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Abstract: Regulated phosphorus (P) and nitrogen (N) discharges and the cost of fertilizer provide 
economic drivers for nutrient removal and recovery from wastewater. This study used ion exchange 
(IX) in dilute (domestic) wastewater to concentrate nutrients with subsequent recovery by struvite 
precipitation. This is the first tertiary wastewater treatment study directly comparing P removal using a 
range of Fe, Cu, and Al-based media followed by clinoptilolite IX columns for N removal and 
precipitation using the combined regenerants. Phosphate removal prior to breakthrough was 0.5–2.0 g P 
Lmedia−1, providing effluent concentrations <0.1 mg L−1 PO4-P and <0.2 mg L−1 NH4-N for ≥80 bed 
volumes. Dow-FeCu resin provided effective P removal, efficient neutral pH regeneration and 560 mg P 
L−1 in the regeneration eluate (≥100× concentration factor). Exchange capacity of clinoptilolite in 
column mode was 3.9–6.1 g N Lmedia−1 prior to breakthrough. Precipitation using the combined cation 
and anion regenerants resulted in a maximum of 74% P removal using Dow-FeCu. Precipitates 
contained impurities, including Al3+, Ca2+, and Fe. Overall, the IX-precipitation recovery process 
removed ≥98% P and 95% N and precipitates contained 13% P and 1.6% N. This sequential process can 
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satisfy increasingly stringent wastewater standards and offers an effective alternative to traditional 
treatment technologies that simply remove nutrients. Approximately 84% of total P and 97% of total 
Kjeldahl N entering a treatment plant can be captured (accounting for primary clarifier removal), 
whereas most existing technologies target side streams that typically contain only 20–30% of influent P 
and 15–20% of influent N. 

Water impact 

Wastewater treatment targets removal of nitrogen (N) and phosphorus (P). Productive agriculture 
also depends on N and P, where P is a nonrenewable resource, diminishing reserves of which 
encourage not only removal from wastewater, but also recovery for fertilizer use. This research 
advances sustainable, economic approaches to domestic wastewater treatment through recovery 
of clean water and valuable nutrient fertilizers.  

 

Introduction 

The macronutrients nitrogen (N) and phosphorus (P) are commonly applied to improve 
agricultural yields.1 Currently, the Haber–Bosch process produces 500 million tons per year of N 
fertilizer, accounting for 1% of the world's energy consumption.2,3 Phosphate (PO43−) rock is mined 
to produce PO43− fertilizer, and depletion of available reserves is possible within the next 60–240 
years.4 A substantial portion of P fertilizer demand (≈15%) could be satisfied by municipal 
wastewater facilities.1,5,6 To comply with effluent permits, municipalities commonly remove N 
through nitrification/denitrification,7 while P is removed in the biosolids through precipitation and 
biological uptake.6 Although these processes successfully remove nutrients from wastewater, 
agricultural reuse of biosolids is commonly regulated and P bioavailability can be inhibited by Fe 
and Al binding.6,8 A more sustainable approach is to recover the N and P removed to satisfy 
discharge permits and recycle it as a valuable fertilizer product.  

Ion exchange (IX), or the exchange of ions of similar charge between liquid and solid 
phases, is a promising method of concentrating nutrients for subsequent recovery.9–11 
Ammonium (NH4+) and PO43− are removed using cationic and anionic IX media, 
respectively. Clinoptilolite is a natural zeolite that preferentially exchanges NH4+.12 
Synthetic PO43−-selective media have been developed, including: Dow-Cu, Dow-HFO-Cu, 
LayneRT™ and others.9,13–15 Yet, improved selectivity of PO43− remains a critical need to 
facilitate use in full-scale applications.11,16 Small-scale column tests of polymeric ligand 
exchangers indicate that improved selectivity of PO43− sorption and controlled release to 
recover the PO43− can be achieved using hydrated ferric oxide and/or Cu2+ loading.9,14,17–19 
Upon exhaustion of surface exchange sites, the media is regenerated with brine solution, 
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producing concentrated P or N eluate. Subsequent treatment processes, such as struvite 
precipitation, can recover concentrated P and N from the eluate in a readily reusable 
form.20,21 

Clinoptilolite's NH4-N removal and recovery capacity is well-defined22,23 and previous work 
has determined that high pH regenerants improve desorption;24 however, excessive pH can 
negatively impact subsequent NH4-N capacity.25 In the current work, optimal regenerant 
NaCl concentration and pH were identified through multiple cycles of IX batch tests. 
Additionally, the concentration of cations and the pH of the regeneration eluate were 
analyzed as these have not previously been well-defined and these characteristics affect 
downstream processes (e.g., precipitation). This study also evaluated the mass of P 
exchanged (g Premoved Lmedia−1) and effluent PO4-P concentration using a range of Fe, Cu, or Al-
based media, direct wastewater comparisons of which have not been reported. The pH and 
concentrations of PO4-P and metals of the regeneration eluate were analyzed. 

Struvite (MgNH4PO4) precipitation has previously been tested in anion exchange 
regeneration eluates9,26 and using select combinations of cation and anion regeneration 
eluates.16,21,27,28 The present study directly compared performance of cation eluate 
combined with a range of P-specific anion regeneration eluates to precipitate N and P from 
dilute wastewater. Nutrient recovery and purity of the fertilizer were evaluated as these 
parameters directly influence process economics. Results of this work advance practical 
application of nutrient recovery by improving upon existing treatment options to design 
economical nutrient recovery processes for dilute wastewaters. This recovery scheme can 
produce effluent which satisfies nutrient discharge limits while recovering a valuable 
fertilizer product. Furthermore, the IX-precipitation nutrient recovery process can 
facilitate implementation of more sustainable treatment trains such as those utilizing 
anaerobic membrane bioreactors, which avoid the costs of aerobic-driven nutrient 
removal. 

Materials and methods 

Anion exchange tests were conducted with PO43−-selective media. Three commercially available IX 
resins were purchased ready-to-use: LayneRT™ (Layne Christensen Co., The Woodlands, TX) and a 
neutral and basic activated alumina (AA, Sigma Aldrich, Milwaukee, WI). Four anionic media were 
prepared in the lab using the base resin Dowex™ M4195 (Dow Chemical Co., Midland, MI). Dow-Cu 
was prepared in accordance with Zhao and Sengupta (1996).14 Preparation of Dow-NAB-Cu 
followed the same process excluding the acid and base pretreatment steps. The hydrated ferric 
oxide (HFO) resin, Dow-HFO, was produced as described by Sengupta and Pandit (2011).9 The 
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Dow-HFO and Dow-Cu preparation methods were conducted sequentially to produce a resin loaded 
with iron and copper, denoted as Dow-FeCu in this work, similar to Dow-HFO-Cu described by 
Sengupta and Pandit (2011).9  

Clinoptilolite (St. Cloud Zeolite, Tucson, AZ) in the sodium aluminosilicate form was 
utilized for NH4-N exchange. The exchange sites were saturated with Na+ by adding 25 g of 
zeolite to a 0.5 L bottle and rinsing 3× with deionized (DI) water to remove fine particles, 
similar to the method described by Weatherley and Miladinovic (2004).29 Next, 0.5 L of 1% 
NaCl was added and the mixture was placed on a shaker table at 150 rpm for 2 d. The 
solution was discarded and the media was rinsed 2× with DI water and dried at 103 °C for 
24 h. 

Batch IX studies 

To determine the effect of various regenerants on subsequent IX capacity, zeolite batch testing was 
conducted using a shaker table at room temperature. Two sets of zeolite experiments were 
conducted in triplicate: zeolite with NH4-N solution and zeolite with mixed cations. Bottles 
containing zeolite and 40 mg L−1 NH4-N solution were evaluated using varying regenerant solutions, 
as listed in Table 2. Initial kinetic tests demonstrated that sorption equilibrium was achieved within 
4 days. Thus, all tests were conducted under the following conditions: 128 mL solution, 4 d IX 
duration, 2 h regeneration duration, and 150 rpm rotation speed. IX and regeneration were 
conducted for 3 cycles; zeolite was rinsed with DI water 2× after each regeneration cycle. The 
concentration of NH4-N in the final IX and regeneration solutions was analyzed to determine 
removal and desorption, respectively. A mixed cation solution (representative of a typical dilute 
wastewater) containing 40 mg NH4-N L−1, 35 mg Ca2+ L−1, 10 mg K+ L−1, 22 mg Mg2+ L−1, and 140 mg 
Na+ L−1 was used to determine competitive uptake and the optimal regenerant solution for zeolite.  

To determine the capacity of each anion exchange media, PO4-P batch testing was 
conducted using 100 mg L−1 PO4-P in DI water. One IX cycle followed by one regeneration 
cycle was conducted for each media to determine percent P removal and desorption. All 
media/regenerant pairs tested are shown in Table 1. 

Table 1 Phosphate removal and desorption in batch tests using anionic IX resin  

Resin % 
removala 

Regenerantb % 
desorptiona  

DOW-Cu 76 ± 0.1 6% NaCl, pH = 4.3 60 ± 5.4 
                                                          

DOW-FeCu 64 ± 1.4 6% NaCl, pH = 8 65 ± 3.2 
                                                          

LayneRT™ 60 ± 1.6 2% NaCl + 2% NaOH, 
pH > 14 

49 ± 3.9 
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Resin % 
removala 

Regenerantb % 
desorptiona 

Dow-NAB-
Cu 

53 ± 1.0 6% NaCl, pH = 4.3 38 ± 2.9 
                                                          

DOW-HFO 52 ± 0.4 6% NaCl, pH = 8 8 ± 1.9 
                                                          

AA neutral 32 ± 1.4 6% NaCl, pH = 7.5 31 ± 4.0 
                                                          

AA basic 28 ± 1.1 6% NaCl, pH = 9.5 53 ± 14 
                                                          

a Average results of triplicate measures ±1 standard deviation. b pH of all regenerants is that at which the 
media was prepared, with the exception of LayneRT™, for which regenerant pH was based on Blaney et al. 
(2007).35 

Column IX studies 

To determine exchange capacity under more realistic operating conditions, the top three 
performing anion resins and zeolite were tested using rapid small-scale column tests, as illustrated 
in Fig. 1. Secondary wastewater effluent was passed through 1.5 μm filters and used as column 
influent. This pre-filtration step was used to model realistic operating conditions for scenarios with 
low TSS due to tertiary filtration. As stricter regulatory compliance is required and water reuse 
becomes increasingly economical, membrane filtration, including membrane bioreactors, is being 
increasingly implemented, thereby providing excellent effluent for subsequent IX processes. 
Column effluent was collected every 2 h using a CF-1 Fraction Collector (Spectrum 
Chromatography, Houston, TX). Influent and effluent were analyzed as described in the Analytical 
Procedures section. Regression analysis was completed for the effluent PO4-P or NH4-N to 
determine P or N removal prior to breakthrough, defined as 0.1 mg L−1 PO4-P and 1.5 mg L−1 NH4-N 
based on Wisconsin's discharge limits.30,31  
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 Fig. 1 Schematic of rapid small-scale column testing system.  

Columns were regenerated with brine solution (based on optimal batch-scale testing) 
following the IX cycle. Regenerant effluent samples were initially collected after every 5–20 
mL of brine passed, and every 50–100 mL as testing progressed. Regression analysis was 
conducted to estimate PO4-P or NH4-N desorption over time. This enabled quantification of 
percent nutrient desorption and nutrient concentrations in regeneration eluate at a range 
of brine volumes. Adequate IX capacity during subsequent cycles (as a result of P or N 
desorption) and elevated nutrient concentrations improve cost effectiveness of the 
process. 

Precipitation 

Precipitation was conducted in Erlenmeyer flasks by combining one anion regeneration eluate, 
zeolite regeneration eluate, MgCl2 solution and NaOH for pH adjustment. Solutions were mixed with 
a target Mg : P : N ratio of 1 : 1 : 1 and a pH of 10. The mixture was stirred at 150 rpm for 10 min 
and then allowed to settle for 30 min. Supernatant was analyzed for PO4-P, NH4-N and cations. 
Percent removal was calculated and solids composition was estimated using a mass balance 
approach. For further evaluation, predicted precipitants were modelled using MINEQL+ v.4.62.3 
and MINTEQ v.3.1 chemical equilibrium software. Struvite was added to the MINEQL+ custom 
thermodynamics database using pK = 13.26.32  
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Analytical procedures 

Standard analytical methods33 were used, including: phenate method 4500-NH3-F for NH4-N; 
cadmium reduction method 4500-NO3-E for NO3-N; turbidimetric method for SO42−; and method 
2320 B for alkalinity. Additional analyses included the ascorbic acid method34 for PO4-P and the 
Hach mercuric thiocyanate method for Cl−. Absorbance was measured using a Thermo Scientific 
(Waltham, MA) Genesys 20 spectrophotometer. An ICP-MS (7700 Series, Agilent Technologies, 
Santa Clara, CA) was used to measure Ca, Mg, K, Na, Al, Fe, Cu, Be, Cr, Mn, Co, Ni, Zn, Se, As, Mo, Pb, 
Hg, Ag, and Cd. A Thermo Scientific Orion 4 STAR meter was used for pH.  

Results and discussion 

Phosphate exchange capacity 

Batch tests showed that ≥60% P removal was achieved using Dow-Cu, Dow-FeCu, and LayneRT™, 
as shown in Table 1. Elimination of the acid/base treatment step for Dow-Cu (Dow-NAB-Cu) 
decreased performance by almost 25%. Despite both Dow-HFO and LayneRT™ media utilizing HFO 
particles, which predominantly remove PO43− by ligand exchange,35 Dow-HFO underperformed 
LayneRT™. Both basic and neutral activated alumina performed poorly in comparison to other 
media. The three resins with the greatest P removal (Dow-Cu, Dow-FeCu, and LayneRT™) also 
provided the greatest P desorption (≥49%), suggesting that they offer the greatest potential for P 
recovery operations. These media were used for subsequent column testing. Greater phosphate 
removal potential of these media stems from their incorporation of transition metal cations Fe and 
Cu. Polyvalent metals such as these exhibit strong ligand adsorption of phosphate species through 
Lewis acid–base interactions, i.e., formation of inner-sphere complexes.17,36  

Effluent PO4-P concentration during each column run is shown in Fig. 2a. All three media 
maintained effluent PO4-P <0.1 mg L−1 for ≥80 bed volumes (BV). Achieving this low 
concentration is a critical study outcome as it is sufficient to satisfy increasingly lower 
wastewater discharge limits which may not be feasible using conventional precipitation 
and biological treatment processes.18 These results suggest that LayneRT™ was the optimal 
media as it required no preparation and provided the longest bed life prior to 
breakthrough, thereby maximizing P removal. 
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Fig. 2 PO4-P concentrations from column testing of anionic media showing (a) phosphate 
breakthrough comparison of IX media and (b) desorption comparison showing regeneration eluate 
concentration. 

 

Regeneration performance with anionic media 

After exhaustion of the anion exchange columns, media was regenerated with brine solution, as 
identified in Table 1. Regeneration was conducted to determine total P desorption, volume of 
regenerant required, and characteristics of the regeneration eluate. Effluent PO4-P and percent 
desorption after 5 BV are shown in Fig. 2b. In order to achieve 80% P desorption, 3.5 BV of 
regenerant was needed for LayneRT™, 3 BV for Dow-FeCu and 1.1 BV for Dow-Cu. Based on 
regression analysis, the regeneration eluates contained approximately 400–550 mg PO4-P L−1 at 
80% desorption, thereby concentrating PO4-P ≥100×. This was sufficient for effective precipitation 
as full-scale struvite precipitation reactors are typically applied to side streams with >150 mg L−1 
PO4-P.37,38  
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The pH of Dow-Cu and Dow-FeCu regeneration eluates was approximately 9.6–9.9, 
whereas LayneRT™ eluate was 14. As optimal pH for struvite precipitation is 8–9,39 
significant pH adjustment would be required when using LayneRT™ eluate to precipitate 
struvite. LayneRT™ eluate contained 155 mg L−1 Al3+, while 7 and 30 mg L−1 Cu2+ were 
measured in Dow-Cu and Dow-FeCu eluates, respectively. Due to the detection of high 
metal concentrations in the regeneration eluates, there is a significant risk for co-
precipitation of metals with struvite, resulting in decreased fertilizer value. Based on the 
results, Dow-FeCu is the optimal media for P desorption as it provided the greatest 
concentration of P (550 mg L−1) and the regeneration eluate pH was closest to optimal 
precipitation conditions. 

Optimization of zeolite regeneration 

High pH improves N desorption from zeolite;24 however, excessive pH can cause attrition.25 Batch 
tests were conducted using NH4Cl solution to identify the optimal pH and the effect of increasing 
NaCl concentration on long-term NH4-N exchange capacity. As shown in Table 2, initial tests were 
performed using 7 alternative regenerants. Regeneration tests did not conclusively identify an 
optimal NaCl concentration with respect to NH4-N removal. Regeneration solutions with pH ≥ 13 
negatively impacted NH4-N exchange after 3 cycles. Based on these results, zeolite was tested in a 
mixed cation solution using lower pH regenerants.  

Table 2 Removal of NH4-N using varying zeolite regenerant solutions  

 
NH4-N-only solution after 3 cycles Mixed ion solution after 5 cycles 

Regenerant 
solution: 

5% 
NaCl 

8% 
NaCl 

10% 
NaCl 

7.5% 
NaCl 
+ 
0.5% 
NaOH 

0.5% 
NaOH 

2% 
NaOH 

2% 
Ca(OH)2 

0.1% 
Ca(OH)2 

0.1% 
NaOH 

8% 
NaCl 7.5% NaCl pH 12 

a Average results of triplicate data ±1 standard deviation.   

pH 7.5 8 8.3 13 13 13.7 13.7 12 12 8 12                                                    

Total NH4-
N removala 
(%) 

70 
± 
6.3 

85 
± 
0.6 

76 
± 
4.2 

55 ± 
1.5 

66 ± 
8.2 

44 ± 
4.2 

0 ± 0 40 ± 
1.6 

56 ± 
3.8 

70 
± 
0.2 

71 ± 4.6 
                                                   

As shown in Table 2, regeneration with 8% NaCl and 7.5% NaCl (pH = 12) resulted in 
similar NH4-N removal after 5 cycles. Regeneration with 0.1% NaOH or 0.1% Ca(OH)2 was 
ineffective, likely due to the lower concentration of cations driving desorption of NH4-N. A 
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pH of 12 did not negatively impact IX, whereas pH of 13 did negatively impact removal 
after repeated IX cycles. Additionally, the data suggests that NaCl concentration can be 
reduced without diminishing capacity, with 2% NaCl being sufficient.24 

Zeolite IX performance and regeneration efficiency 

Zeolite was tested in columns to determine the media's NH4-N removal capacity when treating 
anion exchange effluent. Two IX cycles were conducted to determine the change in capacity 
following regeneration, as shown in Fig. 3a. Breakthrough was defined as 1.5 mg L−1 NH4-N, which 
falls within the waterbody nutrient criteria range of 0.2–5 mg L−1 total nitrogen (TN) developed by 
some states.31 The effluent remained below this concentration for ≥100 BVs, and was less than 0.2 
mg L−1 throughout the first IX cycle. Total removal prior to breakthrough was 3.9 g N LBV−1 and 6.1 g 
N LBV−1 for the first and second cycles, respectively. The variability in zeolite capacity was likely due 
to differences in influent cations. Concentrations of Ca2+ and Mg2+ in the influent during cycle 2 
were lower, enabling greater NH4-N exchange. The N removal capacities are comparable to zeolite 
tests performed using similar wastewater.23,40  

 

 Fig. 3 Two cycles of column testing of NH4-selective zeolite showing (a) ammonium IX breakthrough 
and (b) desorption showing regeneration eluate concentration. 

 

Zeolite was regenerated to evaluate reuse of the media for IX and to determine the 
regeneration eluate characteristics. Based on batch testing, 6% NaCl (pH = 11) regenerant 
was used. As shown in Fig. 3b, 74% and 68% of N was desorbed during cycles 1 and 2, 
respectively. Regeneration may potentially be improved by raising the regenerant pH and 
reducing NaCl concentrations to improve N desorption. 

The eluate characteristics of the first two BV of regenerant are shown in Table 3. The eluate 
contains substantial amounts of Ca2+ and K+, which may precipitate along with struvite, 
thereby decreasing the purity of the product. A reduction in fertilizer quality will reduce 
the value of the product and therefore the revenue.41 

Table 3 Zeolite regeneration eluate characteristics for column tests  
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Regeneration cycle pH NH4-N K+ Ca2+ Mg2+ 
1 8.7 600 660 350 23 
2 7.7 740 320 390 24 

Precipitation efficiency and solids composition 

The overarching process goal is recovery of struvite, a slow release fertilizer that performs 
comparably to standard fertilizers.6 Precipitation tests were conducted to determine P and N 
recovery as well as product purity. Precipitation was accomplished by combining cation and anion 
IX column regeneration eluates containing high concentrations of N and P, respectively, adding 
Mg2+ and adjusting the pH to 10. After settling the solids, the supernatant was analyzed to 
determine the P, N and metals concentrations, as shown in Table 4. Greater than 70% P removal 
was achieved with LayneRT™ and Dow-FeCu regeneration eluates. Precipitation ceased at P 
concentrations of approximately 60–80 mg L−1. This was likely due to limited multivalent cations 
such as Mg2+ and Ca2+; however, it has also been shown that greater Ca : Mg ratios reduce P 
removal efficiency.42 The majority of Al3+, Ca2+ and Fe present in the initial concentrated 
regeneration solutions precipitated, which impacts product quality, and would necessitate 
additional testing to determine the precipitated product's potential as a fertilizer. This is a 
substantial issue for the LayneRT™ regeneration eluate as the Al3+ concentration exceeds 100 mg 
L−1.  

Table 4 Initial ion concentration and percent removal for precipitation of combined anion and zeolite 
regeneration eluates  
Anion 
regeneration 
eluate 
source: LayneRT™ DOW-Cu DOW-FeCu 

Ion 

Initial 
(mg 
L−1) 

% 
removala 

Initial 
(mg 
L−1) 

% 
removala 

Initial 
(mg 
L−1) % removala 

a Average results of triplicate data ±1 standard deviation.  
b No result due to analytical error.  
PO4-P 270 71 ± 1.6 120 28 ± 1.0 230 74 ± 1.7                                                        

NH4-N 120 19 ± 1.8 53 16 ± 0.9 100 22 ± 1.6                                                        

Mg2+ 170 96 ± 0.8 84 66 ± 2.5 270 62 ± 2.7                                                        

Ca2+ 71 81 ± 4.0 31 45 ± 0.2 65 98 ± 0.6                                                        

Al3+ 78 92 ± 0.2 0.28 58 ± 16 0.15 
                                                        

Fe 5.8 76 ± 0.2 7.3 79 ± 0.3 5.2 100 ± 0.0                                                        

Cu2+ 0.28 59 ± 3.5 22 9.5 ± 0.3 12 14 ± 0.5                                                        

K+ 130 6.5 ± 1.5 58 12 ± 2.5 111 
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Removal of N was less than 25% in all precipitation tests, whereas 100% was targeted. P 
was likely being precipitated as calcium phosphates in addition to struvite and therefore N 
removal was lower than expected. Chemical equilibrium modeling confirmed that under 
these conditions Ca and Mg-based species such as hydroxyapatite, calcium phosphates, and 
magnesium phosphates were likely outcompeting struvite precipitation. Improved 
precipitate purity may be obtained by decreasing the pH to 8.743 (compared to 10, as in this 
study). Additionally, a reactor seeded with struvite pellets can be operated at a lower pH, 
such as 7.3, and achieve high P removal.44 Therefore, future testing should be conducted 
with struvite seeding at neutral pH to minimize chemical requirements and reduce Ca2+ 
precipitation while maximizing P and N removal. 

A mass balance analysis was performed to estimate solids composition in order to assess 
fertilizer quality. The precipitates formed after combining LayneRT™ and zeolite 
regeneration eluate contained: 13% P, 1.6% N, 11% Mg, 3.9% Ca, 0.6% K, 0.3% Fe, and 
5.3% Al. In comparison, pure struvite should contain 13% P, 5.7% N, and 10% Mg. The 
amount of P and Mg in the precipitate from the lab test is similar to pure struvite; however, 
the N content is low, as discussed previously. Additionally, there are significant amounts of 
Ca2+ and Al3+, which could negatively impact the fertilizer value of the precipitated product. 

Conclusions 

The ultimate goal of nutrient recovery is to produce a marketable nutrient-rich product in addition 
to meeting nutrient discharge limits for the treated water. The IX-precipitation process evaluated 
here concentrated and precipitated P and N to accomplish this objective using dilute wastewater. A 
range of Fe, Cu, or Al-based media were used for direct performance comparison in wastewater. 
Using the top-performing PO43−-selective resins, removal prior to column breakthrough was 0.5–2.0 
g P Lmedia−1, which provided effluent concentrations <0.1 mg L−1 PO4-P for ≥80 BV and <0.2 mg L−1 
NH4-N for ≥100 BV. Dow-FeCu provided the most effective P removal, efficient neutral pH 
regeneration and 560 mg L−1 P in the regeneration eluate (concentration factor ≥ 100). Greater 
than 98% PO4-P and 97% NH4-N were removed using combined anionic and cationic column 
regenerants for precipitation. The regenerant streams also contained substantial levels of Al, Cu, Ca, 
and/or K, which may diminish the value of the recovered product. Recommended future tests 
include continued testing of anion exchange media to determine the most economical media 
considering cost of preparation, P removal and selectivity, P desorption, chemical requirements and 
minimal metal leaching. Furthermore, the precipitation method can be adjusted to improve struvite 
purity and to evaluate the potential use of supernatant from precipitation as a recycled regenerant. 
Overall economics of the IX-precipitation process is of key interest for larger-scale implementation, 
and evaluation of chemical and energy costs, regenerant reuse, and price point of the recovered 
fertilizer product must be considered together in future assessments.  
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