2+ combined with high succinate 

such as during late ischemia may promote mPTP opening in isolated 

mitochondria, this may not be the case in the whole heart during late 
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ischemia due to cytosolic acidification which inhibits mPTP [51, 59, 

60]. Nonetheless, it is worth mentioning that succinate and high Ca2+ 

together may lead to mitochondrial permeability that is different from 

mPTP. In fact, one study [52] indicated that under restricted substrate 

conditions (succinate only) and in the presence of Ca2+, the IMM can 

be permeabilized. The authors suggested that this is a low-

conductance permeability pathway that is different from the typical 

mPTP, and that this pathway is at least proton-permeable [52]. Our 

current study may support this notion by showing that inhibiting mPTP 

with CsA reduced but did not completely prevent the increase in H2O2 

release from complex III induced by high Ca2+ (Fig. 5C). It is also 

possible that even the lower concentrations of CaCl2 (50–75 μM) may 

lead to mPTP opening or some type of membrane permeability in 

succinate-energized mitochondria as evidenced by the slower recovery 

of Δψ in these groups (Fig. 3B). However, when given enough time, 

mitochondria were eventually able to take up all e[Ca2+] (Fig. 2B) and 

to completely recover Δψ (Fig. 3B) which suggests a restored 

membrane permeability in these groups. 

Mitochondrial permeability by succinate and high Ca2+ 

is required but not sufficient for H2O2 emission 

It is important to note that while mPTP opening was sufficient to 

generate ROS as reported by Hansson et al. [55], this was not the 

case in our study in which mPTP opening did not induce any detectable 

H2O2, but was still required for the large release of H2O2 with 

subsequent inhibition of complex III by antimycin A. We attribute this 

to tissue differences (brain vs. heart) or because of a small H2O2 

release that is not detectable using our technique. However, the large 

H2O2 release that occurs following inhibition of complex III could be 

explained in part by NADH loss. First, our study shows that succinate-

energized mitochondria pre-incubated with high Ca2+ cannot generate 

NADH (Fig. 6B) due to the lack of RET. NAD(P)H is necessary to 

regenerate glutathione and thioredoxin [25], which together are the 

main H2O2 scavenging systems in mitochondria. Therefore, the large 

H2O2 release observed with complex III inhibition, which we proposed 

to happen by the end of ischemia, could simply result from less H2O2 

scavenging rather than more H2O2 production. This agrees with the 

work of Aon et al. [61] who showed that under a more oxidized redox 
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potentials (such as during late ischemia), excess ROS occurs as a 

consequence of depletion of the ROS scavenger pool and not because 

of more ROS generation. However, oxidized redox potentials alone do 

not seem sufficient to explain the large H2O2 release from antimycin A-

inhibited complex III that we observed in the current study. In a 

previous study we showed that CCCP oxidized NADH [21], but in the 

present study CCCP did not promote a substantial increase in H2O2 

release from inhibited complex III (Fig. 4C, Trace 3) similar to that 

observed with elevated e[Ca2+] (Fig. 4C, Trace 2). It remains possible 

that m[Ca2+] loading may impair the scavenging system by a 

mechanism not related to NADH loss, i.e., Ca2+-induced mitochondrial 

permeability may cause direct loss of glutathione [62], or alternatively 

Ca2+ may directly inhibit the activity of the scavenging enzymes [63]. 

Blocking complex I prevents excess H2O2 emission from 

inhibited complex III 

Regardless of the mechanism for the permeabilization of 

mitochondrial membranes by succinate in the presence of high 

e[Ca2+], all the injurious observations (impaired respiration, 

depolarization of Δψ, impaired m[Ca2+] uptake, greater H2O2 emission) 

were abolished when rotenone was added before, but not after, adding 

succinate. It is probable that early inhibition of complex I with 

rotenone preserves the endogenous NADH as evidenced by the gradual 

increase in NADH after adding rotenone (Fig. 6C). This NADH is then 

used by the scavenging system to prevent the large increase in H2O2 

release after adding antimycin A. However, this reasoning does not 

explain why adding rotenone after succinate did not prevent the large 

H2O2 release (Fig. 6E), although it still caused a similar gradual 

increase in NADH (Fig. 6D). An alternative mechanism may involve the 

role of rotenone as an mPTP blocker. Indeed, rotenone was shown to 

be even more effective than CsA as an mPTP blocker in U937 and KB 

cells [64]. This agrees with our findings showing that rotenone 

completely prevented Ca2+-induced Δψ depolarization and the 

subsequent e[Ca2+] accumulation in succinate-energized mitochondria. 

However if rotenone inhibits mPTP, it is not known if this is a direct 

effect or because it inhibits complex I which, interestingly, was 

suggested to be part of mPTP [65, 66]. Nonetheless, even though our 

present study gives limited clues as to the mechanism by which 
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rotenone prevents this large release of H2O2, it may highlight an 

important role for blocking complex I to reduce ROS production from 

complex III. In a previous study [8] we showed that reversible 

inhibition of complex I during ischemia decreased ROS and protected 

hearts against ischemic injury. We postulated that inhibiting complex I 

decreased electron transfer from complex I to complex III, thereby 

reduced electron leak, and O2
˙− generation at complex III during late 

ischemia [8]. Our current observations point toward an alternative 

mechanism for complex I blockade-mediated cytoprotection against 

ischemia. 

Conclusion 

Our previous isolated beating heart studies showed two phases 

of increase in ROS production during ischemia, an early one upon 

initiating ischemia and a late injurious phase during the last 5 min of 

30 min global ischemia. The present study shows that under conditions 

that mimic the mitochondrial environment during late ischemia (high 

e[Ca2+] with succinate as the main substrate) complex III becomes a 

major source of H2O2 release (Fig. 7). Moreover, early blockade of 

complex I can attenuate the rate of Ca2+-induced H2O2 release from 

complex III. 

 

Fig. 7 Proposed role for complexes I and III in ROS generation as ischemia 

progresses 

Early ischemia impairs electron flow through ETC and causes a sudden increase in 
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NADH [7–9], and a mild gradual increase in Ca2+ [7–9] and impairs complex I activity 

[13]. The increase in Ca2+ may increase NADH via the Krebs cycle and stimulate 

respiration (Table 1). More NADH leads to more electron flow through the impaired 

complex I and thus a mild increase in ROS [7–10]. Late ischemia causes a large 

increase in Ca2+ [7–9], accumulation of succinate [18, 19], and impaired complex III 

activity [13]. Excess Ca2+ causes mitochondrial membrane permeability [52, 67], Δψ 

depolarization which prevents reversed electron flow to complex I [38, 45] and the 

subsequent generation of NADH (Fig. 6B), and direct inhibition of the antioxidant 

systems [63]. Furthermore, the antioxidant enzymes may be lost due to increased 

membrane permeability [62]. This enhances ROS emission due to complex III 

impairment during late ischemia. 

  

Highlights 

 We measured mitochondrial H2O2 emission under different 

experimental conditions. 

 Succinate and elevated Ca2+ caused mitochondrial membrane 

permeability. 

 Succinate and elevated Ca2+ caused large increase in H2O2 from 

complex III. 

 Early addition of rotenone prevented mitochondrial membrane 

permeability. 

 Early addition of rotenone prevented the large increase in H2O2 

from complex III. 
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Abbreviations 

Δψ membrane potential 

AA antimycin A (5 μM) 

CCCP carbonyl cyanide-m-chlorophenylhydrazenone (4 μM) 

CON control (H2O) 

CsA cyclosporine A (0.5 μM) 

ETC electron transport chain 
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e[Ca2+] extra-mitochondrial Ca2+ 

FET forward electron transfer 

IMM inner mitochondrial membrane 

IR ischemia and reperfusion 

m[Ca2+] mitochondrial Ca2+ 

MIT mitochondria (0.5 mg/ml) 

mPTP mitochondrial permeability transition pore 

O2
˙− superoxide 

PYR pyruvate (10 mM) 

Q ubiquinone 

RCI respiratory control index 

RET reverse electron transfer 

ROS reactive oxygen species 

ROT rotenone (10 μM) 

RUR ruthenium red (25 μM) 

SUC succinate (10 mM) 

TCA tricarboxylic acid cycle 
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