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Abstract: 
In this paper, faults associated with the rotor of an induction machine are considered. More 
specifically, effects of adjacent and nonadjacent bar breakages on rotor fault diagnostics in squirrel-
cage induction machines are studied. It is shown that some nonadjacent bar breakages may result in 
the masking of the commonly used fault indices and, hence, may lead to a possible misdiagnosis of the 
machine. A discussion of the possible scenarios of these breakages as well as some conclusions 
regarding the types of squirrel-cage induction machines (number of poles, number of squirrel-cage 
bars, etc.) that may be more prone to these nonadjacent types of failures are presented. This 
discussion is supported through both simulation and experimental results. It is also shown that 
secondary fault effects can be used to diagnose such nonadjacent bar breakages. 

SECTION I. Introduction 
In recent years, condition monitoring as well as fault diagnostics of squirrel-cage induction machines 
received considerable attention from both industry and academia [1]–
[2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23]. A number of different 
techniques that address various types of the most common failures have been developed and 
implemented [1], [2]. Researchers were able to gain a better insight into the mechanisms of these 
failures and use this knowledge to both improve the design of the machine itself and develop the 
means to diagnose machine faults more effectively. 

Induction machine failures are commonly divided, based on the main machine components, into three 
major groups, namely, bearing, stator, and rotor faults [3]–[4][5][6]. According to a number of 
independent studies described in [3]–[4][5][6], about 40% of faults associated with induction machines 
are due to bearing failures. Meanwhile, faults associated with stator windings account for another 40% 
of induction machine failures [3]–[4][5][6]. It should be highlighted that, although mechanisms of 
stator and bearing failures may differ slightly between different types of electric machines, these types 
of faults are known to be a common problem in other types of electric machines, namely, synchronous, 
brushless dc, reluctance, etc. Furthermore, failures associated with rotors account for approximately 
10% of induction machine failures [3]–[4][5][6]. However, unlike bearing and stator faults, these faults 
are specific to squirrel-cage induction machines. 

In general, there are three major types of faults that can be associated with squirrel-cage rotor 
structures, namely: 1) interlaminar currents, sometimes referred to as interbar currents caused by 
shorts through the rotor core laminations; 2) rotor end-ring connector breakages; and 3) rotor-bar 
breakages. These faults may result from a wide variety of stresses as well as manufacturing 
defects [7]–[8][9]. Frequent overloading, both thermal and electrical, as well as excessive vibrations 
due to supply voltage unbalances, load variations, and frequent starting transients may result in 
accelerated failures of squirrel-cage rotor bars and other structural components [8]. 

Interlaminar currents result from damage to the lamination insulation coating either during the 
manufacturing process or during the operation of the motor. These interlaminar currents typically 
result in excessive rotor heating, which may in turn lead to a rise in the overall motor temperature and 
hence stress other motor components, such as armature winding insulation and motor bearings. 



Moreover, during normal motor operation, interlaminar currents may account for as much as one-third 
of all stray load losses of the machine, hence resulting in reduced efficiency [10], [11]. 

Cracked or broken squirrel-cage bar or end-ring connector faults produce undesired torque oscillations 
(pulsations) that may result in undesired effects on the mechanical load, as well as induce undesired 
vibrations that may further stress other motor and load components [12]. 

In this paper, only broken squirrel-cage bar faults are addressed. More specifically, the effects of both 
adjacent and nonadjacent faults on two previously developed rotor fault diagnostic techniques [13]–
[14][15][16][17][18][19][20][21][22] are studied. First, the spectral analysis of induction machine line 
currents, also known as motor current signature analysis (MCSA) [13]–[14][15][16][17][18], is used to 
diagnose various rotor faults. Second, the so-called magnetic field pendulous oscillation (MFPO) 
technique [19]–[20][21][22] is used to diagnose the same set of faults. It will be shown that some 
nonadjacent rotor-bar breakages result in the reduction of the fault indices of both the MCSA and 
MFPO techniques, hence significantly reducing chances of successful diagnosis of such faults. The 
problem of a complete breakage of one or more bars could develop in machines which are not 
monitored on a continuous basis, but are diagnosed/inspected at regularly scheduled maintenance 
intervals. In this case, a failure can go through an incipient stage to a complete breakage of one or 
more bars in the period between scheduled inspections. Hence, the possibility of nonadjacent bar 
failure exists and could pose a potential problem. Moreover, the likelihood of a nonadjacent fault is 
significantly increased in machines with a low number of rotor bars per pole, in which the number of 
bars between the breakages that would result in the fault masking effect is low. It will also be shown 
that secondary saturation effects that appear as a result of such nonadjacent rotor failures result in 
detectable oscillations of the rotor magnetic field at four times the slip frequency. Hence, these 
secondary saturation effects can be utilized for the diagnosis of such faults. 

Including this introductory section, this paper is organized into six sections. In the second section, some 
basic considerations of squirrel-cage broken-bar faults are presented. Three fault scenarios are 
considered, namely, adjacent bar breakages, nonadjacent bar breakages separated by half a pole-pitch, 
and nonadjacent bar breakages separated by one pole-pitch. In the third section, a magnetic 
equivalent circuit (MEC) model, described in [24]–[25][26][27][28][29], is used to simulate a case-study 
5-hp induction machine. In Section IV, two previously developed fault diagnostic techniques described 
in [13]–[14][15][16][17][18], [19]–[20][21][22] are reviewed, and their application to adjacent broken 
bar fault diagnostics is discussed. Also, in Section IV, the MEC model is used to verify the simple 
analysis presented in Section II. In Section V, experimental results of nonadjacent rotor faults, as well 
as the corresponding analysis and discussion of these results, are presented. Finally, conclusions and 
recommendations are presented in the last section. 

SECTION II. Rotor Fault Analysis 
A. Healthy Rotor 
In this section, an intuitive/qualitative analysis of the effects of both adjacent and nonadjacent bar 
breakages on the magnetic field distribution of the induction machine is presented. Consider an 
elementary two-pole induction machine with a squirrel-cage rotor shown in Fig. 1(a). For simplicity of 
argument, an eight-bar squirrel-cage configuration is utilized in this analysis. Also, shown 



in Fig. 1(a) are the axes of the rotor current sheet represented by the rotating rotor current sheet 

vector 𝐼𝐼
⇀
cr and the rotor magnetomotive force represented by the rotating rotor MMF vector ℱ

⇀
mr, in 

ampere-turns per pole. Shown in Fig. 1(b) is the current sheet produced by the individual squirrel-cage 
bar currents. This current sheet rotates in space at synchronous speed 𝜔𝜔syn, whereas the rotor is 
rotating at the rotor speed 𝜔𝜔𝑟𝑟. Hence, the relative speed between the rotor current sheet and the 
squirrel cage is equal to the slip speed. Accordingly, Fig. 1(a) and (b) shows a snapshot view of the 
current sheet and the rotor MMF position relative to the squirrel cage at a given time instant. As can 
be seen from Fig. 1(b), the current sheet axis is aligned with two bars carrying maximum positive and 

negative currents, at locations 3 and 7, whereas the axis of the rotor MMF ℱ
⇀
mr is 90° behind the 

current sheet axis and is aligned with the bars carrying zero current, at locations 1 and 5, respectively. 
There are two simplifying assumptions used throughout this section. First, the bar currents are 
sinusoidally time varying, resulting in a sinusoidally space-distributed current sheet. Second, there is no 
axial flux produced as a result of a bar breakage fault. In other words, the magnetic field is strictly 2-D, 
which means that the currents out of the bars and into the bars must sum to zero. 

 
Fig. 1. Healthy rotor: (a) Eight-bar squirrel-cage rotor. (b) Rotor current sheet. 
 

B. Rotor with One Broken Bar 
Here, the effects of one broken bar on the current sheet and rotor MMF are considered. As one can 
see from Fig. 2(a), there are four possible locations 1, 3, 5, and 7 where a bar breakage will not result in 
any dislocation of the current sheet axis, and, hence, will not produce a rotor MMF reorientation. 
When the broken bar reaches location 1 or 5, it does not result in any shift of the current sheet axis 
because the current that is supposed to be carried by the healthy bar at this location is negligible. 
Moreover, when the broken bar reaches location 3 or 7, it does not produce any axis shift due to the 
fact that the currents in the remaining (healthy) bars will redistribute to preserve the original healthy 
axis location. Accordingly, the remaining four locations of the bar breakage, namely, 2, 4, 6, and 8, will 
result in a current sheet axis shift which, in turn, will produce a shift in the rotor MMF axis. It should be 
noted that the fact that there are four instances in a slip cycle where the current sheet axis aligns with 
a healthy current sheet axis leads to the oscillation around the healthy axis at twice the slip frequency. 
Shown in Fig. 2(b) is the corresponding current sheet under the conditions of one broken rotor bar at a 
time instant when the broken bar reaches location 4. from Fig. 2(b) one should notice that, when the 
breakage reaches location 4, it results in the shift of the so-called current sheet axis of symmetry in the 
positive half-waveform by the angle Δ𝛾𝛾, which in turn results in the shift of both the overall current 
sheet and MMF axes by Δδ. The maximum shift of the rotor MMF axis Δ𝛿𝛿 was defined in [19]–
[20][21][22] as the swing angle and can be calculated through computation of voltage and current 
space vectors using standard line current and voltage measurements [19]–[20][21][22]. As was 
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mentioned earlier, this shifting of the current sheet and MMF axes takes place four times during one 
slip cycle and reaches its maximum absolute value at four locations, namely, 2, 4, 6, and 8. 

 
Fig. 2. One broken bar (broken bar at location 4): (a) Eight-bar squirrel-cage rotor. (b) Rotor current sheet. 
 

C. Rotor with Nonadjacent Bar Breakages 
Here, nonadjacent bar breakages are considered. More specifically, breakages separated by a half pole-
pitch and one pole-pitch are studied, where a pole-pitch measure is considered to be equal to the 
number of rotor bars per pole. It is shown here that these two nonadjacent breakage scenarios 
represent two special cases that provide the basis for understanding the effects of other nonadjacent 
rotor-bar breakages on motor performance and the ease or difficulty in diagnosing such bar breakages. 

1. Half Pole-Pitch 
Here, the effects of two broken bars, separated by a half pole-pitch (90° electrical), on the rotor 
current sheet and rotor MMF are considered. Using the example of the elementary eight-bar cage, the 
effects of two nonadjacent breakages separated by 90° are shown in Fig. 3(a). At the time instant 
shown in Fig. 3, the broken bars are at locations 2 and 4. As one can see from Fig. 3(a) and (b), the 
current sheet axis in the positive half-waveform in the case of two broken bars separated by half a 
pole-pitch is congruent with the current sheet axis in the positive half-waveform of the healthy case. 
Moreover, the axes of the current sheet and MMF will remain congruent with the axes of the healthy 
case throughout a slip cycle producing no detectable rotor MMF oscillation as a result of the fault, 
hence significantly reducing chances to successfully diagnose such a fault. This fault scenario 
represents the first special case of nonadjacent rotor faults. Moreover, chances of successful diagnosis, 
when the separation between the nonadjacent bar breakages approaches half pole-pitch, are 
significantly reduced. It should be noted that a similar masking effect on the fault indices of MCSA as 
well as on one of the model reference diagnostic techniques known as Vienna Method has been 
observed earlier in [2] and [23], respectively. However, no clear explanations of the causes of the fault 
masking effect have been presented. 

 
Fig. 3. Two broken bars half pole-pitch away (broken bars at locations 2 and 4): (a) Eight-bar squirrel-cage rotor. 
(b) Rotor current sheet. 
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2. One Pole-Pitch 
Here, the effects of two broken bars, separated by one pole-pitch (180° electrical), on the rotor current 
sheet and rotor MMF are considered. As can be seen from Fig. 4, the current sheet symmetry axes in 
the positive and negative half-waveforms in the case of two broken bars separated by one pole-pitch 
are shifted by an angle Δ𝛾𝛾 from the healthy axes, resulting in the overall shift of the rotor MMF. Hence, 
two breakages separated by one pole-pitch will result in the oscillation of the rotor MMF with a 
maximum value of the swing angle equal to Δ𝛿𝛿 = Δ𝛾𝛾. It can also be shown that this shift is identical to 
the shift produced by the two adjacent bar breakages, hence resulting in the same values of fault 
indices. This fault scenario represents the second special case of nonadjacent rotor faults. In the case 
when the separation between the nonadjacent bar breakages approaches one pole-pitch, the rotor 
MMF appears to be disturbed in the same way as in the case of an adjacent fault. Accordingly, from 
this simple analysis, it appears that there will be no masking effect manifested in the case when bar 
breakages are separated by a complete pole-pitch. 

 
Fig. 4. Two broken bars one pole-pitch away (broken bars at locations 4 and 8): (a) Eight-bar squirrel-cage rotor. 
(b) Rotor current sheet. 
 

In summary, this section presented a simple analysis that can be used to visualize effects produced by 
rotor-bar breakages on the squirrel-cage rotor spatial current distribution and the corresponding rotor 
MMF. It should be stressed that this simple qualitative approach to rotor fault visualization resulted 
from extensive fault simulation using MEC models and time-stepping finite-element (TSFE) analysis. 
Moreover, from the analysis previously presented, it should be observed that a rotor-bar breakage 
results in a slight reduction of the magnitude of rotor MMF; however, more importantly, it results in 
the oscillation of the rotor MMF, which in turn, produces the detectable magnetic field disturbance. 
This field disturbance may manifest itself in a number of ways that can be used to detect such a fault. 
More specifically, it reflects itself in the stator currents by modulating the amplitudes of line currents. 
It also produces detectable torque oscillations, which may, in turn, result in consequent speed 
oscillations. 

SECTION III. MEC Approach to Induction Machine Modeling 
In this section, the development of the MEC model for fault simulation studies is briefly discussed. The 
MEC modeling approach has been successfully used to model a variety of electric machines under 
various healthy and faulty conditions [24]–[25][26][27][28]. 

The MEC model allows one to incorporate space harmonics due to discrete winding distribution, stator 
and rotor slotting, as well as the saliency effect caused by the saturation of the magnetic material [24]–
[25][26][27]. Moreover, the deep-bar effect, also known as the skin effect, can be included in the 
solution to provide a more realistic transient model of the machine [24]. The MEC model provides 
reasonably accurate results and relatively small computation time, when compared to the TSFE model. 
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Finite-element models, in general, provide a higher degree of space discretization and, hence, a more 
accurate solution, when compared to the MEC approach. However, the computational time required 
by a finite-element model is significantly increased due to its complexity. 

A case-study 5-hp 60-Hz 6.8-A 1165-r/min 0.777-p.f. squirrel-cage induction machine with 36 stator 
slots and 45 rotor slots has a double-layer stator winding with the layout shown in Table I. In Table I, 
“Outer” refers to the part of the stator slot closest to the air gap, whereas “Inner” refers to the part of 
the slot closest to the backiron/yoke. Moreover, this machine has two slots per pole per phase, a total 
of 36 coils with 20 turns per coil. 



Table I Stator Winding Layout of 5-hp Squirrel-Cage Induction Machine 

Inner A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ 
Outer A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- A+ A+ C- C- B+ B+ A- A- C+ C+ B- B- 
Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
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A stator slot with a double-layer winding, such as the one shown in Table I, can be represented by a 
simplified MEC [24] shown in Fig. 5(a). In this magnetic circuit representation of the stator slot, it is 
assumed that the magnetic flux can flow in either of the two directions, namely, radial and/or 
tangential. Meanwhile, MMF sources ℱ𝑆𝑆 are placed in the stator teeth in order to represent the effect 
of the current-carrying coil sides. Also, the reluctance values representing the regions of the stator 
where the magnetic material is present, namely, ℜ𝑆𝑆TOOTH  and ℜ𝑆𝑆YOKE  of Fig. 5(a), can be varied 
depending on the value of the flux density. Therefore, varying these reluctances, depending on the 
value of the flux density, enables one to capture, in the solution, the effects of the local saturation of 
the magnetic material in the stator teeth. In this MEC representation of the stator slot, stator teeth 
and backiron/yoke are characterized by single reluctance values, namely, ℜ𝑆𝑆TOOTH  and ℜ𝑆𝑆YOKE , 
respectively. Meanwhile, tangential slot leakage reluctances are lumped into a single reluctance 
value ℜ𝑆𝑆TAN . Here, it should be mentioned that the stator slot tangential leakage reluctance ℜ𝑆𝑆TAN  is a 
function of the slot geometry only and, hence, will remain constant during the operation of the 
machine. Also, it should be noted that index 𝑚𝑚 is used here to distinguish between the individual stator 
tooth reluctances, which may vary from tooth to tooth if saturation needs to be considered. Assuming 
a steady-state operation of the machine, the rotor slot can be modeled as shown in Fig. 5(b). It should 
be highlighted that the MEC modeling approach can be utilized for various transient simulations if the 
rotor slot is divided into a sufficient number of sections [24]. Another approach of including the deep-
bar (skin) effect in the solution is by updating the reactance of the rotor bar (depending on the rotor 
speed) at every time step of the simulation. 

 
Fig. 5. Simplified MEC representation of (a) double-layer stator winding and (b) rotor slot (without deep-bar 
effect). 
 

Now that both the stator and rotor slot MECs are defined, a complete MEC model of the induction 
machine can be assembled. This model is shown in Fig. 6. In this figure, air-gap reluctances are 
included to provide the coupling between the rotor and the stator teeth. It should be noted that 
electromechanical energy conversion takes place in the air gap; hence, it is crucial to model the air-gap 
reluctances as accurately as possible. Moreover, from Fig. 6, it should be noted that the MEC model is 
assembled such that every tooth on the stator is coupled to every tooth on the rotor and vice versa. 
Air-gap reluctances depend on the relative position of the corresponding stator and rotor teeth. Hence, 
the value of the air-gap reluctance is a function of geometry (relative position of the rotor with respect 
to the stator). More specifically, an air-gap reluctance is a function of the area of overlap of stator and 
rotor teeth. To avoid possible numerical difficulties in a computer simulation associated with 
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possibilities of dealing with infinite air-gap reluctances, one should invert the reluctance values to 
obtain the corresponding permeance values. from Fig. 6, one can proceed with the development of the 
system of algebraic equations. The nodal-potential method can be used to generate the required 
equations. The nodes used to generate the equations are ℱ1(m), ℱ2(m), ℱ3(n), and ℱ4(n), where the 
index 𝑚𝑚 identifies a stator tooth and the index 𝑛𝑛 is used to identify a specific rotor tooth. Hence, in the 
case-study motor with 𝑁𝑁𝑆𝑆 = 36 stator slots and 𝑁𝑁𝑅𝑅 = 45 rotor slots, the index 𝑚𝑚 varies from 1 to 36 
and the index 𝑛𝑛 varies from 1 to 45. Considering Fig. 6 with the reluctances substituted with the 
corresponding permeances, one can develop four sets of nodal equations as follows: 

⎣
⎢
⎢
⎡
𝐀𝐀11 0 0 0

0 𝐀𝐀22 𝐀𝐀23 0
0 𝐀𝐀32 𝐀𝐀33 0
0 0 0 𝐀𝐀44⎦

⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝐹𝐹1
𝐹𝐹2
𝐹𝐹3
𝐹𝐹4⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
−𝚽𝚽𝑆𝑆
𝚽𝚽𝑆𝑆
−𝚽𝚽𝑅𝑅
𝚽𝚽𝑅𝑅
′ ⎦
⎥
⎥
⎤

 

(1) 

where the vector of rotor tooth fluxes 𝚽𝚽𝑅𝑅
′  is expressed as follows: 

𝚽𝚽𝑅𝑅
′ = [ΦR(1) ΦR(2) ΦR(3) ⋯ ΦR(𝑁𝑁𝑅𝑅−1)]T. 

(2) 

In order to provide a relationship between the nodal MMF vectors ℱ1, ℱ2, ℱ3, and ℱ4 and the 
corresponding individual stator and rotor tooth MMF vectors ℱ𝑆𝑆 and ℱ𝑅𝑅, produced by the current-
carrying coil sides, two additional sets of equations have to be introduced. from Fig. 6, these can be 
derived as follows: 

𝐹𝐹𝑆𝑆 = 𝐹𝐹2 − 𝐹𝐹1 + ℜ𝑆𝑆𝚽𝚽𝑆𝑆
𝐹𝐹𝑅𝑅 = 𝐹𝐹3 − 𝐹𝐹4′ − ℜ𝑅𝑅𝚽𝚽𝑅𝑅

 

(3)(4) 

where ℱ4 
′ = [ℱ4(1)ℱ4(2)ℱ4(3) ⋯ℱ4�𝑁𝑁𝑅𝑅−1�0]T. Also, ℜ𝑆𝑆 and ℜ𝑅𝑅 are the diagonal matrices of the stator 

and rotor tooth reluctances. 

 
Fig. 6. MEC representation of the 5-hp induction machine (with closed rotor slot). 
 

In order to derive a relationship between the stator phase flux linkages 𝜆𝜆𝑎𝑎, 𝜆𝜆𝑏𝑏, and 𝜆𝜆𝑐𝑐 and the 
individual stator tooth fluxes 𝚽𝚽𝑆𝑆 and the stator line currents 𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏, and 𝑖𝑖𝑐𝑐 and the individual tooth 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/5282654/4738347/4738347-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/5282654/4738347/4738347-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/5282654/4738347/4738347-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/5282654/4738347/4738347-fig-6-source-large.gif


MMFs ℱ𝑆𝑆, one has to consider the stator winding layout provided in Table I. An analytical approach to 
developing a relationship between the stator phase flux linkages and individual stator tooth fluxes 
based on parameters such as the type of the winding, the number of slots, the number coils per phase 
per pole, the winding connection, etc., has been developed in [24]. For this case-study 5-hp squirrel-
cage induction machine, with double-layer winding provided in Table I, these relationships are 
provided in 

 

𝝀𝝀𝑎𝑎𝑏𝑏𝑐𝑐 = 𝐰𝐰′𝚽𝚽𝑆𝑆
𝐹𝐹𝑆𝑆 = 𝐰𝐰′′𝐢𝐢𝑎𝑎𝑏𝑏𝑐𝑐

 

(5)(6) 

where 𝑁𝑁 is the number of turns per coil and 𝐰𝐰′ and 𝐰𝐰′′ have been defined as flux and MMF 
connection matrices in [24]. For the squirrel-cage rotor, the procedure is greatly simplified. In a 
squirrel-cage rotor, the tooth fluxes 𝚽𝚽𝑅𝑅 are equal to the rotor loop flux linkages 𝝀𝝀𝑅𝑅. Meanwhile, rotor 
tooth MMFs 𝐹𝐹𝑅𝑅 can be assumed equal to the rotor loop currents 𝐢𝐢𝑅𝑅. The expression for 
electromagnetic torque can be derived, based on electromechanical energy conversion principles, from 
the MEC model directly [24] and is given as follows: 

𝑇𝑇em =
1
2
�  
𝑁𝑁𝑆𝑆

𝑚𝑚=1

�  
𝑁𝑁𝑅𝑅

𝑛𝑛=1

�𝐹𝐹2(𝑚𝑚) − 𝐹𝐹3(𝑛𝑛)�
2 𝑑𝑑𝑃𝑃AG(𝑚𝑚,𝑛𝑛)

𝑑𝑑𝜃𝜃𝑅𝑅
 

(7) 

where 𝜃𝜃𝑅𝑅  is the rotor position in mechanical measure. 

A block diagram of a complete MEC model coupled to the electrical and mechanical systems is shown 
in Fig. 7. In Fig. 7, one should note the lack of a minus sign in the expression of the rotor flux linkage. 
This is because of the orientation of the positive direction of flux adopted throughout the model, 
resulting in the lack of the minus sign in the global model. 

 
Fig. 7. Block diagram of a complete squirrel-cage induction machine MEC model. 
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The parameters of the MEC model are provided in Table II. It should be noted that, if the saturation of 
the magnetic material does not need to be considered, the value of relative permeability 𝜇𝜇𝑅𝑅 =
11000 in the linear region of the B–H curve can be used for permeance calculations. The developed 
MEC model of a case-study 5-hp induction machine has been verified with respect to both the TSFE 
model simulations and experimental tests for various healthy and faulty conditions [29]. The results 
obtained from the simulations of the MEC model have been found to be in good agreement with both 
the TSFE model and the experimental tests [29]. Further MEC model validation is presented in the 
following section. 

Table II Relevant MEC Model Parameters 

PARAMETER STATOR ROTOR 
Stator Resistance, 𝑟𝑟𝑠𝑠,[Ω/phase] 1.34  
Rotor bar resistance, 𝑟𝑟𝑏𝑏 [µΩ]  57.1 
Ring resistance bar-to-bar , 𝑟𝑟𝑒𝑒𝑟𝑟, [µΩ]  3.20 
Tooth reluctance, 𝔑𝔑, [H−1] (2.71 x 107)/µR (2.69 x 107)/µR 
Tangential permeance, 𝑃𝑃𝑇𝑇𝑇𝑇𝑁𝑁, [H] 4.44 x 10-7 2.70 x I0-7 
Yoke/backiron permeance, 𝑃𝑃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌, [H] l.27 x 10-3 1.20 x 10-2 
Maximum value of air-gap permeance, 𝑃𝑃𝑇𝑇𝐴𝐴MAX, [H] 4.21 x 10-6  

𝜇𝜇𝑅𝑅  = relative permeability 
 

SECTION IV. Diagnostics Techniques 
In this section, two diagnostic techniques that have been previously established in the literature are 
summarized. Both of these techniques have proven to be reliable for diagnostics of adjacent rotor-bar 
breakages. The main purpose of this section is to establish the necessary background required for rotor 
fault analysis that will follow in the next section. Hence, this section will concentrate on the basic 
application of these techniques to rotor fault diagnostics in squirrel-cage induction machines. 

A. Motor Current Signature Analysis (MCSA) 
The spectrum analysis of induction machine line currents, also known as MCSA, is one of the most 
commonly used rotor fault diagnostic techniques [13]–[14][15][16][17][18]. In this technique, 
sidebands adjacent to the supply fundamental frequency component, present in the frequency 
spectrum of motor currents, are used to diagnose the extent of the fault. As has been shown 
in Section II, in the case of a broken bar fault, the magnetic field produced by the rotor will oscillate at 
twice the slip frequency 2𝑠𝑠𝑓𝑓syn. According to Faraday's Law, this oscillating magnetic field will induce 
an electromotive force (EMF) in the stator windings, which in turn, will result in the stator current 
component at the same 2𝑠𝑠𝑓𝑓syn frequency. However, since the magnetic field produced by rotor 
currents is also moving in space at synchronous speed, it will also induce an EMF and a consequent 
current at synchronous frequency 𝑓𝑓syn. Moreover, since, in the motoring region, the squirrel-cage rotor 
structure is moving at a speed lower than synchronous, the resulting stator EMF and the corresponding 
stator current will have a component at a frequency equal to (𝑓𝑓syn − 2𝑠𝑠𝑓𝑓syn) = 𝑓𝑓syn(1 − 2𝑠𝑠). 
This 𝑓𝑓syn(1 − 2𝑠𝑠) frequency component in the stator current spectrum can be used for rotor fault 
diagnostic purposes and is usually referred to as the lower sideband (LSB) component. Shown 
in Figs. 8 and 9 are the stator line current spectra under healthy and one-broken-rotor-bar conditions. 



One should notice the lack of a distinguishable LSB component in the line current spectrum of the 
healthy machine. On the other hand, in the case of one broken bar, there is a detectable LSB 
component. Moreover, as one can see from Fig. 9, there is an additional component at a frequency 
equal to 𝑓𝑓syn(1 + 2𝑠𝑠). This 𝑓𝑓syn(1 + 2𝑠𝑠) is the so-called upper sideband (USB) component. The 
existence of this frequency component can be traced back to the LSB component. In other words, the 
current component at 𝑓𝑓syn(1 − 2𝑠𝑠) produces a consequent torque pulsation at twice the slip 
frequency 2𝑠𝑠𝑓𝑓syn. This torque pulsation may, in turn, result in the consequent speed pulsations at the 
same frequency 2𝑠𝑠𝑓𝑓syn, which will produce a component in the stator current at 𝑓𝑓syn(1 + 2𝑠𝑠). This 
process of interaction of stator current harmonics, torque oscillation, and the consequent speed ripple 
will continue to induce stator current harmonics at (1 ± 𝑘𝑘𝑠𝑠)𝑓𝑓syn (where 𝑘𝑘 = 2,4,6 …). However, the 
existence of a detectable speed ripple and the consequent USB component is not guaranteed in cases 
where the total inertia of the motor-load system is high. This dependence of the magnitude of the USB 
component on the motor-load inertia has been studied in detail in [15] and [22]. 

 
Fig. 8. Stator line current spectrum of 5-hp induction machine under healthy full-load conditions (30 Nm, ∼1165 
r/min): (a) Experimental test. (b) MEC model supplied with measured voltages. 

 
Fig. 9. Stator line current spectrum of 5-hp induction machine under one-broken-bar full-load conditions (30 
Nm, ∼1165 r/min): (a) Experimental test. (b) MEC model supplied with measured voltages. 
 

B. Magnetic Field Pendulous Oscillation (MFPO) 
A so-called MFPO technique, where time-domain values of motor line currents and voltages are used 
to generate the corresponding space vectors and the oscillation of the angle between these space 
vectors is used as the fault index, has been introduced in [19]–[20][21][22]. Again, referring back 
to Section II, where it has been shown that a broken bar results in the oscillation of the rotor MMF 
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around its healthy axis at twice the slip frequency 2𝑠𝑠𝑓𝑓syn, one can take a different approach from that 
chosen in the MCSA analysis. Considering the overall effect of the rotor fault on the resultant magnetic 
field distribution in the machine, one can deduce that the oscillation of the rotor MMF will result in a 
corresponding oscillation of the stator and rotor resultant MMF. As has been shown in [19]–
[20][21][22], this oscillation of the resultant MMF can be observed by monitoring the position of the 

stator current space vector 𝑖𝑖
⇀
𝑠𝑠(𝑡𝑡). More specifically, the relative motion of the stator current space 

vector 𝑖𝑖
⇀
𝑠𝑠(𝑡𝑡) with respect to the stator voltage space vector 𝑣𝑣

⇀
𝑠𝑠(𝑡𝑡) can be used for diagnostics 

purposes [19]–[20][21][22]. Using three voltage and current measurements, stator current and voltage 
space vectors can be calculated as follows [19]–[20][21][22]: 

𝑖𝑖
⇀
𝑠𝑠(𝑡𝑡) =

2
3

((𝑖𝑖𝑎𝑎(𝑡𝑡) − 𝑖𝑖𝑏𝑏(𝑡𝑡)) + 𝛼𝛼(𝑖𝑖𝑏𝑏(𝑡𝑡) − 𝑖𝑖𝑐𝑐(𝑡𝑡))

+𝛼𝛼2(𝑖𝑖𝑐𝑐(𝑡𝑡) − 𝑖𝑖𝑎𝑎(𝑡𝑡)))

𝑣𝑣
⇀
𝑠𝑠(𝑡𝑡) =

2
3
�𝑣𝑣𝑎𝑎𝑏𝑏(𝑡𝑡) + 𝛼𝛼�𝑣𝑣𝑏𝑏𝑐𝑐(𝑡𝑡)� + 𝛼𝛼2�𝑣𝑣𝑐𝑐𝑎𝑎(𝑡𝑡)��

 

(8)(9) 

where 𝛼𝛼 is the complex space-vector operator provided in 

𝛼𝛼 = 𝑒𝑒𝑗𝑗
2𝜋𝜋
3 . 

(10) 

Meanwhile, the pendulous oscillation angle 𝛿𝛿(𝑡𝑡) is defined in [19]–[20][21][22] as the angle between 
the current and voltage space vectors can be expressed as follows: 

𝛿𝛿(𝑡𝑡) = ∠𝑖𝑖
⇀
𝑠𝑠(𝑡𝑡) − ∠𝑣𝑣

⇀
𝑠𝑠(𝑡𝑡). 

(11) 

Furthermore, 𝛿𝛿1(𝑡𝑡) is the fundamental component of the pendulous oscillation, and the swing 
angle Δ𝛿𝛿1 is the peak-to-peak value of the fundamental component of pendulous oscillation 𝛿𝛿1(𝑡𝑡). In 
this diagnostics technique, the swing angle Δ𝛿𝛿1 is considered as the fault index which can be used to 
diagnose the extent of the fault. Here, the swing angle Δ𝛿𝛿1 is similar to the LSB component of the 
MCSA diagnostics approach in the sense that both LSB and swing angle Δ𝛿𝛿1 are used as fault indices. 

The pendulous oscillation is a time-domain phenomenon and, hence, can be easily correlated with the 
physical processes taking place in the machine during the fault. Here, this property of the MFPO will be 
used to further verify the simplified analysis presented in Section II, as well as to gain a better 
understanding of the effects of the fault. In Section II, it has been stated that the highest distortion of 
rotor MMF axis occurs at time instants when the breakage reaches the locations halfway between the 
bar carrying the maximum absolute value of the current and the bar carrying no current. In other 
words, when the breakage is 45° (electrical) from the bar carrying the maximum absolute value of the 



current, the breakage has the largest impact on the orientation of the rotor MMF axis. In the simple 
eight-bar squirrel-cage rotor of Section II, considering Fig. 2(a) and (b), these locations of maximum 
MMF disturbance are 2, 4, 6, and 8. It has also been stated that the rotor fault does not have any effect 
on the rotor MMF orientation at time instants where the broken bar is supposed to carry the maximum 
absolute value of the current, as well as at locations where it is supposed to carry no current. Again, 
considering Fig. 2(a) and (b), the locations of bar breakage, which will not have any effect on the 
location of the rotor MMF axis and the machine will appear as if healthy, are locations 1, 3, 5, and 7. 
This means that, at time instants when the breakage reaches locations 1, 3, 5, and 7, the value of the 
pendulous oscillation angle 𝛿𝛿(𝑡𝑡) should correspond/intersect with that of the healthy case. 

Now, in order to verify the analysis presented in Section II, consider a time-domain profile of 
pendulous oscillation angle 𝛿𝛿(𝑡𝑡) under the condition of one broken rotor bar obtained from the MEC 
simulation of the case-study 5-hp induction machine. This time-domain profile of pendulous oscillation 
is shown over a complete slip cycle in Fig. 10. As has been previously mentioned in the case of a one-
broken-bar fault, the pendulous oscillation has a frequency equal to twice the slip frequency 2𝑠𝑠𝑓𝑓syn. 
Consequently, as can be observed from Fig. 10, there are four time instances in a slip cycle where the 
pendulous oscillation angle reaches its maximum absolute value. Considering Fig. 10, these time 
instances are 𝑡𝑡1, 𝑡𝑡3, 𝑡𝑡5, and 𝑡𝑡7. Moreover, there are four time instances in a slip cycle where the bar 
breakage does not have any effect on the orientation of the rotor MMF. In other words, there are four 
time instances in a slip cycle where the axis of the faulty rotor MMF aligns with the axis of the healthy 
MMF. In Fig. 10, these time instances are labeled as follows: 𝑡𝑡2, 𝑡𝑡4, 𝑡𝑡6, and 𝑡𝑡8. In order to verify the 
analysis previously presented, consider the current sheet distributions at time instances 𝑡𝑡1 to 𝑡𝑡8 shown 
in Fig. 11(a)–(h), respectively. These current sheet distributions are readily available from both the 
MEC and the TSFE simulations but are rather difficult to obtain in an experimental setting. Therefore, 
here in Fig. 11(a)–(h), only MEC simulation results are presented. Moreover, it should be mentioned 
that, in Fig. 11, bar number “12” is assumed to be broken. 

 
Fig. 10. Pendulous oscillation time-domain profile over one slip cycle (one-broken-bar full-load (30 Nm, ∼1165 
r/min) MEC simulation). 
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Fig. 11. Rotor current sheet profiles at various time instants (shown in Fig. 10) during one slip cycle 
(bar#12 broken, MEC simulation). (a) Rotor current sheet at time instant 𝑡𝑡1. (b) Rotor current sheet at 
time instant 𝑡𝑡2. (c) Rotor current sheet at time instant 𝑡𝑡3. (d) Rotor current sheet at time instant 𝑡𝑡4. (e) 
Rotor current sheet at time instant 𝑡𝑡5. (f) Rotor current sheet at time instant t6. (g) Rotor current sheet 
at time instant 𝑡𝑡7. (h) Rotor current sheet at time instant 𝑡𝑡8. 

As can be seen from the pendulous oscillation profile of Fig. 10 and the corresponding current sheet 
profiles shown in Fig. 11(a)–(h), the simple analysis presented in Section II is indeed valid and, hence, 
can be used to visualize the effects of such rotor faults. In addition, from Fig. 11, one should notice that 
magnitudes of bar currents immediately adjacent to the fault are not significantly increased. In this 5-
hp machine, the increase in the bar-current magnitudes of the bars immediately adjacent to the fault is 
approximately 22%, when compared to the healthy bar-current magnitudes under the same load 
conditions. 

SECTION V. Experimental Results 
In this section, the experimental results for a number of nonadjacent bar breakage scenarios are 
considered. In the first part of this section, experimental results for nonadjacent bar breakages 
separated by one-half pole-pitch (90° electrical) are considered. Meanwhile, in the second part of this 
section, rotor faults separated by one complete (180° electrical) pole-pitch are studied. As has been 
mentioned in Section II, in this paper, a pole-pitch measure is considered to be the number of rotor 
bars per pole. For the case-study 5-hp machine (45 bars, six poles) used in this paper, this number is 
fractional and equal to 7 1/2 bars per pole. It should also be mentioned that the experimental results 
presented in this section were obtained at rated operating conditions with the machine supplied by a 
balanced three-phase sinusoidal voltage supply. For this case-study 5-hp machine, rated conditions 
correspond to a torque of 30 Nm at a shaft speed of 1165 r/min. 

A. Rotor-Bar Breakages Separated by Half Pole-Pitch 
Here, experimental results of the machine operating under conditions of broken bars separated by a 
half pole-pitch (90° electrical) are presented. The results are evaluated using the two diagnostic 
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techniques, namely, MCSA and MFPO [13]–[14][15][16][17][18][19][20][21][22]. Two fault scenarios 
are considered, namely, two broken bars separated by one-half pole-pitch and 𝑁𝑁𝑏𝑏 broken bars each 
separated by one-half pole-pitch from the other, where 𝑁𝑁𝑏𝑏 is an integer. 

1. Two Broken Bars Separated by Half Pole-Pitch 

As has been previously shown in Section II, such faults are difficult to diagnose because of the fault 
masking that takes place when two bars are separated by one-half pole-pitch (90° electrical). However, 
as will be shown in this section, these nonadjacent faults can still be diagnosed using secondary 
saturation effects that appear under such fault conditions. 

Shown in Fig. 12(a) is the cross section of the case-study machine showing the locations of nonadjacent 
rotor-bar breakages separated by approximately one-half pole-pitch (90 ° electrical). Shown 
in Fig. 13(a) are the experimental results evaluated using the MCSA diagnostic technique. Also, for 
purposes of comparison, shown in Fig. 13 are the results for healthy and two adjacent bar breakage 
cases. from Fig. 13, one should notice that both LSB and USB components at frequencies equal to (1 ±
2𝑠𝑠)𝑓𝑓syn are significantly reduced in the case of the nonadjacent fault. Hence, when the original MCSA 
approach is used to diagnose this type of fault, the chances of successful diagnosis of the machine 
under such nonadjacent bar breakage are significantly reduced. Moreover, upon careful examination 
of Fig. 13, one should notice that, in the case of the nonadjacent fault, the LSB component at a 
frequency equal to (1 − 2𝑠𝑠)𝑓𝑓syn, which is generally used as the primary fault index in the MCSA 
approach, corresponds to the LSB of the healthy machine. 

 
Fig. 12. Cross section of a case-study 5-hp squirrel-cage induction machine showing locations of nonadjacent bar 
breakages separated by (a) half pole-pitch and (b) one pole-pitch. 

 
Fig. 13. Current frequency spectrum (MCSA): (a) Two broken bars separated by half pole-pitch, 90° electrical. (b) 
Healthy conditions. (c) Two adjacent broken bars. Experimental tests (30 Nm, ∼1165 r/min). 
 

In Fig. 14, the same experimental results are evaluated using the MFPO technique. In these figures, the 
time-domain profiles of pendulous oscillation are plotted over a time period equal to approximately 
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one slip cycle 1/𝑠𝑠𝑓𝑓syn. Again, similar to results obtained using the original MCSA approach, in the case 
of a nonadjacent rotor fault, the swing angle fault index Δ𝛿𝛿1 is significantly reduced. One should also 
notice that the frequency of the pendulous oscillation doubles in the case of the nonadjacent rotor 
fault. Consequently, referring back to the frequency spectrum of the MCSA approach (Fig. 13) in the 
case of the nonadjacent rotor-bar breakage fault, one should expect detectable sidebands at 
frequencies equal to (1 ± 4𝑠𝑠)𝑓𝑓syn. These sideband components are shown in Fig. 15(a). Moreover, one 
should also notice the lack of these components in the frequency spectra of the healthy machine 
[Fig. 15(b)] and the machine with two adjacent bar breakages [Fig. 15(c)]. This alludes to the fact that, 
in the case when the classic LSB component at (1 − 2𝑠𝑠)𝑓𝑓syn is not present, one could use the LSB 
component at (1 − 4𝑠𝑠)𝑓𝑓syn to detect such nonadjacent faults. It should be mentioned that, in the case 
of adjacent bar breakage faults, sideband components at (1 ± 2𝑠𝑠)𝑓𝑓syn may result in other sideband 
components including sidebands at (1 ± 4𝑠𝑠)𝑓𝑓syn. However, in the case of nonadjacent rotor faults 
separated by one-half pole-pitch, the (1 ± 4𝑠𝑠)𝑓𝑓syn components appear due to secondary local rotor 
saturation effects adjacent to the location of these breakages. In the case of a broken rotor bar, the 
rotor teeth immediately adjacent to the broken bar are subjected to higher flux densities which, in 
turn, locally affect the magnetic core permeability in these teeth. This results in the local saturation 
patterns that appear twice every slip cycle. Moreover, in the case of two nonadjacent bar breakages, 
this will result in saturation patterns appearing four times during one slip cycle. Consequently, these 
patterns modulate the stator currents and/or produce torque pulsations, which in turn, may result in 
consequent speed oscillation and hence lead to subtle but detectable fault indices. 

 
Fig. 14. Pendulous oscillation time-domain profile (MFPO): (a) Two broken bars separated by half pole-pitch, 90° 
electrical. (b) Healthy conditions. (c) Two adjacent broken bars. Experimental tests (30 Nm, ∼1165 r/min). 

 
Fig. 15. Current frequency spectrum (MCSA expanded frequency axis of Fig. 13): (a) Two broken bars 
separated by half pole-pitch, 90° electrical. (b) Healthy conditions. (c) Two adjacent broken bars. 
Experimental tests (30 Nm, ∼1165 r/min). 
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2. 𝑁𝑁𝑏𝑏 Broken Bars Separated by Half Pole-Pitch 
In the previous section, it has been shown that two broken bars separated by one-half pole-
pitch 𝑁𝑁𝑏𝑏=2 result in a significant reduction of conventional fault indices, which may lead to a 
misdiagnosis of such faults. Moreover, from the analysis presented in the previous section, one can 
safely conclude that, in cases when 𝑁𝑁𝑏𝑏 is equal to an even number, fault masking will take place. Here, 
the effects of an odd number of broken bars, each separated by a half pole-pitch, on rotor fault 
diagnostics are investigated. More precisely, three bars separated by a half pole-pitch 𝑁𝑁𝑏𝑏=3 are 
considered. 

Shown in Fig. 16(a) are the experimental results evaluated using the MCSA diagnostic technique in the 
case when the squirrel-cage rotor has three bar breakages, each separated by one-half pole-
pitch, 𝑁𝑁𝑏𝑏=3. For comparison purposes, Fig. 16(b) shows the experimental results in the case when the 
squirrel-cage rotor has only one broken bar. Considering Fig. 16(a) and (b), one should notice that, in 
both cases, the LSB components at (1 − 2𝑠𝑠)𝑓𝑓syn are very close in value. More specifically, in the case 
of three broken bars, each separated by half pole-pitch, |LSB2𝑠𝑠𝑠𝑠| = −44.20dB, whereas in the case of 
one broken bar, |LSB2𝑠𝑠𝑠𝑠| = −44.27dB. Also, in the case of three broken bars, each separated by one-
half pole-pitch, one should notice a set of distinct sideband components at (1 ± 4𝑠𝑠)𝑓𝑓syn, which hint at 
the possibility of the presence of additional nonadjacent faults. The same experimental results have 
been processed using MFPO diagnostic technique. The corresponding time-domain profiles of the 
pendulous oscillation are shown in Fig. 17. One should note that, in both cases, the values of the swing 
angles are in close agreement. This means that, in the case of three bar breakages 𝑁𝑁𝑏𝑏=3, separated by 
one-half pole-pitch, both diagnostic techniques yield fault indices corresponding to one broken bar. 
from the analysis previously presented, one should notice that, in the case of an odd number of 
nonadjacent bar breakages, each separated by one-half pole-pitch, conventional fault diagnostic 
indices, such as LSB2𝑠𝑠𝑠𝑠 and/or swing angle Δ𝛿𝛿1, yield values equivalent to one broken rotor bar. In 
other words, squirrel-cage rotors subjected to such faults can be easily misdiagnosed as having one bar 
breakage. from the previously presented results, one can safely conclude that, in the case of 𝑁𝑁𝑏𝑏 equal 
to an odd number (3, 5, 7, …), fault indices corresponding to one rotor-bar breakage will be produced. 

 
Fig. 16. Current frequency spectrum (MCSA): (a) Three broken bars separated by half pole-pitch, 90° electrical. 
(b) One broken bar. Experimental tests (30 Nm, ∼1165 r/min). 
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Fig. 17. Pendulous oscillation time-domain profile (MFPO): (a) Three broken bars separated by half pole-pitch, 
90° electrical. (b) One broken bar. Experimental tests (30 Nm, ∼1165 r/min). 
 

B. Rotor-Bar Breakages Separated by One Pole-Pitch 
Here, experimental results for broken bars separated by one pole-pitch (180° electrical) are presented. 
Again, the experimental results are evaluated using the two diagnostic techniques described in the 
previous sections. Similar to the previous section, two fault scenarios are considered, namely, two 
broken bars separated by one pole-pitch and 𝑁𝑁𝑏𝑏 broken bars separated by one pole-pitch. 

1. Two Broken Bars Separated by One Pole-Pitch 
Shown in Fig. 18(a) are the experimental results obtained for the case of two broken bars separated by 
one pole-pitch evaluated using the MCSA diagnostic technique. Also, for comparison purposes, results 
for two adjacent bar breakages are shown in Fig. 18(b). Comparing Fig. 18(a) and (b), one should notice 
that the magnitudes of the LSB components at (1 − 2𝑠𝑠)𝑓𝑓syn are in close agreement. More specifically, 
in the case of two bars separated by one pole-pitch, |LSB2𝑠𝑠𝑠𝑠| = −38.00dB, which is in close agreement 
with the value obtained for the two adjacent bar fault |LSB2𝑠𝑠𝑠𝑠| = −40.05dB. Results obtained using 
the MCSA diagnostic technique have been verified using the MFPO approach. Shown in Fig. 19(a) and 
(b) are the pendulous oscillation time-domain profiles corresponding to the two fault scenarios. Again, 
one should notice a very close agreement between the swing angle values. This indicates that such 
nonadjacent faults yield fault indices (LSB2𝑠𝑠𝑠𝑠, Δ𝛿𝛿1) corresponding to the adjacent faults with the same 
number of bar breakages. 

 
Fig. 18. Current frequency spectrum (MCSA): (a) Two broken bars separated by one pole-pitch, 180° electrical. 
(b) Two adjacent broken bars. Experimental tests (30 Nm, ∼1165 r/min). 
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Fig. 19. Pendulous oscillation time-domain profile (MFPO): (a) Two broken bars separated by half pole-pitch, 
180° electrical. (b) Two adjacent broken bars. Experimental tests (30 Nm, ∼1165 r/min). 
 

2. 𝑁𝑁𝑏𝑏 Broken Bars Separated by One Pole-Pitch 
In the previous section, it has been shown that, in the case of two nonadjacent rotor-bar breakage 
faults separated by one pole-pitch (180° electrical), the fault indices (LSB2𝑠𝑠𝑠𝑠, Δ𝛿𝛿1) corresponding to two 
adjacent bar breakages are produced. These results can be extended to show that, in cases 
when 𝑁𝑁𝑏𝑏 nonadjacent bar breakages are separated from another by one pole-pitch, fault indices 
corresponding to 𝑁𝑁𝑏𝑏 adjacent bar breakages will be produced. Hence, no difficulty should arise in 
diagnosing the presence of broken bars in the machine under these fault conditions. In 
summary, Table III delineates the different fault scenarios and fault indices that were studied in this 
paper. 
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Table III Summary of Different Adjacent and Nonadjacent Fault Scenarios and Associated Fault Indices 

   MCSA MFPO LIKELIHOOD 
ADJACENT   No Fault Masking 

LSB2𝑠𝑠𝑠𝑠 and USB2𝑠𝑠𝑠𝑠 at (1 ±
2𝑠𝑠)𝑓𝑓syn 

No Fault Masking 
∆𝛿𝛿1, at 2𝑠𝑠𝑓𝑓syn 

Most Frequent 

NONADJACENT Half Pole-Pitch 
(90° electrical) 

𝑁𝑁𝑏𝑏 = even Fault Masked  
Secondary fault effects result 
in: LSB4𝑠𝑠𝑠𝑠and USB4𝑠𝑠𝑠𝑠 at (1 ±
4𝑠𝑠)𝑓𝑓syn 

Fault Masked  
Secondary fault effects 
result in: ∆𝛿𝛿1, at 4𝑠𝑠𝑓𝑓syn 

Possible  
𝑁𝑁𝑏𝑏 = 2 (machines with 
low number of rotor 
bars per pole) 

  𝑁𝑁𝑏𝑏 = odd Fault Partially Masked LSB2𝑠𝑠𝑠𝑠 
and USB2𝑠𝑠𝑠𝑠 corresponding to 
one broken bar 

Fault Partially Masked 
 ∆𝛿𝛿1, at 2𝑠𝑠𝑓𝑓syn 
corresponding to one 
broken bar 

Unlikely 

 One Pole-Pitch 
(180° 
electrical) 

𝑁𝑁𝑏𝑏
= even or odd 

No Fault Masking 
 LSB2𝑠𝑠𝑠𝑠 and USB2𝑠𝑠𝑠𝑠 at (1 ±
2𝑠𝑠)𝑓𝑓syn 

No Fault Masking 
∆𝛿𝛿1, at 2𝑠𝑠𝑓𝑓syn 

Unlikely 

 



SECTION VI. Discussions and Conclusion 
In this paper, faults associated with squirrel-cage rotor structures of induction machines have been 
considered. More specifically, effects of adjacent and nonadjacent bar breakages on rotor fault 
diagnostics in squirrel-cage induction machines have been studied. It has been shown that nonadjacent 
bar breakages separated by one-half pole-pitch (90° electrical) result in the masking of the commonly 
used fault indices, hence leading to a possible misdiagnosis of the machine. This masking problem has 
been addressed and partially solved in this paper. Namely, it has been shown that secondary 
saturation effects resulting from such nonadjacent bar breakages manifest themselves in sideband 
frequency components at (1 ± 4𝑠𝑠)𝑓𝑓syn in the frequency spectrum of motor currents and  
4𝑠𝑠𝑓𝑓syn frequency components of the MFPO. Hence, these secondary saturation effects can be utilized 
for the diagnostics of such faults. Table III summarizes the different fault scenarios and corresponding 
fault indices that can be used for rotor fault diagnostics. The problem of a complete breakage of one or 
more bars could develop in machines which are monitored/inspected at regularly scheduled 
maintenance intervals. In this case, a failure can go through an incipient stage to a complete breakage 
of one or more bars in the period between scheduled inspections. Hence, the possibility of 
nonadjacent bar failure exists and could pose a potential problem. At present, no statistical data 
showing the frequency of occurrence of such nonadjacent rotor failures exists. However, one can 
identify some squirrel-cage designs that may be more prone to such nonadjacent failures. Squirrel-cage 
rotor structures with a low number of rotor bars per pole, such as the one studied in this paper, may 
be at higher risk of being misdiagnosed. 
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