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Abstract 
In this article, we present the results from a longitudinal examination of the impact of a Standards-based or 

reform mathematics curriculum (called CMP) and traditional mathematics curricula (called non-CMP) on 

students’ learning of algebra using various outcome measures. Findings include the following: (1) students did 

not sacrifice basic mathematical skills if they are taught using a Standards-based or reform mathematics 

curriculum like CMP; (2) African American students experienced greater gain in symbol manipulation when they 

used a traditional curriculum; (3) the use of either the CMP or a non-CMP curriculum improved the mathematics 

achievement of all students, including students of color; (4) the use of CMP contributed to significantly higher 

problem-solving growth for all ethnic groups; and (5) a high level of conceptual emphasis in a classroom 

improved the students’ ability to represent problem situations. (However, the level of conceptual emphasis 

bears no relation to students’ problem solving or symbol manipulation skills.) 

Highlights 
► Students did not sacrifice basic mathematical skills if they are taught using a reform mathematics curriculum 

like Connected Mathematics Program. ► African American students experienced greater gain in symbol 

manipulation when they used a traditional curriculum. ► The use of the reform curriculum contributed to 

significantly higher problem-solving growth for all ethnic groups. ► A high level of conceptual emphasis in a 

classroom improved the students’ ability to represent problem situations. 

Keywords 
Longitudinal study, Mathematics curriculum reform, Learning of algebra, Growth curve modeling 

 

The ultimate goal of educational reform, curriculum innovation, and instructional intervention is to improve 

students’ learning. By means of changes in curricula, advocates of mathematics education reform often attempt 

to change classroom practice, and hence, students’ learning (Ball and Cohen, 1996, Clements and Sarama, 

2008, Howson et al., 1981, NCTM, 1989, Senk and Thompson, 2003). 

In the third article of this special issue (see Moyer et al.), we documented the impact of curriculum innovation 

on classroom instruction. In particular, using data from our project, Longitudinal Investigation of the Effect of 

Curriculum on Algebra Learning (LieCal), we examined the similarities and differences between a Standards-

based curriculum, called the Connected Mathematics Program (CMP), and more traditional curricula, called non-

CMP curricula. As we have pointed out, the LieCal Project was designed to compare longitudinally the effects of 

the CMP curriculum to the effects of more traditional middle school curricula on students’ learning of algebra. In 

the LieCal Project, we investigated not only the ways and circumstances under which the CMP and non-CMP 

curricula promoted or hindered student achievement gains, but also the characteristics of the reform and 

traditional curricula that contribute to these gains. In this article, we provide evidence of the effect of these 

curricula on student learning. 

What really works for improving students’ learning then? This is the most frequently asked question in the 

current debate about the mathematics education reform movement in the United States, particularly with 

regard to the recent Standards-base curriculum innovations (e.g., Herman et al., 2006, Schoenfeld, 2006). It has 

been claimed that the main emphasis of the Standards-based curricula is on conceptual understanding through 

problem solving, rather than on procedural knowledge. Supporters of reform maintain that students will learn 

procedural knowledge and master basic skills as they engage in explorations of worthwhile problems (NCTM, 



2000). Nonetheless, many parents and teachers worry that if Standards-based curriculum innovations are 

implemented, any potential development of students’ higher-order thinking skills will come at the expense of 

the development of basic mathematical skills (e.g., Cai, 2003, Wu, 1997). Therefore, an over-riding question 

about curriculum reform is Do conceptual understanding and higher order thinking skills come at the expense of 

basic mathematics skills for students who are taught using a Standards-based mathematics curriculum? 

In the United States, classrooms are becoming more ethnically diverse. Since teaching and learning are cultural 

activities, students with different ethnic and cultural backgrounds may respond differently to the same 

curriculum. Therefore, a second over-riding question about curriculum reform is How does the use of a 

Standards-based curriculum impact the learning of students of color as compared to Caucasian students? In this 

article, we provide evidence of the effect of curriculum reform on student learning by addressing these two 

questions. 

1. Theoretical considerations 

1.1. Background 
In the United States, the National Council of Teachers of Mathematics (NCTM) has provided recommendations 

for reforming and improving K-12 school mathematics through its Standards documents (1989, 2000). In these 

and related documents, the discussions of goals for mathematics education focus on the importance of thinking, 

understanding, reasoning, and problem solving, with an emphasis on connections, applications, and 

communication. This view stands in contrast to a more conventional view of mathematics education, which 

involves the memorization and recitation of de-contextualized facts, rules, and procedures, with an emphasis on 

the application of well-rehearsed procedures to solve routine problems. 

To make curricula that align with the NCTM standards available to teachers, the U.S. National Science 

Foundation provided support to develop a number of so called Standards-based school mathematics curricula. 

(See Senk and Thompson (2003) for information regarding these NSF-funded curricula.) CMP is one of 

these Standards-based curricula. It is a complete middle-school mathematics curriculum that was identified as 

an exemplar by the U.S. Department of Education (U.S. Department of Education, 1999). The intent of CMP is to 

build students’ understanding of major ideas in number, algebra, geometry, measurement, data analysis, and 

probability through explorations of real-world situations and problems (Lappan, Fey, Fitzgerald, Friel, & Phillips, 

2002a). NSF-funded curricula like CMP not only look very different from commercially developed (i.e., 

traditional) mathematics curricula, but they also have different kinds of learning goals. 

Field tests of Standards-based middle school curricula have shown that on standardized tests measuring 

computational skills and procedural knowledge, students using Standards-based curricula performed at least as 

well as students using traditional curricula (Senk & Thompson, 2003). In addition, they have shown that students 

using Standards-based curricula performed better than students using traditional curricula on tests specifically 

designed to measure conceptual understanding and problem solving. By the latter part of the 1990s, school 

districts across the United States began to formally adopt the Standards-based mathematics curricula. Since 

then, a few studies have investigated their effect on the acquisition of basic skills and procedural knowledge 

(Harwell et al., 2007, Post et al., 2008, Reys et al., 2003, Riordan and Noyce, 2001). These studies generally have 

shown that neither students’ facility with basic skills nor their procedural knowledge was harmed by 

using Standards-based curricula. 

These findings are certainly significant. However, to date, in districts that have formally adopted Standards-

based curricula, there have been no comprehensive longitudinal studies of the effect of Standards-based 

curricula on students’ learning. In particular, except for our LieCal Project, there have been no long-term 

longitudinal studies of the effect of Standards-based curricula on students’ learning of algebra. 



1.2. LieCal project 
The CMP curriculum was selected for investigation in the LieCal Project for several reasons, not the least of 

which is the fact that it has been more broadly implemented than any other Standards-based curriculum at the 

middle school level. In the 2002–2003 school year, CMP was used in nearly 2500 school districts in the United 

States. It has been used in all 50 states and some foreign countries (Rivette et al., 2003, Show-Me Center, 2002). 

By comparing, longitudinally, the effects of the CMP curriculum on students’ learning of algebra to the effects of 

more traditional middle-school mathematics curricula (hereafter called non-CMP curricula), the LieCal Project is 

designed to provide: (a) a profile of the intended treatment of algebra in the CMP curriculum with a contrasting 

profile of the intended treatment of algebra in non-CMP curricula; (b) a profile of classroom experiences that 

CMP students and teachers have, with a contrasting profile of experiences in non-CMP classrooms; and (c) a 

profile of student performance resulting from the use of the CMP curriculum, with a contrasting profile of 

student performance resulting from the use of non-CMP curricula. Accordingly, the project was designed to 

answer three research questions: 

1. What are the similarities and differences between the intended treatment of algebra in the CMP 

curriculum and in the non-CMP curricula? 

2. What are key features of the CMP and non-CMP experience for students and teachers, and how might 

these features explain performance differences between CMP and non-CMP students? 

3. What are the similarities and differences in performance between CMP students and a comparable 

group of non-CMP students on tasks measuring a broad spectrum of mathematical thinking and 

reasoning skills, with a focus on algebra? 

 

In this article, our focus is on the third research question, even though we will highlight the differences between 

the CMP and non-CMP curricula, as well as the differences and similarities between CMP and non-CMP 

classroom instruction. 

1.3. Focus on algebra 
The main focus of the LieCal Project is to compare the effects of the CMP curriculum to the effects of non-CMP 

middle-school mathematics curricula on students’ learning of algebra. We chose to compare the effects of the 

algebra strands of these curricula because of the importance of algebra in school mathematics. Middle school 

algebra lays the foundation for the acquisition of tools for representing and analyzing quantitative relationships, 

for solving problems, and for stating and proving generalizations (Bednarz et al., 1996, Cai and Knuth, 

2011, Carpenter et al., 2003, Cai and Knuth, 2011; Kaput, 1999, Mathematical Sciences Education Board, 

1998, RAND, 2003). Algebra readiness has been characterized as the most important “gatekeeper” in school 

mathematics (Pelavin & Kane, 1990). Given its gatekeeper role as well as growing concerns about students’ 

inadequate preparation in algebra in the United States, algebra curricula and instruction have become focal 

points of mathematics education research (Carpenter et al., 2003, Katz, 2007, National Research Council, 2004). 

In research on algebra learning, more information is needed about the interplay between the acquisition of 

procedural knowledge and the acquisition of algebraic concepts (Kieran, 1997, NAE, 1999). By focusing on the 

algebra strand in the middle school we can examine explicit connections between the acquisition of algebraic 

concepts and the manner in which algebra is taught and learned. In addition, because algebra is both highly 

conceptual and highly procedural, this strand provides an interesting context within which to examine students’ 

acquisition of both basic and higher-order thinking skills. 

As we indicated above, in a Standards-based curriculum like CMP, the focus is on conceptual understanding and 

problem solving rather than on procedural knowledge.1 Students are expected to learn algorithms and master 



basic skills as they engage in explorations of worthwhile problems. However many people, parents and teachers 

alike, worry that the development of students’ higher-order thinking skills comes at the expense of fluency in 

computational procedures and symbolic manipulations. In summary, it is important to investigate not only how 

students develop higher-order thinking and basic skills, but also whether the use of the CMP curriculum comes 

at the expense of the development of computational and symbolic fluency. 

In the current educational and political environment, there is an urgent need to understand the role that 

curriculum plays in students’ learning of mathematics in general and in the acquisition of algebraic concepts in 

particular. Because Standards-based curricula like CMP not only look very different from commercially 

developed traditional mathematics curricula, but also claim to have different learning goals, they are well suited 

for examining the impact of curriculum on the development of students’ algebraic thinking. By situating our 

examination of learning in a curricular context, we are able to investigate the role that curriculum plays in 

students’ mathematics learning in general and in their acquisition of algebraic concepts in particular (NCTM, 

1989, National Research Council, 2004, RAND, 2003, Senk and Thompson, 2003, Usiskin, 1999). 

1.4. Classroom variables in examining curricular effect 
Since the effectiveness of curricula depends critically on how well teachers implement them, studies of the 

effectiveness of Standards-based curricula must examine how teachers use the curricula (Kilpatrick, 

2003, National Research Council, 2004, Wilson and Floden, 2001). The data gathered must be analyzed in 

appropriate ways to control for variations in classroom instruction and the learning environment. A study 

by Schoen, Cebulla, Finn, & Fi (2003) examined the relatedness of certain aspects of instructional practices to 

student achievement in high school classrooms in which a high school Standards-based curriculum was used. In 

particular, they used regression techniques to identify the teachers’ background characteristics, behaviors, and 

concerns that are associated with growth in student achievement. They found that the percentages of class time 

spent on teacher presentation and on whole class discussion were each negatively associated with student 

achievement. However, the completion of a teachers’ summer workshop on the use of the curriculum, the 

implementation of cognitively demanding tasks for students, and the adherence to reform principles during 

instruction were all significantly and positively associated with student achievement. A more recent study 

showed that coupling NSF-funded curricula with a Standards-based learning environment was associated with a 

significant positive impact on students’ achievement (Tarr et al., 2008). 

These studies confirm that in order to determine the effects of curriculum on learning, it is essential to examine 

the classroom experiences of the teachers and students who are using the different curricula. In another article, 

we analyzed the instructional tasks implemented in both CMP and non-CMP classrooms, and found that the 

tasks were more than three times as likely to be solved using multiple solution strategies in CMP classrooms as 

in non-CMP classrooms (Cai, Wang, Moyer, Nie, & Wang, submitted). In addition, we found that CMP teachers 

were more than three times as likely to implement high-level instructional tasks than non-CMP teachers and 

that the cognitive demand of the instructional tasks implemented in classrooms was a significant predictor of 

students’ achievement gains over the three middle school years, regardless of the curriculum type. 

In this article, we take features of classroom instruction into consideration when we examine the impact of 

curricula on students’ learning of algebra. In particular, we examine the extent to which CMP and non-CMP 

teachers emphasize conceptual and procedural understanding in the classroom. As was reported by Moyer and 

his colleagues in the third article in this issue, CMP teachers placed more emphasis on conceptual understanding 

than non-CMP teachers. On the other hand, non-CMP teachers placed more emphasis on procedural 

understanding than CMP teachers. In this article, we particularly examine students’ achievement gains across 

the three middle school years while controlling for the conceptual and procedural emphases in classroom 

instruction. 



1.5. Equality 
Success in algebra and geometry has been shown to help narrow the disparity between minority and non-

minority participation in post-secondary opportunities (Loveless, 2008). Research shows that completion of an 

Algebra II course correlates significantly with success in college and with earnings from employment. 

The National Mathematics Advisory Panel (2008) found that students who complete Algebra II are more than 

twice as likely to graduate from college as students with less mathematical preparation. Furthermore, the 

African-American and Hispanic students who complete Algebra II cut the gap between their college graduation 

rate and that of the general student population in half. However, success in high school algebra is dependent 

upon mathematics experiences in the middle grades. In fact, middle school is a critical turning point for 

students’ development of algebraic thinking (College Board, 2000). To what extent does the use of a Standards-

based curriculum such as CMP improve the mathematics achievement for all students and help close 

achievement gaps between minority and non-minority students? This is an under-investigated question 

(Lubienski and Gutiérrez, 2008, Schoenfeld, 2002). 

2. Differences between CMP and non-CMP curricula 
Before we present evidence of the impact of curriculum reform on students’ learning, we highlight some 

differences between the CMP curriculum and the non-CMP curricula. In particular, when we conducted detailed 

analyses of CMP and one of the non-CMP curricula2, we found significant differences between them (Cai et al., 

2010, Nie et al., 2009). Overall, our research revealed that the CMP curriculum takes a functional approach to 

the teaching of algebra, and the non-CMP curriculum takes a structural approach. The functional approach 

emphasizes the important ideas of change and variation in situations and contexts. It also emphasizes the 

representation of relationships between variables situated contextually. The structural approach, on the other 

hand, avoids contextual problems in order to concentrate on developing the abilities to generalize, work 

abstractly with symbols, and follow procedures in a systematic way (Cai et al., 2010). In this section, we highlight 

specific differences in the ways that the CMP curriculum and the non-CMP curriculum (1) define variables, (2) 

define equation solving, (3) introduce equation solving, and (4) use mathematical problems to develop algebraic 

thinking. We focus on these four aspects in this article because they are fundamental to algebra learning. 

2.1. Defining variables 
The learning goals of the CMP curriculum characterize variables as quantities used to represent relationships. In 

contrast, the learning goals in the non-CMP curriculum characterize variables as placeholders or unknowns. The 

CMP curriculum does not formally define variable until 7th grade. However, CMP's definition of variable as a 

quantity rather than a symbol makes it convenient to use variables informally to describe relationships long 

before formally introducing the concept of variable in 7th grade. Once CMP defines variables as quantities that 

change or vary, it uses them to represent relationships. The non-CMP curriculum, formally define a variable in 

6th grade as a symbol (or letter) used to represent a number. It treats variables predominantly as placeholders 

and uses them mostly to represent unknowns in expressions and equations. 

2.2. Defining equations 
In CMP, the functional approach to equation is a natural extension of its development of the concept of variable 

as a changeable quantity used to represent relationships. At first, CMP expresses relationships between 

variables with graphs and tables of real-world quantities rather than with algebraic equations. Later, when CMP 

introduces equations, the emphasis is on using them to describe real-world situations. Rather than seeing 

equations simply as objects to manipulate, students learn that equations often describe relationships between 

varying quantities that arise from meaningful, contextualized situations (Bednarz, Kieran, & Lee, 1996). In fact, in 

CMP equations are formally defined as rules that are expressed with mathematical symbols, and that are often 

used for describing the relationship between two variables. 



In the non-CMP curriculum, the definition of variable as a symbol develops naturally into two iconic hallmarks of 

a structural focus: the use of decontextualized (or “naked”) equations and an emphasis on procedures for 

solving them. For example, immediately after defining an equation as “…a sentence that contains an equals 

sign,=,” the non-CMP curriculum provides examples like 2 + x = 9, 4 = k − 6, and 5 − m = 4 (Bailey et al., 2006a, p. 

34). Students are told that the way to solve an equation is to replace the variable with a value that results in a 

true sentence. 

2.3. Introducing equation solving 
In the CMP curriculum, equation solving is introduced within the context of discussing linear relationships. The 

initial treatment of equation solving does not involve symbolic manipulation as found in most conventional 

curricula. Instead, the CMP curriculum introduces students to linear equation solving by making visual sense of 

what it means to find a solution using a graph. Its premise is that a linear equation in one variable is, in essence, 

a specific instance of a corresponding linear relationship (equation) in two variables. At first, equation solving 

relies heavily on the context within which the equation itself is situated, and on the use of a graphing calculator. 

After CMP introduces equation solving graphically, the symbolic method of solving linear equations is eventually 

broached. It is introduced within a single contextualized example, where each of the steps in the equation 

solving process is accompanied by a narrative that demonstrates the connection between what is happening in 

the procedure and in the real-life situation. In this way, CMP justifies the equation-solving manipulations 

through contextual sense making of the symbolic method. That is, CMP uses real-life contexts to help students 

understand the meaning of each step of the symbolic method of equation solving, including why inverse 

operations are used, as shown in Table 1. 

Table 1. An example of equation solving in CMP (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002b, p. 55). 

The unlimited store allows any customer who buys merchandise costing over $30 
to pay on the installment plan. The customer pays $30 down and then pays $15 a 
month until the item is paid for. Suppose you buy a $195 CD-ROM drive from the 
unlimited store on an installment plan, How many months will it take you to pay 
for the drive? Describe how you found your answer. 

 

Thinking Symbol manipulation 

“I want to buy a CD-ROM drive that costs $195. To pay for the drive on the 
installment plan, I must pay $30 down and $15 a month.” 

195 = 30 + 15N 

“After I pay the $30 down payment, I can subtract this from the cost. To keep the 
sides of the equation equal, I must subtract 30 from both sides 

195 − 30 = 30 − 30 + 15N 

“I now owe $165, which I will pay in monthly installments of $15″ 165 = 15N 

“I need to separate $165 into payments of $15. This means I need to divide it by 
15. To keep the sides of the equation equal, I must divide both sides by 15″ 

16515=15N15 

“There are 11 groups of $15 in $165, so it will take 11 months” 11 = N 

 

The unlimited store allows any customer who buys merchandise costing over $30 to pay on the installment plan. 

The customer pays $30 down and then pays $15 a month until the item is paid for. Suppose you buy a $195 CD-

ROM drive from the unlimited store on an installment plan, How many months will it take you to pay for the 

drive? Describe how you found your answer. 

In the non-CMP curriculum, contextual sense making is not used to justify the equation-solving steps as it is in 

the CMP curriculum. Rather, the non-CMP curriculum first introduces equation solving as the process of finding 

a number to make an equation a true statement. Specifically, solving an equation is described as replacing a 

variable with a value (called the solution) that makes the sentence true. The process of equation solving is 



introduced in the non-CMP curriculum symbolically by using the additive property of equality (equality is 

maintained if the same quantity is added to or subtracted from both sides of an equation) and the multiplicative 

property of equality (equality is maintained if the same non-zero quantity is multiplied by or divided into both 

sides of an equation). 

In the 6th grade, the Glencoe curriculum (Bailey et al., 2006a) formally introduces equation solving with inverse 

operations by way of an activity that uses a cup to stand for an unknown. The appropriate number of cups and 

counters used as manipulatives in the activity are initially positioned to exactly represent the equation's 

symbols. They are then used to illustrate each step of the symbolic manipulations (see Fig. 1). 

 
Fig. 1. The non-CMP curriculum (Bailey et al., 2006a) uses inverse operations to introduce equation solving. 
 

Using manipulatives as described above is referred to as “Method 1″ and is typically shown adjacent to an 

example illustrating the corresponding solution using the strictly symbolic “Method 2.” In this way, the non-CMP 

curriculum illustrates how each manipulative step is comparable to a symbolic step in a solution based on the 

algebraic properties of equality, which is shown through vertical work. Fig. 2 is an example of Method 2, 

showing how to solve a one-step equation. 

 
Fig. 2. The non-CMP (Bailey et al., 2006a) example of using symbolic representation to solve an equation. 
 

2.4. Using mathematical problems 
The extent of the differences between the CMP and non-CMP curricula can also be highlighted through an 

analysis of mathematical problems. Using a scheme developed by Stein & Lane (1996), we classified the 

mathematical tasks in the CMP curriculum and the non-CMP curriculum (Bailey et al., 2006a, Bailey et al., 

2006b, Bailey et al., 2006c) into four increasingly demanding categories of cognition: memorization, procedures 



without connections, procedures with connections, and doing mathematics. As Table 2 shows, significantly more 

tasks in the CMP curriculum than in the non-CMP curriculum are higher-level tasks (procedures with connections 

and doing mathematics) (χ2(3, N = 3311) = 759.52, p < .001). 

Table 2. Percentages of various tasks in CMP and non-CMP curricula. 
 

Memorization Procedures without 
connections 

Procedures with 
connections 

Doing 
mathematics 

CMP (n = 920) 0.43 27.93 61.52 10.11 

Non-CMP 
(n = 2391) 

4.60 74.57 18.24 2.59 

 

We further analyzed the problems in the CMP and non-CMP curricula that involve linear equations by classifying 

them into three categories: 

1. One equation with one variable (1equ1va) – e.g., 2x + 3 = 5. 

2. One equation with two variables (1equ2va) – e.g., y = 6x + 7. 

3. Two equations with two variables (2equ2va) – e.g., the system of equations y = 2x + 1 and y = 8x + 9. 

 

Fig. 3 shows the percentage distribution of the problems involving linear equations in the two curricula. These 

two distributions are significantly different (χ2 (2, N = 2741) = 1262.0, p < .001). The CMP curriculum includes a 

significantly greater percentage of “one equation with two variables” problems than the non-CMP curriculum 

(z  = 35.49, p < .001). Also, the non-CMP curriculum includes a significantly greater percentage of “one equation 

with one variable” problems than the CMP curriculum (z = 34.145, p < .001). These results resonate with the 

findings that we reported above, namely that the CMP curriculum emphasizes an understanding of the 

relationships between the variables of equations, rather than an acquisition of the skills needed to solve them. 

In fact, of the 402 equation-related problems in the CMP curriculum, only 33 of them (about 8% of the linear 

equation solving problems) involve decontexualized symbolic manipulation of equation solving. However, the 

non-CMP curriculum includes 1550 problems involving decontexualized symbolic manipulation of equations 

(nearly 70% of the linear equation solving problems in the curriculum). 

 
Fig. 3. Percentage distribution of problems involving linear equations in the CMP and non-CMP curricula. 
 

3. Methods 

3.1. Sample 
The LieCal project was conducted in 14 middle schools of an urban school district serving a diverse student 

population. When the project began, 27 of the 51 middle schools in the district had adopted the CMP 

curriculum, and the remaining 24 had adopted more traditional curricula. Seven schools were randomly selected 

from the 27 schools that had adopted the CMP curriculum. After the seven CMP schools were selected, seven 



non-CMP schools were chosen based on comparable demographics. In 6th grade, 695 CMP students in 25 

classes and 589 non-CMP students in 22 classes participated in the study. We followed these 1284 students as 

they progressed from grades 6 to 8. Approximately 85% of the participants were minority students: 64% African 

American, 16% Hispanic, 4% Asian, and 1% Native American. The remaining 15% of the participants are 

Caucasians. Male and female students were almost evenly distributed. 

3.2. Assessing students’ learning 
Learning algebra should involve much more than simply doing computations and solving equations. It should 

also provide students with a deep understanding of fundamental algebraic concepts, the connections between 

them, and the ability to use algebra to solve problems. The heart of measuring mathematical achievement is the 

set of tasks used to assess it (Mislevy, 1995, National Research Council, 2001). It is desirable to use various types 

of assessment tasks, thereby measuring different facets of algebraic thinking. Two important aspects of 

algebraic learning are conceptual understanding and problem solving, and symbol manipulation skills. 

Table 3 summarizes our data collection. We used the state test scores in mathematics and reading as measures 

of prior achievement. We used the LieCal-developed multiple-choice and open-ended assessment tests as 

dependent measures of procedural knowledge and conceptual understanding in algebra, respectively. In this 

article, we report only the results from the two LieCal-developed tests, which we administered four times, each 

over two consecutive days. 

Table 3. Data source and time of data collection. 

Data sources Fall, 05 Spring, 06 Fall, 06 Spring, 07 Fall, 07 Spring, 08 

State tests on both math and 
reading 

All 6th 
graders 

 
All 7th 
graders 

 
All 8th 
graders 

 

LieCal-developed test 
(multiple-choice items 
assessing procedural 
knowledge and basic skills in 
pre-algebra and algebra) 

6th graders 
students 
(32 items) 

6th graders 
students 
(32 items) 

 
7th graders 
students 
(32 items) 

 
8th graders 
students 
(32 items) 

LieCal-developed test (open-
ended tasks assessing 
conceptual understanding and 
higher order thinking skills in 
pre-algebra and algebra) 

6th graders 
students (6 
items) 

6th graders 
students (5 
items) 

 
7th graders 
students (5 
items) 

 
8th graders 
students (5 
items) 

 

In our study, we used a combination of multiple-choice and open-ended assessment tasks to measure students’ 

high-level thinking skills as well as students’ procedural knowledge and routine problem-solving skills. We used 

multiple-choice items to assess whether students had learned the basic knowledge required to perform 

competently in introductory algebra. We decided to use multiple-choice questions because of their potential for 

broad content coverage and objective scoring, their highly reliable format, and their low cost of scoring. In 

addition to multiple-choice questions, we used open-ended assessment tasks. The open-ended tasks provided a 

better window than the multiple choice tasks into the thinking and reasoning processes involved in the students’ 

algebra-related problem solving. The Appendix A shows sample items. 

3.2.1. Multiple-choice items 
While they were in grades 6–8, the LieCal participants were given four parallel versions of the multiple-choice 

test: F05 (baseline), Sp06, Sp07, Sp08. Each version comprised 32 questions that assessed five mathematics 

components: translation, integration, planning, execution (or computation), and equation solving. The items in 



the first four components are based on Mayer's (1987) model for analyzing cognitive components in solving 

word problems. Translation and integration involve the representing phase of problem solving, while planning 

and execution involve the searching phase of problem solving. In order to represent a problem, a student must 

be able to put the elements of a problem together into a coherent whole and translate them into an internal 

representation, such as an equation. In the searching phase of problem solving, the student must first plan the 

solution, and then find, and execute an adequate algorithm. In our multiple-choice test, we used six items to 

assess each of Mayer's four cognitive components, and 8 items to assess equation solving. Table 4 provides 

reliability coefficients (Cronbach's coefficients) for both multiple-choice and open-ended forms across 

assessment administrations. 

Table 4. Reliability coefficients for project-developed assessment forms. 
 

Multiple-choice Open-ended form A Open-ended form B Open-ended form C 

Fall 2005 .801 .647 .647 .647 

Spring 2006 .836 .703 .719 .721 

Spring 2007 .862 .764 .651 .710 

Spring 2008 .876 .766 .743 .761 

Note: Only one form of the open-ended assessment was administered in Fall 2005. 

3.2.2. Open-ended tasks 
In addition to the baseline multiple-choice assessment administered in the fall of 2005, all the LieCal 6th-graders 

received a baseline open-ended assessment, which consisted of 6 tasks. These tasks, as well as the open-ended 

tasks used for later assessments, were adopted from various projects, including Balanced Assessment3, the 

QUASAR Project (Lane et al., 1995), and a cross-national study (Cai, 2000). Since only a small number of open-

ended tasks can be administered in a testing period, and since grading students’ responses to such items is 

labor-intensive, we distributed the non-baseline open-ended tasks over three forms (five items in each form) 

and used a matrix sampling design to administer them. That is, starting in the spring of 2006, each third of the 

students was administered one of the three forms. In the springs of 2007 and 2008, the forms were rotated so 

that eventually each student received all three forms. 

For this article, in addition to the results of the open-ended tasks, we report only the results from the 

translation, computation, and equation-solving components of the multiple-choice tasks. The open-ended tasks 

were designed to assess students’ conceptual understanding and problem-solving skills. The translation 

component of the multiple-choice tasks assesses students’ ability to represent problem situations. The items for 

the computation and equation-solving components of the multiple-choice tests assess students’ procedural 

knowledge and symbol manipulation skills. 

3.2.3. Scoring 
The multiple-choice items were scored electronically, either right or wrong. The open-ended tasks were scored 

by middle school mathematics teachers, who were trained to score student responses using previously 

developed scoring rubrics. Two teachers scored each response. On average, perfect agreement between each 

pair of raters was nearly 80%, and agreement within one point difference out of 6 points (on average) was over 

95% across tasks. Differences in scoring were arbitrated through discussion. 

3.2.4. Linking items and scaled scores 
From one testing administration to another, 10 of the 32 multiple-choice items were identical, while the other 

22 items were new, but parallel. The 10 identical items comprised two items from each of the five components. 

They served as “linking items” in the analysis. In a similar way, at least two identical open-ended tasks served as 

linking items from one form to another and one testing administration to another. We used scaled scores to 



report and analyze the student achievement data. A scaled score is a generic term for a mathematically 

transformed student raw score on an assessment. Using scaled scores, rather than raw scores, made it possible 

to place assessment results on the same scale even if students responded to different tasks at different times. 

The two-parameter Item Response Theory (IRT) model was used to scale student assessment data on both 

multiple-choice tasks and open-ended tasks (Hambleton et al., 1991, Lord, 1980). 

3.3. Conceptual and procedural emphases as classroom variables 
In this article, we use conceptual and procedural emphases as classroom variables to examine the impact of 

curriculum on students’ learning. We estimated the levels of conceptual and procedural emphases in the CMP 

and non-CMP classrooms using data from 620 lesson observations of the LieCal teachers, which we conducted 

while the students were in grades 6, 7, and 8. The details surrounding the observations are documented in 

Moyer et al. (this issue). Since students changed their classrooms and teachers as they moved from grade 6 to 

grade 7 and from grade 7 to grade 8, all students in the same classroom at each grade were measured and had 

the same value but each student could have a different value each year for three years. One component of the 

observation data is a set of 21 questions using a 5-point Likert scale that were used to rate the nature of 

instruction for each lesson. Of the 21 questions, four of them are designed to assess the extent to which a 

teacher's lesson has a conceptual emphasis. Another four of the questions are designed to determine the extent 

to which a teacher's lesson has a procedural emphasis. Factor analysis of the LieCal observation data confirmed 

that the four procedural-emphasis questions loaded on a single factor, as did the four conceptual-emphasis 

questions. 

There was a significant difference across grade levels among the levels of conceptual emphasis in the CMP and 

non-CMP instruction (F (3, 575) = 53.43, p < .001). The overall mean (grades 6–8) of the summated ratings of 

conceptual emphasis in CMP classrooms was 13.41 with a standard deviation of 3.76, while the overall mean of 

the summated ratings of conceptual emphasis in non-CMP classrooms was 10.06 with a standard deviation of 

2.55. 

On the other hand, non-CMP lessons had significantly more emphasis on the procedural aspects of learning than 

did the CMP lessons (F (3, 575) = 37.77, p < .001). Also, the overall mean (grades 6–8) of the summated ratings 

of procedural emphasis in non-CMP classrooms was 14.49 with a standard deviation of 3.44, while the overall 

mean of the summated ratings of procedural emphasis in CMP classrooms was 11.61 with a standard deviation 

of 3.18. 

3.4. Analysis of achievement data 
We analyzed the longitudinal data using two complementary statistical approaches. First, we analyzed the 

longitudinal effect of curriculum on student achievement using a repeated measures analysis of variance 

(ANOVA). Second, because the data collected in the project is hierarchical in nature, we also used multilevel 

statistical models to capture student achievement changes over time and to analyze the longitudinal effects of 

the CMP and non-CMP curricula on students’ learning (Raudenbush & Bryk, 2002). In particular, we used 

growth-curve modeling to examine the longitudinal effect of curriculum while taking into account both student-

level variables (e.g., gender and ethnicity) and classroom variables (conceptual and procedural emphases). 

For the growth-curve modeling, initially we performed three-level analyses by nesting students within teachers 

and teachers within schools. A complicating factor was that the vast majority of students had different teachers 

in grades 6, 7, and 8. We handled this complication by averaging the levels of conceptual emphasis (and also 

procedural emphasis) across the three years, nesting students within level of conceptual emphasis for one 

analysis and within level of procedural emphasis for the other. This was justified because the levels at which the 

instruction emphasized conceptual understanding or procedural understanding were the only instructional 



factors that we were interested in using as independent variables at the teacher/classroom level. It turned out, 

however, that the intraclass correlation coefficient (ICC), or percentage of variance between 

teachers/classrooms, was very small for all outcome variables (Kreft & de Leeuw, 1998). Table 5 gives the 

details. 

Table 5. Intra-class correlation coefficients for outcome measures. 

Outcome measure ICC for the intercept ICC for the slope 

Open-ended tasks 4.47% 8.53% 

Translation component 4.17% 5.09% 

Computation component 3.52% 3.73% 

Equation solving component 9.16% 0.60% 

 

Based on this result, we changed the growth curve model to a two-level model with the mean4 of conceptual 

emphasis or procedural emphasis across three years as a classroom variable together with student ethnicity and 

curriculum type nested in schools. 

The two-level simple conditional growth curve model is as follows5: 

Level 1: 

𝑌𝑡𝑖 = 𝜋0𝑖 + 𝜋1𝑖𝑡𝑡𝑖 + 𝑒𝑡𝑖  

where Yti, is the outcome variable on each of the dependent measures (e.g., score on open-ended tasks) at 

time t for student i, π0i, is the initial status of student i on each of the dependent variables (e.g., predicted score 

on open-ended tasks) for that student at the beginning of the study; π1i, is the constant annual growth rate for 

student i during the three years; tti, takes on a value of 0 in the beginning (Fall 2005), a value of 1 at the end of 

the first year (Spring 2006), a value of 2 at the end of the second year (Spring 2007), and a value of 3 at the end 

of the third year (Spring 2008). 

Level 2: Each of the independent variables is used to predict the coefficients in the Level 1 Model. The following 

is the simple conditional model using CMP as the predictor during the first step of our HLM analysis. A similar 

model for each of the independent variables was used at the first step. 

𝜋0𝑖 = 𝛽00 + 𝛽01(𝐶𝑀𝑃)𝑖 + 𝑟0𝑖
𝜋1𝑖 = 𝛽10 + 𝛽11(𝐶𝑀𝑃)𝑖 + 𝑟1𝑖

 

Since “CMP” is an indicator variable (i.e. taking on the values 0 or 1), the corresponding regression coefficients 

can be interpreted as treatment effects. That is, β01 is the difference in the initial status (i.e., the extent to which 

an average non-CMP student starts ahead/behind an average CMP student) on the outcome 

variable. β11 represents the gap in the annual growth rates (i.e., the difference between average CMP and 

average non-CMP students in subsequent growth rates). 

As implied above, a two-step strategy (Compton, 2000) for the conditional models was used. First, simple 

conditional models were run to examine each independent variable individually. Second, the variables 

significant (p < .05) at the first step were examined simultaneously (complete conditional model). The following 

is a complete conditional model at Level 2 if all variables in simple conditional models were statistically 

significant: 



𝜋0𝑖 = 𝛽00 + 𝛽01(𝐶𝑀𝑃)𝑖 + 𝛽02(𝑀𝑎𝑙𝑒)𝑖 + 𝛽03(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛)𝑖 + 𝛽04(𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐)𝑖 +
𝛽05(𝐶𝑎𝑢𝑐𝑎𝑠𝑖𝑎𝑛)𝑖 + 𝛽06(𝐴𝑠𝑖𝑎𝑛)𝑖 + 𝛽07(𝐶𝑜𝑛𝑐𝑒𝑝𝑡)𝑖 + 𝛽08(𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒)𝑖 + 𝑟0𝑖

𝜋1𝑖 = 𝛽10 + 𝛽11(𝐶𝑀𝑃)𝑖 + 𝛽12(𝑀𝑎𝑙𝑒)𝑖 + 𝛽13(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛)𝑖 + 𝛽14(𝐻𝑖𝑠𝑝𝑎𝑛𝑖𝑐)𝑖 +
𝛽15(𝐶𝑎𝑢𝑐𝑎𝑠𝑖𝑎𝑛)𝑖 + 𝛽16(𝐴𝑠𝑖𝑎𝑛)𝑖 + 𝛽17(𝐶𝑜𝑛𝑐𝑒𝑝𝑡)𝑖 + 𝛽08(𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒)𝑖 + 𝑟1𝑖

 

The variable Concept (conceptual emphasis) was measured on an ordinal scale that has five levels (1 = low level, 

3 = median level, 5 = high level). This is the same for procedural emphasis. All other independent (predictor) 

variables are dichotomous (0 = no and 1 = yes) so that each b0i and b1i coefficient (i = 2 … 7) represents the 

difference between two groups on initial status and growth rate, respectively. Grand-mean centering was used 

for concept and procedure, so the intercept represents the adjusted mean outcome score (e.g., open-ended 

tasks) for students whose concept and procedure were at the mean of the whole sample in the fall of 2005. No 

centering was used for dichotomous variables, so the intercept represents the adjusted mean of students who 

were coded “zero” on these dichotomous variables in the fall of 2005. The slope represents the estimated mean 

annual growth for the students who were coded “zero” on the dichotomous independent variables and whose 

concept and procedure were at the mean of the whole sample. 

Since we were interested in whether or not the CMP curriculum had a differential impact on students of 

different ethnic groups, we also did an additional analysis for CMP students only by examining potential 

differences between students of different ethnic groups. Magnitude of effect, or proportion of variance 

explained by the complete model, was calculated by 1 minus the ratio between the estimated variance of the 

complete conditional model and that of the unconditional model. 

4. Results 
We first present descriptive statistics, then the findings from the longitudinal analysis using both repeated 

measures ANOVA and growth curve modeling. For the growth curve modeling, we did the analysis four times, 

once for each of the four dependent measures: (1) the open-ended tasks, (2) the translation component, (3) the 

computation component, and (4) the equation-solving component of the multiple-choice tasks. The open-ended 

tasks measure conceptual understanding and problem solving. The translation component of the multiple-

choice tasks measures the students’ ability to represent problem situations, while the computation and 

equation solving components measure symbol manipulation skills. 

4.1. Descriptive statistics 
Table 6 provides descriptive statistics for the four dependent measures in the Fall 2005, Spring 2006, Spring 

2007, and Spring 2008 assessments. For each measure, the mean scaled scores increased from Fall 2005 to 

Spring 2008, for both CMP and non-CMP students. 

Table 6. Descriptive statistics for the four dependent measures in Fall ‘05, Spring ‘06, Spring ‘07, and Spring ‘08. 
 

Fall’05   Sp’06   Sp’07   Sp’08    
Mean* SD n Mean SD n Mean SD n Mean SD n 

Open-ended             

CMP 459 84 629 471 96 606 518 92 621 549 101 723 

Non-CMP 468 88 543 485 96 561 516 95 541 542 105 517 

Translation             

CMP 436 87 623 485 94 615 519 95 614 540 96 712 

Non-CMP 453 89 525 495 91 562 532 96 529 538 96 521 

Computation             

CMP 466 89 623 482 99 615 511 102 614 518 98 712 



Non-CMP 481 89 525 486 96 562 531 104 529 534 105 521 

Equation-solving             

CMP 450 81 623 457 77 615 493 93 614 527 104 712 

Non-CMP 496 94 525 501 97 562 539 101 529 563 101 521 
*The score range is 200–800. 

4.1.1. Gains 
We determined and ranked each student's gain score on each of the outcome measures from 6th to 8th 

grade. Table 7 shows the mean gains and the percentage of CMP and non-CMP students who had positive gains 

on each of the learning outcome measures. Table 7 also shows the percentages of CMP and non-CMP students 

whose gains ranked in the top or bottom 25% of all gains on each of the outcome measures over the three 

years. 

Table 7. Mean gains and percentages of students with various gains from 6th grade to 8th grade by curriculum 

type. 
 

CMP Non-CMP 

Open-ended tasks   

  Mean gains* 90.25 70.03 

  % of students with positive gains* 89% 83% 

  % of students in the top 25% of gains* 14% 11% 

  % of students in the bottom 25% of gains* 11% 14% 

Translation   

  Mean gains* 108.39 88.83 

  % of students with positive gains 85% 80% 

  % of students in the top 25% of gains* 15% 10% 

  % of students in the bottom 25% of gains 12% 13% 

Computation   

  Mean gains 49.64 62.59 

  % of students with positive gains* 60% 78% 

  % of students in the top 25% of gains 12% 13% 

  % of students in the bottom 25% of gains* 15% 10% 

Equation solving   

  Mean gains 67.04 76.16 

  % of students with positive gains 70% 73% 

  % of students in the top 25% of gains 12% 13% 

  % of students in the bottom 25% of gains 13% 12% 

*p < 0.05. 

For the open-ended tasks, CMP students had significantly higher mean gains than non-CMP students 

(t = 2.20, p < .05). In addition, a significantly larger percentage of the CMP students than non-CMP students had 

positive gains (z  = 2.71, p < .01). The percentage of CMP students (14%) whose gain scores on the open-ended 

tasks rank in the top 25% was higher than the non-CMP students (11%) (z = 2.57, p < .01). On the other hand, 

the percentage of non-CMP students (14%) whose gain scores on the open-ended tasks rank in the bottom 25% 

was higher than the CMP students (11%) (z = 2.16, p < .05). 

For the translation component of the multiple-choice tasks, CMP students had significantly higher mean gains 

than non-CMP students (t = 2.57, p < .05). However, there was no significant difference between the 

percentages of the CMP students and non-CMP students who had positive gains. The percentage of CMP 

students (15%) whose gain scores on the translation component rank in the top 25% was significantly higher 



than the non-CMP students (10%) (z = 3.51, p < .01). However, there was no difference between the percentage 

of the CMP students and non-CMP students whose Translation gain scores ranked in the top 25%. 

For the computation component of the multiple-choice tasks, the mean gains of CMP (49.64) and non-CMP 

students (62.59) were not significantly different. However, a significantly larger percentage of the non-CMP 

students than CMP students had positive gains (z = −2.94, p < .01). There was no difference between the 

percentages of the CMP students and non-CMP students whose Computation gains rank in the top 25%. 

However, the percentage of CMP students (15%) whose gain scores on Computation rank in the bottom 25% 

was significantly higher than the non-CMP students (10%) whose gain scores on Computation rank in the bottom 

25%, (z = 4.22, p < .001). 

For the equation-solving component of the multiple-choice tasks, there was no significant difference between 

the mean gains of CMP and non-CMP students from 6th grade to the 8th grade, nor was there a significant 

difference between the percentages of the CMP and non-CMP students who had positive gains over the three 

years. In addition, there was no significant difference between the percentages of the CMP students and non-

CMP students whose Equation Solving gains rank in the top 25%, nor was there a significant difference between 

the percentages of CMP and non-CMP students whose gains rank in the bottom 25%. 

4.2. Repeated measures ANOVA 
As mentioned earlier, we used a repeated measures ANOVA to analyze the longitudinal effect of curriculum on 

the four dependent measures of student achievement. Table 8 shows the F-values for the main effect of time, 

the main effect of curriculum, and the time and curriculum interaction on the four dependent measures. 

Table 8. F-values of repeated measures ANOVA on the dependent measures. 
 

Open-ended Translation Computation Equation Solving 

Time 305.326** 219.681** 100.435** 139.300** 

Curriculum 0.018 0.455 1.949 58.789** 

Time × curriculum 3.341* 2.822* 2.533 0.589 

*p < .05. 
**p < .001. 
 

For the repeated measures ANOVA, we could only use data from the cohort of students who took all four 

assessments (Fall 2005, Spring 2006, Spring 2007, and Spring 2008). We conducted Chi-square analyses to 

examine whether the students who took all four project-developed assessments had ethnicity characteristics 

that were similar to those in the initial sample (i.e., to the 6th grade students who started in the project). The 

results indicated that the ethnic distribution of the reduced sample used in the analyses was not statistically 

different from that of the original sample. On the open-ended tasks, the Chi-square analysis yielded χ2 = 1.93 

(p = 0.75) for the CMP students and χ2 = 2.95 (p = 0.57) for the non-CMP students. On the multiple-choice tasks 

(which include the translation, computation, and equation solving components), the Chi-squares were χ2 = 1.36 

(p = 0.85) and χ2 = 1.55 (p = 0.82) for the CMP and non-CMP students, respectively. These results imply that the 

test-taking attrition was proportionately equal across ethnic groups. Therefore, even though the data we used in 

the analyses were from only a subset of the LieCal students, the subset of the students has characteristics 

similar to the entire cohort. 

4.2.1. Open-ended tasks 
Table 8 shows a significant main effect due to time on the open-ended tasks. From Fall 2005 (6th grade) to 

Spring 2008 (8th grade), both CMP and non-CMP students showed significant growth on the open-ended tasks 

(F(3, 602) = 305.326, p < .001). There was no main effect due to curriculum on the open-ended tasks. This 



suggests that overall CMP and non-CMP students performed equally well on the open-ended tasks. However, 

there is a significant interaction between time and curriculum. Coupled with an examination of the mean gains 

on the open-ended tasks, as shown in Table 7, this significant interaction suggests that the annual growth rates 

of the CMP students was significantly higher than that of the non-CMP students (F(3, 602) = 3.341, p < .05). 

4.2.2. Translation tasks 
From Fall 2005 (6th grade) to Spring 2008 (8th grade), both CMP and non-CMP students showed significant 

growth on the translation component of the multiple-choice tasks (F (3, 572) = 219.681, p < .001), which 

measures students’ ability to represent situations. The repeated measures ANOVA did not reveal a main 

curriculum effect, which suggests that the CMP and non-CMP students performed equally on the translation 

tasks. However, as Table 8 shows, there was a significant time and curriculum interaction on translation (F(3, 

572) = 2.822, p < .05). This result suggests that the CMP students show a significantly higher growth rate than 

the non-CMP students on representing-situations items. As in the open-ended tasks, the CMP students started 

lower than the non-CMP students in the fall of 2005, but by the spring of 2008, they performed better than the 

non-CMP students on the translation tasks. 

4.2.3. Computation tasks 
Although both CMP and non-CMP students showed significant growth on the computation tasks (F(3, 

572) = 100.435, p < .001) from Fall 2005 to Spring 2008, there was no main curriculum effect and no significant 

interaction between time and curriculum. This suggests that the CMP students did not perform differently than 

the non-CMP students on the computation tasks. It also suggests that the CMP and non-CMP students showed 

similar growth rates across the three years (grades 6–8). 

4.2.4. Equation-solving tasks 
Similar to the open-ended, translation, and computation tasks, both CMP and non-CMP students showed 

significant growth on the equation solving tasks (F(3, 572) = 139.300, p < .001) from Fall 2005 to Spring 2008. 

However, unlike on the other three types of tasks, there was a significant main effect of curriculum on equation 

solving. Coupled with an examination of the mean gains on the equation-solving tasks shown in Table 7, the 

significant main curriculum effect on Equation Solving suggests that non-CMP students performed better than 

CMP students on the equation solving tasks. As with the computation tasks, there was no significant interaction 

between time and curriculum. This suggests that CMP and non-CMP students had similar growth rates over the 

four testing administrations from Fall 2005 to Spring 2008. 

4.3. G growth curve modeling 
One of the advantages of using the growth curve modeling is to test the significance of slopes across time and 

variables predicting the change of slopes (Raudenbush, Bryk, & Congdon, 2005). Thus, we used the growth curve 

modeling to examine the effect of curricula, while controlling instructional and student variables on the four 

dependent measures. The four dependent measures, Open-Ended Tasks, Translation, Computation, and 

Equation Solving, were each analyzed separately. As we described above, a two-level growth curve model was 

used. The first level is an individual growth model (time was coded as 0, 1, 2, and 3 so that the slope represents 

annual growth), and the parameters in the Level 1 model are estimated by the outcome variables in the Level 2 

model. Student characteristics (curriculum status, gender, and ethnicity), and instructional variables (conceptual 

and procedural emphases) were used as the predictors in the second level. 

There were 2001 students who had at least one data point on each of the dependent measures. Since HLM 

allows unequal numbers of data points per student as well as unequal spacings of data points over time 

(Raudenbush & Bryk, 2002), all these 2001 students were included in the analyses using growth curve modeling. 

However, students whose data were missing for more than one of the 4 measures (F ‘05, Sp ‘06, Sp ‘07, Sp ‘08) 



of a particular dependent variable were excluded by the HLM software from the Level 1 analysis for that 

particular dependent variable (but were not necessarily excluded from the Level 1 analysis for the other 

dependent variables). This is because the growth curve model needs at least 3 measures. The end result was a 

Level 1 sample size of 1315 for the open-ended tasks and a sample size of 1345 for each of the three multiple-

choice components. 

As we have indicated, at Level 2 we used the dependent-variable/independent-variables variance-covariance 

matrix to predict the coefficients at Level 1. All the students who had at least one valid data point on any of the 

dependent and independent variable(s) were included in the Level 2 analysis. The sample size was 1740 when 

Open-Ended Tasks was the dependent variable in the Level 2 model, but the sample size was 1729 when each of 

translation, computation, and equation solving was the dependent variable. 

4.3.1. Open-ended tasks 
Similar to what we found in the repeated measures ANOVA, the analysis using growth curve modeling showed 

that the CMP students started a bit lower in their performance in the fall of 2005 than the non-CMP students, 

but not significantly so, as seen in the results from the simple conditional model shown in Table 9. Moreover, 

African American students scored lower (t  = −8.83, p < .001) while Caucasian (t  = 11.22, p < .001) and Asian 

students (t  = 2.01, p = .04) scored higher than students of other ethnicities in the fall of 2005. However, the 

simple conditional model also suggests that, over the three middle school years, the CMP students’ scores 

increased significantly more than the non-CMP students’ scores (t = 2.79, p < .05). 

Table 9. Open-ended total scaled score as the dependent variable. 

Estimated 
parameters 

Simple 
conditional model 

   Complete 
conditional model 

   

 
Coefficient SE t p Coefficient SE t p 

Intercept 
    

454.94 3.97 114.64 <.001 

CMP −8.21 4.60 −1.78 .07 
    

Gender 4.08 4.59 0.88 .38 
    

African 
American 

−41.36 4.68 −8.83 <.001 −19.82 4.59 −4.32 <.001 

Hispanic −3.86 5.39 −0.72 .47 
    

Caucasian 89.05 7.93 11.22 <.001 66.35 7.90 8.40 <.001 

Asian 22.22 11.05 2.01 .04 11.44 11.53 0.99 .32 

Slope 
    

19.39 2.64 7.36 <.001 

CMP 4.61 1.65 2.79 .006 5.70 1.58 3.61 .001 

Gender −2.46 1.64 −1.51 .13 
    

African 
American 

−3.13 1.67 −1.88 .06 
    

Hispanic 3.56 2.09 1.70 .09 
    

Caucasian −1.37 2.45 −0.56 .58 
    

Asian 9.76 3.60 2.71 .007 9.59 3.65 2.63 .01 

Concept 1.82 1.21 1.50 .13 
    

Procedure −2.11 1.40 −1.50 .13 
    

 

The simple conditional model also shows that there is no statistical difference between the growth rates of 

African Americans and non-African Americans, nor between Hispanics and non-Hispanics or Caucasians and non-

Caucasians. Asian students experienced significantly higher annual growth rates than students of other ethnic 

groups (t = 2.71, p = .007). Finally, the simple conditional model shows that the level of conceptual emphasis or 



procedural emphasis in instruction did not have a statistically significant impact on the growth rate of students’ 

scores. 

The complete conditional model suggests that the estimated mean score for non-CMP female students who 

were non-African American, non-Caucasian, and non-Asian was 454.94 in the fall of 2005 and that the estimated 

mean annual growth rate for non-CMP and non-Asian students was 19.39. These estimated mean score and 

annual growth rate were significantly different from zero (t = 114.64, p < .001 and t = 7.36, p < .001, 

respectively). CMP students’ growth rate was still significantly higher than non-CMP students when students’ 

ethnicity was controlled (t = 3.61, p < .01). In particular, CMP students had an annual gain of 19.39 + 5.70 = 25.09 

scale points whereas non-CMP students had an annual gain of 19.39. Asian students in the CMP curriculum had 

an annual growth rate of 19.39 + 5.70 + 9.59 = 34.68 scale points. The magnitude of effect of this complete 

model was 30%. 

Additional analysis of students of different ethnic groups within the CMP curriculum (not shown in Table 9) 

revealed that Hispanic students in the CMP program benefited more than other students. That is, their growth 

rate was significantly higher than that of non-Hispanic students (t = 2.07, p < .05). The students in the CMP 

program did not differ significantly from that of CMP non-African American students. Neither were there 

differences between the growth rates of the CMP Asian and non-Asian students, nor between the growth rates 

of the CMP Caucasian and non-Caucasian students. These four results indicate that the CMP program did not 

have a negatively biased impact on the growth rates of any of the ethnic groups, but more notably not on the 

African American and Hispanic students’ growth rates. 

4.3.2. Translation tasks 
The simple conditional model shown in Table 10 suggests that CMP student scored significantly lower than non-

CMP students in the fall of 2005 (t = −3.70, p < .001). Similarly, African American students (t = −2.87, p = .01) and 

Hispanic students (t = −2.11, p = .04) scored significantly lower than non-African American students and non-

Hispanic students. Caucasian students, however, scored significantly higher than non-Caucasian students in the 

fall of 2005 (t = 7.56, p < .001). CMP students had a significantly higher growth rate than non-CMP students 

(t = 2.24, p < .05). Furthermore, the model shows that the level of conceptual emphasis in instruction had a 

positive impact on the growth rate of students’ performance (t = 2.79, p < .05). In fact, we found that with a unit 

increase in the level of conceptual emphasis, the students’ growth rate will increase by 4.26 scaled-score points 

per year. Table 10 also shows, however, that the level of procedural emphasis in instruction did not have a 

statistically significant impact on the growth rate of students’ performance. Further, the simple conditional 

model found no significant difference between the growth rates of male and female students. 

Table 10. Translation total scaled score as the dependent variable. 

Estimated 
parameters 

Simple conditional 
model 

   Complete 
conditional model 

   

 
Coefficient SE t p Coefficient SE t p 

Intercept 
    

447.11 10.72 41.69 <.001 

CMP −17.37 4.69 −3.70 <.001 −3.22 5.19 −0.62 .54 

Gender −4.69 4.71 −1.00 .32 
    

African American −13.60 4.75 −2.87 .01 −1.11 6.77 −0.16 .87 

Hispanic −11.29 5.34 −2.11 .04 −9.21 7.32 −1.26 .21 

Caucasian 56.51 7.48 7.56 <.001 47.80 8.41 5.68 <.001 

Asian −15.61 10.13 −1.54 .12 
    

Slope 
    

27.70 4.06 6.82 <.001 

CMP 4.82 2.15 2.24 .03 3.54 2.58 1.38 .17 



Gender −3.00 2.17 −1.39 .17 
    

African American 0.04 2.16 0.02 .99 
    

Hispanic −1.89 2.58 −0.74 .46 
    

Caucasian 1.57 3.13 0.50 .62 
    

Asian 3.07 4.64 0.66 .51 
    

Concept 4.26 1.52 2.79 .01 2.15 1.59 1.35 .18 

Procedure −1.16 1.83 −0.64 .53 
    

 

The simple conditional model also shows that there was no significant difference between the performance on 

the translations tasks of students from any ethnic group and the rest of the students. As Table 10 shows, t = 0.02 

(p = .99) for African American and non-African American students; t = −0.74 (p = .46) for Hispanic and non-

Hispanic students; t = 0.50 (p = .62) for Caucasian and non-Caucasian students; and t = 0.66 (p = .51) for Asian 

and non-Asian students. 

The complete conditional model suggests that the estimated mean score of non-CMP, non African American, 

Non-Hispanic, and non-Caucasian students was 447.11 in the fall of 2005 and the estimated mean annual 

growth rate of non-CMP students whose concept is at the mean of the whole sample was 27.70. The estimated 

mean score and annual growth rate were significantly different from zero (t = 41.69, p < .001 

and t = 6.82, p < .001, respectively). The difference between CMP and non-CMP students’ growth rate on 

translation tasks diminished after controlling the instructional variables. That is to say, when the teacher's 

conceptual and procedural emphases were at the same level, there was no difference between CMP and non-

CMP students with respect to their growth on translation tasks. Similarly, the impact of the level of conceptual 

understanding on instruction also became insignificant when the students’ curriculum status was controlled. The 

magnitude of effect of this complete model was 26%. 

Additional analysis of students of different ethnic groups within the CMP curriculum (not shown in Table 10) 

revealed that the CMP curriculum did not have a biased/different impact on the growth rates of students of 

differing ethnicities. 

4.3.3. Computation tasks 
As Table 11 shows, the simple conditional model suggests that African American students (t = −5.47, p < .001) 

scored less whereas Caucasian (t = 7.42, p < .001) and Asian students (t = 2.56. p = .01) students scored higher 

than students of other ethnic groups in the fall of 2005. In addition, students in CMP classes had lower growth 

rates than students in non-CMP classes (t = −1.95, p < .05). There was no statistically significant difference 

between male and female students’ growth rates (t = 0.52, p = .60). African American students had a 

significantly lower growth rate in comparison with students of other ethnic groups (t = −4.75, p < .001). Hispanic, 

Caucasian, and Asian students all had significantly higher growth rates in comparison to students outside their 

ethnic groups. (As Table 11 shows, the t-values and significance levels were t = 2.17 (p < .05) for Hispanic and 

non-Hispanic students; t = 2.64 (p < .05) for Caucasian and non-Caucasian students; and t = 2.67 (p < .05) for 

Asian and non-Asian students.) The amount of instructional emphasis placed on conceptual understanding did 

not have a statistically significant impact on the growth rate, nor did the amount of instructional emphasis 

placed on procedures. 

Table 11. Computation total scaled score as the dependent variable. 

Estimated 
parameters 

Simple 
conditional 
model 

   Complete 
conditional model 

   

 
Coefficient SE t p Coefficient SE t p 



Intercept 
    

462.87 4.28 108.27 <.001 

CMP −7.18 4.77 −1.51 .13 
    

Gender −1.70 4.79 −0.36 .72 
    

African 
American 

−26.31 4.81 −5.47 <.001 −4.57 5.26 −0.87 .39 

Hispanic −6.20 5.36 −1.16 .25 
    

Caucasian 59.20 7.98 7.42 <.001 45.66 8.82 5.18 <.001 

Asian 26.60 10.38 2.56 .01 20.79 10.81 1.92 .05 

Slope 
    

33.81 5.43 6.22 <.001 

CMP −3.93 2.01 −1.95 .05 −4.29 1.80 −2.38 .02 

Gender 1.05 2.03 0.52 .60 
    

African 
American 

−9.53 2.01 −4.75 <.001 −12.10 5.02 −2.41 .02 

Hispanic 5.28 2.44 2.17 .03 −4.58 5.19 −0.88 .38 

Caucasian 7.15 2.71 2.64 .01 −1.63 5.43 −0.30 .76 

Asian 12.72 4.76 2.67 .01 5.29 6.67 0.79 .43 

Concept 1.17 1.57 0.74 .46 
    

Procedure 2.88 1.63 1.77 .08 
    

 

The complete conditional model suggests that the estimated mean score for non-African American, non 

Caucasian, and non-Asian students was 462.87 in the fall of 2005 and the estimated mean annual growth rate 

for non-CMP, non-African American, non-Hispanic, non-Caucasian, and non-Asian students was 33.81. These 

estimated mean score and annual growth rate were significantly different from zero (t = 108.27, p < .001 

and t = 6.22, p < .001, respectively). Students in CMP classes had significantly lower growth rates than students 

in non-CMP classes when students’ ethnicity was controlled (t = −2.38, p < .05). African American students had a 

significantly lower growth rate in comparison with students of other ethnic groups when students’ curriculum 

status was controlled (t = −2.41, p < .05). Non-African American students in CMP classes had an annual increase 

on scaled scores of 33.81 − 4.29 = 29.52, whereas non-African American students in non-CMP classes had an 

annual increase in scaled scores of 33.81. African American students in CMP classes had an annual growth rate 

of 33.81 − 12.10 − 4.29 = 17.42. In comparison, African American students in non-CMP classes had an annual 

increase on computation scaled scores of 33.81 − 12.10 = 21.71. The magnitude of effect of this complete model 

was 12%. 

Additional analysis of students of different ethnic groups within the CMP curriculum (not shown in Table 11) 

revealed that African American students in the CMP program benefited less than other students. Their growth 

rate was significantly lower than that of other students (t = −3.09, p < .001). Students of other ethnic groups 

(Hispanic, Caucasian, and Asian) in the CMP program were not found to differ significantly from others with 

respect to the growth rate, indicating that the CMP program did not have a negatively biased impact on the 

growth rate of any of the non-African American ethnic groups. Of particular interest is the fact that there was no 

indication that the CMP program had a negative impact on the Hispanic students’ growth rate. 

4.3.4. Equation solving tasks 
As Table 12 shows, CMP students scored less than non-CMP students in the fall of 2005 (t = −8.55, p < .001). As 

for ethnicity, African American students scored less than non-African American students (t = −5.86, p < .001) 

whereas Caucasian students score higher than non-Caucasian students (t = 7.00, p < .001) in the fall of 2005. 

There were no significant differences between the growth rates of CMP and non-CMP students, between male 

and female students, between African American and non-African American students, or between Hispanic and 

non-Hispanic students. Also, the amount of instructional emphasis placed on conceptual understanding did not 



have a significant impact on the growth rate; nor did the amount of instructional emphasis placed on 

procedures. 

Table 12. Equation total scaled score solving as the dependent variable. 

Estimated 
parameters 

Simple conditional 
model 

   Complete 
conditional model 

   

 
Coefficient SE t p Coefficient SE t p 

Intercept 
    

501.62 9.68 51.82 <.001 

CMP −39.67 4.64 −8.55 <.001 −24.79 5.59 −4.43 <.001 

Gender −1.04 4.70 −0.22 .83 
    

African American −27.85 4.75 −5.86 <.001 −13.83 4.07 −3.40 .001 

Hispanic 1.16 5.29 0.22 .83 
    

Caucasian 56.58 8.08 7.00 <.001 35.10 8.17 4.30 <.001 

Asian 1.51 11.84 0.13 .90 
    

Slope 
    

23.05 1.15 20.06 <.001 

CMP −0.816 2.08 −0.39 .70 
    

Gender 0.25 2.08 0.12 .91 
    

African American −3.67 2.08 −1.76 .08 
    

Hispanic −1.4 2.43 −0.58 .56 
    

Caucasian 6.88 2.88 2.39 .02 7.83 2.89 2.71 .01 

Asian 13.38 4.23 3.17 <.001 13.18 3.17 4.16 <.001 

Concept 1.70 1.52 1.12 .26 
    

Procedure 0.84 1.69 0.50 .62 
    

 

The simple conditional model does suggest that Caucasian students had significantly more improvement than 

non-Caucasian students (t = 2.39, p < .05). Asian students also had significantly more growth than non-Asian 

students (t = 3.17, p < .001). 

The complete conditional model suggests that the estimated mean score for non-CMP, non-African American, 

and non-Caucasian students was 501.62 and that the estimated mean annual growth rate for non-Caucasian and 

non-Asian students was 23.05. These estimated mean score and annual growth rate were significantly different 

from zero (t = 51.82, p < .001 and t = 2.71, p = .01, respectively). Caucasian and Asian students had significantly 

higher growth rates than students outside their ethnic groups. (As Table 12 shows, the t-values and significance 

levels were t = 2.71 (p < .01) for Caucasian students, and t = 4.16 (p < .001) for Asian students.) Specifically, 

Caucasian and Asian students’ annual increases were 23.05 + 7.83 = 30.88 and 23.05 + 13.18 = 36.23 scale 

points, respectively. The magnitude of effect of this complete model was 16%. 

Additional analysis of students of different ethnic groups within the CMP curriculum (not shown in Table 12) 

revealed that the growth rate of African American students in the CMP program was significantly lower than 

that of other students (t = −2.22, p < .05). In addition, Caucasian students in the CMP program benefited more 

than other students since their growth rate was significantly higher than that of non-Caucasians 

(t = 3.63, p < .01). The growth rates of Hispanic and Asian students in the CMP program were not found to differ 

significantly from students outside their ethnic groups, indicating that the CMP program did not have a 

biased/different impact on these students’ learning rates. 



5. Discussion 
In the previous section, we presented the results of a longitudinal examination of the CMP and non-CMP 

students’ learning of algebra using four outcome measures (open-ended tasks, translation tasks, computation 

tasks, and equation solving tasks) and two types of analysis (repeated measures ANOVA and growth curve 

modeling). In this section, we summarize and discuss these results, focusing, in turn, on our two research 

questions and on how a procedural or conceptual emphasis in instruction differentially altered the effects on 

learning of the curricula. 

5.1. Curricular effect on basic skills and higher order thinking skills 
To reiterate, our first research question was “Do conceptual understanding and higher order thinking skills come 

at the expense of basic mathematics skills for students who are taught using a Standards-based mathematics 

curriculum (like CMP)?” Our analyses using repeated measures ANOVA and growth curve modeling showed that 

on open-ended tasks and translation tasks, CMP students’ growth rates were significantly higher than those of 

non-CMP students, whereas there were similar growth rates for CMP and non-CMP students on computation 

and equation-solving tasks. Furthermore, the CMP students’ growth rates on the open-ended tasks and on the 

translation tasks were still significantly higher than that of the non-CMP students when students’ ethnicity was 

controlled. These findings suggest that the use of the CMP curriculum is associated with a significantly greater 

gain in conceptual understanding than is associated with the use of the non-CMP curricula. Furthermore, we 

found that these relatively greater conceptual gains do not come at the cost of lower basic skills, as evidenced 

by the comparable gains attained by CMP and non-CMP students on the computation and equation solving 

tasks. 

So, why do CMP students show significantly greater growth on the conceptually oriented measures (open-ended 

and translation tasks) than non-CMP students? One interpretation of the data is that the CMP students’ 

significantly greater gains on both open-ended tasks and translation tasks are related to the nature of the 

curriculum. Even a cursory comparison of the CMP curriculum with the non-CMP curricula used in our study 

reveals major differences between them. Nonetheless, we did an in-depth comparison of the approaches to 

algebra taken by the two types of curricula. We found major differences in the development of fundamental 

algebraic ideas, and these differences appear to be related to the differences we observed (Cai et al., 2010, Nie 

et al., 2009). For instance, the CMP curriculum uses a functional approach to introduce variables and equations, 

whereas the non-CMP curriculum uses a structural approach to introduce variables and equations. By way of 

example, in the 7th grade, when the CMP curriculum introduces a formal symbolic procedure for solving 

equations, the focus is on making sense of the procedure by providing a contextual meaning for each step of the 

equation solving process (see Table 1). The non-CMP curricula take a much different approach, typically 

introducing the formal symbolic procedure for solving equations by illustrating and employing the additive 

property of equality on “naked” equations. 

Based on differences like this, which we found in our analysis of the CMP and non-CMP curricula, it is likely that 

features of the CMP curriculum contributed to the CMP students’ significantly greater gains on both the open-

ended and translation tasks. It might be expected that a similar advantage would accrue in the equation solving 

of students who used the non-CMP curricula. However, even though the non-CMP curricula include many more 

de-contextualized equation-solving exercises than the CMP curriculum, our data did not show greater 

achievement gains for the non-CMP students on the equation-solving tasks, which were also de-contextualized. 

5.2. Curricular effect on students of color 
Our second research question is “How does the use of a Standards-based curriculum impact the learning of 

students of color as compared to Caucasian students?” the analyses using growth curve model showed that 

African Americans who use the CMP curriculum had a smaller growth rate than the other ethnic groups on the 



computation and equation-solving tasks. It also showed that, on the open-ended and translation tasks, the 

African American and Hispanic students had at least as large a growth rate as the Caucasians. 

In summary, the answer to our second research question is “no” for the conceptual-based measures we 

employed and “yes” for the procedural-based measures. Analyses using both repeated measures ANOVA and 

growth curve modeling showed that the use of a Standards-based curriculum like CMP improves the 

mathematics achievement for all students. Moreover the CMP program contributes to significantly higher 

growth than the non-CMP programs for all ethnic groups on both open-ended tasks and translation tasks 

(especially on the open-ended tasks). However, the findings do suggest that the use of the CMP program has a 

negative impact on African American students’ growth on both the computation and equation-solving tasks 

when compared to other ethnic groups using CMP and when compared to African Americans using a non-CMP 

curriculum. On the other hand, the use of the CMP program has a positive impact on Hispanic students’ growth 

on both computation and equation-solving tasks. These findings address the call for more research on the equity 

issues of curriculum for students of color (Lubienski and Gutiérrez, 2008, Schoenfeld, 2002). Further analysis is 

needed to understand why the impact of curriculum on African Americans’ achievement gains was different 

than the impact of curriculum on Hispanic Americans’ achievement gains over the three middle school years. 

5.3. Conceptual and procedural emphases in the classroom 
One of the major contributions of this study is its longitudinal investigation of how classroom instruction that 

emphasizes procedures or concepts influences the effect of the curriculum on student learning. However, our 

growth curve modeling analysis did not detect a statistically significant impact of either a conceptual or a 

procedural emphasis on the growth rate of any of our outcome measures except for translation component. 

Significantly, we found that the relatively greater growth rates attributable to the use of the CMP curriculum 

disappeared when the conceptual emphasis in the classroom was controlled. That is, when the emphasis on 

conceptual understanding was the same in both CMP and non-CMP classrooms, then the rates of growth on the 

translation tasks were also the same. Related to this outcome, we also found that the level of conceptual 

emphasis in the classroom could significantly predict the growth rate of the students on the translation 

component of the multiple-choice tasks. 

One possible reason that the analyses using growth curve modeling was unable to use the level of conceptual or 

procedural emphasis to predict achievement gains on all of the outcome measures may be related to the small 

variances in the levels of conceptual and procedural emphases in both CMP and non-CMP classrooms. For 

example, the variance in conceptual emphasis within CMP classrooms was 0.94 and that within non-CMP 

classrooms was 0.64. 

While CMP teachers emphasize significantly more conceptual understanding than non-CMP teachers, the overall 

average level of conceptual emphasis in CMP classrooms was rated only slightly above a score of 3 on a five-

point scale. Similarly, while non-CMP teachers emphasize significantly more procedural understanding than CMP 

teachers, the overall average level of procedural emphasis in non-CMP classrooms is only slightly above a score 

of 3 on a five-point scale. Even though the differences are statistically significant between CMP and non-CMP 

instruction, the small absolute differences in both conceptual and procedural emphases may not be sensitive 

enough to accurately predict achievement gains for both CMP and non-CMP students. Nevertheless, the 

measures of conceptual and procedural emphases used in the LieCal Project provide a new way to characterize 

classroom instruction. 

5.4. Future analyses 
In this article, we analyzed data collected using a longitudinal design across the three middle school years to 

examine the differential impact of a reform or a traditional curricula on algebra-related learning of students with 



different ethnic backgrounds. We did not, however, examine the growth of students’ learning from one grade 

level to another or at each grade level. A future direction of the analysis will be to determine the impact of 

curriculum type on pairs of successive grade levels and within each grade level. 

Another direction of study in the future will be to analyze how the type of curriculum used in middle school 

impacts students’ transition to the 9th grade algebra classes in high school. In fact, we have already collected 

the data needed to perform that analysis for the students who participated in the grades 6–8 portion of the 

LieCal project. The analysis will be interesting because all the former middle school CMP and non-CMP students 

used the same mathematics curriculum in the 9th grade. Further, this type of analysis is significant because it 

examines something that has not been studied by other researchers, namely the impact of curriculum on 

learning across grade bands. 
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Appendix A. 
Sample tasks on the LieCal assessment 

Sample multiple-choice tasks 

Translation 

Which number sentence is correct? 

One pound of shrimp costs $3.50 more than one pound of fish. 

 a. shrimp's cost per pound = fish's cost per pound + $3.50 

 b. shrimp's cost per pound + $3.50 = fish's cost per pound 

 c. shrimp's cost per pound + fish's cost per pound = $3.50 

 d. shrimp's cost per pound = fish's cost per pound – $3.50 

Integration 

Which numbers are needed to solve this problem? 

Bill has $2000 in his savings account. He paid a $195 registration fee, a $100 student health fee, and a $50 
activity fee. How much money did he spend? 

 a. 2000, 195, 100, 50 

 b. 195, 100, 50 

 c. 100, 50 

 d. 50 

Planning 

Which operations could you carry out to solve this problem? 

Fifteen pencils come in each box at the store. You buy 3 boxes on Monday, 2 boxes on Wednesday, and 1 box 
on Friday. How many pencils did you buy during this period? 

 a. add, then multiply 

 b. add, then divide 

 c. subtract only 

 d. divide only 

Computation 



 14.04 ÷ 13 = 

 a. 1.08 

 b. 1.8 

 c. 10.8 

 d. 18 

Solving equations 

Find the value of x so that x−5=5 

 a. 0 

 b. 1 

 c. 10 

 d. 25 

 

A sample open-ended task 

Sally is having a party 

The first time the doorbell rings, 1 guest enters 

The second time the doorbell rings, 3 guests enter 

The third time the doorbell rings, 5 guests enter 

The fourth time the doorbell rings, 7 guests enter 

Keep going in the same way. On the next ring, a group enters that has 2 more persons than the group that 
entered on the previous ring 

 A. How many guests will enter on the 10th ring? Explain or show how you found your answer 

 B. How many guests will enter on the 100th ring? Explain or show how you found your answer 

 C. 299 guests entered on one of the rings. What ring was it? Explain or show how you found your answer 

 D. Write a rule or describe in words how to find the number of guests that entered on each ring 
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Notes 
1In the revised version of the Connected Mathematics Program (called CMP 2), there is an increased emphasis 

on the procedural aspects of algebra. 
2In this section, we only discuss the differences between CMP and one of the non-CMP curricula, 

Glencoe Mathematics: Concepts and Applications (Bailey et al., 2006a, Bailey et al., 2006b, Bailey et al., 
2006c). Although there are differences among the non-CMP curricula, the differences between the CMP 
curriculum and each of the non-CMP curricula are similar. 

3We thank Alan Sheinker for allowing us to use a few Balanced Assessment items, published by CTB/McGraw-
Hill. The development of Balanced Assessment was led by Sandra Wilcox, Michigan State University; 
Alan Schoenfeld, University of California, Berkeley; Hugh Burkhardt, Shell Centre, University of 
Nottingham, England; Jim Ridgway, University of Durham, England; and Phil Daro, University of 
California, Chancellor's Office. 

4All students in the same classroom were assigned the same value for the conceptual emphasis variable and the 
same value for the procedural emphasis variable. Since students changed their classrooms and teachers 
as they moved from grade 6 to grade 7 and from grade 7 to grade 8, many students were assigned a 
different value for the conceptual emphasis variable at each grade and a different value for the 
procedural emphasis at each grade. When the level of a classroom variable changes over time, it is 
common to use the average to represent the classroom variable (e.g., Domitrovich et al., 2009, Reardon 
and Galindo, 2009). We are fully aware, however, that the use of average cannot distinguish students 
who, for example, were in classrooms with two high conceptual emphasis scores and one low 
conceptual emphasis score from students who were in classrooms with three medium scores. That is, 
students whose 6-8 classrooms were rated as High–High–Low would have a similar conceptual emphasis 
mean score as the students whose classrooms were rated as Medium–Medium–Medium. But these 



students would have had very different classroom experiences. Luckily, we found that only a small 
proportion (less than 10%) of the students who attended classes rated at the two extremes (high and 
low). Nonetheless, we used another procedure to run the growth curve modeling, which treated the 
classroom variable (conceptual emphasis or procedural emphasis) as time-variant in the Level One 
model (Yijk = π0jk + π1jktijk + π2jkConceptijk + π3jkProcedureijk + eijk). When we did so, we found the same 
results as presented in this article, which used the mean of the of the classroom variables in the model. 

5Unconditional models were always run before conditional models, but these models are not provided here 
because they are simply models without any of the second-level predictors that can be inferred from the 
conditional models. 
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