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Abstract 

Purpose 
To characterize diffusion tensor imaging (DTI) metrics across all levels of the cervical spinal cord (CSC) and to 

study the impact of age and signal quality on these metrics. 

Materials and Methods 
DTI metrics were calculated for gray matter (GM) and white matter (WM) funiculi throughout the CSC (C1–T1) in 

25 healthy subjects (22‐85 years old). Signal‐to‐noise ratios (SNRs) and mean DTI metrics were measured for the 

upper (C1‐3), middle (C4‐6) and lower (C7‐T1) cervical segments. Age‐related changes in DTI metrics were 

analyzed for the individual segment groups. 

Results 
Fractional anisotropy (FA), mean diffusivity (MD) and transverse apparent diffusion coefficient (tADC) showed 

significant differences between GM and WM funiculi. Significant age‐related changes were observed in FA in 

upper and middle CSC segments but not in the lower CSC. The median SNR was significantly lower in the middle 

and lower segment groups as compared to the upper levels, contributing to poor spatial resolution in these 

regions. 

Conclusion 
This study provides DTI data for GM and WM funiculi throughout the CSC. While DTI metrics may be used to 

define cord pathology, variations in metrics due to age and signal quality need to be accounted for before 

making definitive conclusions. J. Magn. Reson. Imaging 2013;38:861–867. © 2013 Wiley Periodicals, Inc. 

 

DIFFUSION TENSOR IMAGING (DTI) provides measures of water molecule diffusion within tissues 1. In neural 

tissues, water molecules move preferentially along the longitudinal axis of axons. This predominantly 

unidirectional diffusion of water molecules, termed anisotropy, is characteristic of parallel axonal bundles 2. In 

the spinal cord, white matter tracts show high anisotropy, while gray matter, which is predominantly comprised 

of neuronal cell bodies, demonstrates low anisotropy. The microstructural architecture of the spinal cord 

produces differences in anisotropy that are visualized on DTI maps, and quantified using DTI metrics. 

Prior studies have shown DTI to be a useful imaging technique to characterize spinal cord microstructure in 

humans 3-6. In the cervical spinal cord (CSC), DTI metrics are able to distinguish white matter funiculi and gray 

matter 7-9. DTI metrics in the CSC are also sensitive to age‐related microstructural changes 10-13. However, the 

majority of previous studies have evaluated only a few cervical segments in the CSC and therefore, it is unclear if 

DTI is uniformly sensitive to microstructural anatomy throughout CSC. With the increasing use of DTI in patients 

with cervical cord pathology, it is essential to determine the current capabilities and limitations of CSC DTI. 

To better understand DTI metrics in the cervical cord, we characterized the diffusivities of the central gray 

matter and individual white matter funiculi across all levels of the cervical cord in a set of neurologically intact 

subjects. We analyzed how DTI metrics were affected by age and signal quality in different cervical segments. 
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MATERIALS AND METHODS 

Subjects 
Informed consent was obtained before enrolling subjects, and the procedure was approved by the appropriate 

Institutional Review Boards. We selected 25 subjects with a normal neurological exam and no medical implants. 

At least one subject was chosen for each decade between 20 and 90 years. 

Image Acquisition 
Diffusion weighted images were obtained throughout the cervical spine (C1–T1) using a single‐shot, twice‐

refocused, spin‐echo echo planar image (SE‐EPI) pulse sequence. Images were acquired on a 1.5 Tesla (T) clinical 

MR scanner (Signa Excite; GE Medical Systems, Milwaukee, WI) with the use of a CTL spine coil (GE Medical 

Systems). Axial slices perpendicular to the long axis of the spinal cord were acquired, with diffusion gradients in 

25 equidistant directions with a b = 500 s/mm2 and a single T2‐weighted (b = 0 s/mm2) image. Slices were 3 mm 

thick with a 3‐mm space gap in between each slice. Diffusion weighted images were obtained with a TR/TE = 

4500/80 ms, number of excitations = 2, matrix size = 128 × 128 and the FOV was set at 260 mm × 260 mm. For 

reference, sagittal T2W images were acquired using a TR/TE = 2600/110 ms, matrix size of 512 × 512, and the 

FOV was set at 220 mm × 220 mm. Axial T2W images sections were determined from anatomical landmarks on 

sagittal images and acquired with TR/TE = 500/8.4 ms; number of excitations = 1.5 and matrix size of 512 × 512. 

Image Processing 
Images were processed using the Analysis of Functional NeuroImages processing suite 

(AFNI, http://afni.nimh.nih.gov/afni/). A Fourier transform‐based affine registration of the DWIs to the T2‐

weighted image (used in previous clinical studies) 14, 15 was done to correct geometric distortions associated 

with susceptibility variations, eddy currents and subject motion. Subjects that produced large bulk movements 

were rescanned. The registered image volume was then processed using AFNI to identify the eigenvalues of the 

tensor for each voxel. 

A constraint nonlinear tensor‐fitting algorithm was used to iteratively compute DTI indices. Outliers were 

checked for in the diffusion images, and were excluded from further analysis. Optimization was completed using 

a gradient descent method. None of the recorded images were obtained with an SNR < 2 and thus the bias due 

to rician noise distribution was considered minimal 16. Moreover, applying a Rician filter for the first 10 subjects 

did not produce significantly different DTI indices, and therefore this was not performed on the final set of 25 

subjects. 

DTI indices were calculated from the eigenvalues as follows: fractional anisotropy (FA, defined by Pierpaoli et 

al) 17, mean diffusivity (MD(×10−3 mm2 s−1), average of all three eigenvalues), longitudinal transverse apparent 

diffusion coefficient (lADC(×10−3 mm2 s−1), largest eigenvalue), and transverse apparent diffusion coefficient 

(tADC(×10−3 mm2 s−1), average of two smallest eigenvalues). 

Regions of Interest (ROIs) 
Images were imported into MATLAB (MathWorks, Natick, MA) and one to three slices per cervical level were 

selected for analysis. Slices with large susceptibility artifacts were excluded from analysis. ROIs for the white 

matter were traced manually for the ventral funiculus, lateral funiculi, dorsal funiculus and central gray matter 

in a manner similar to that described by Pattany et al 18 (Fig. 1). The ROIs were traced in such a manner so as to 

exclude at least two voxels outside cord, thereby minimizing the risk of partial volume effects due to CSF. The 

measurements from the right and left lateral funiculi were averaged and the combined value was used in the 

analysis, as has been reported previously 7, 8. 

http://afni.nimh.nih.gov/afni/
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Figure 1 Schematic diagram of a cross‐section of the cervical cord superimposed on an axial FA map of the 
cervical spinal cord in a representative subject. 1, ventral funiculus; 2, lateral funiculi; 3, dorsal funiculus; 4, 
central gray matter. 
 

The cervical cord was divided into three segmental groups: upper cord (upper border of C1‐ lower border of C3), 

middle cord (upper border of C4‐ lower border of C6), and lower cord (upper border of C7‐ lower border of T1). 

The DTI indices of each segmental group were averaged to identify whether different segmental groups of the 

cord showed significant age‐related changes. The SNR was calculated for throughout the CSC in each subject 

using the method described by Kaufman et al 19. SNR was calculated on T2‐weighted images after distortion 

correction. Signal ROIs were selected at a consistent location inside the body, while noise ROIs were selected 

outside the body (in air), and were obtained at least 10 voxels away from the borders of the image. 

Statistical Analysis 
Data were analyzed statistically using SPSS 20.0 (Chicago, IL). DTI measures of the individual funiculi were 

compared using a one‐way analysis of variance (ANOVA) and comparisons between pairs of funiculi were 

performed using a Tukey post hoc test. Nonparametric tests were used to compare SNR data, which were not 

normally distributed. Pearson's correlation was used to test for correlations between age and DTI metrics. For 

statistically significant correlations, Lowess curves (a locally weighted least squares smoothing method) that 

used 50% of the data points were drawn to determine data patterns. Regression analysis was performed to 

statistically define age‐related changes in DTI metrics. Data are reported as means ± SD and the level of 

significance was set as P < 0.05. 

RESULTS 
Twenty‐five healthy subjects (12 men and 13 women; age range, 22–85 years) were selected for the study 

(Table 1). No subject showed significant cord compression or intramedullary hyperintensities on T2W images. 

Axial FA maps in a representative subject are compared with corresponding axial T2W images in Figure 2. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0019
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Figure 2 Sagittal T2W MR image (left) of the cervical spine in a normal subject with the corresponding axial T2W 
images at each cervical level (middle). FA maps (right) at each cervical level show the cross‐sectional anatomy 
with lower anisotropy in the central gray matter and higher anisotropy in the white matter funiculi. Lower 
cervical segments show poorer spatial resolution as compared to superior levels. [Color figure can be viewed in 
the online issue, which is available at wileyonlinelibrary.com.] 
 

Table 1. Age‐Distribution of Subjects (n=25) 

Age groups (years) Male Female Total 

20‐29 2 1 3 

30‐39 2 3 5 

40‐49 ‐ 1 1 

50‐59 2 1 3 

60‐69 1 3 4 

70‐79 3 2 5 

80‐89 2 2 4 

 

DTI Metrics of the White Matter 
The mean FA, MD, lADC and tADC of all white matter tracts was 0.75 ± 0.04, 0.78 ± 0.1 × 10−3 mm2 s−1, 1.64 ± 0.2 

× 10−3 mm2 s−1 and 0.35 ± 0.08 ×10−3 mm2 s−1, respectively. Mean DTI metrics of the individual white matter 

bundles are shown in Table 2. FA of the ventral, lateral, and dorsal funiculi decreased in a rostral to caudal 

direction (Spearman's r = −0.90, −0.85, and −0.97 respectively, P < 0.01). 

Table 2. Mean DTI Metrics (±SD) of the Gray Matter and Individual White Matter Funiculi in the Cervical Spinal 

Cord of 25 Neurologically Intact Subjects 
 

DTI Metrics Whole 
cord 

Ventral 
funiculus (I) 

Lateral 
funiculi (II) 

Dorsal 
funiculus (III) 

Central 
gray matter 

Differences 
between funiculi 

a. FA 0.63 
(0.03) 

0.72 (0.03) 0.78 (0.03) 0.76 (0.03) 0.51 (0.03) Ia vs IIa, IIIaa 

http://wileyonlinelibrary.com/
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b. MD (x10‐

3 mm2 s‐1) 
0.98 
(0.09) 

0.74 (0.1) 0.75 (0.09) 0.86 (0.1) 0.99 (0.09) IIIb vs Ib, IIbb 

c. lADC (x10‐

3 mm2 s‐1) 
1.77 
(0.1) 

1.5 (0.2) 1.61 (0.1) 1.82 (0.2) 1.62 (0.1) IIIc vs Ic, IIcb 

d. tADC (x10‐

3 mm2 s‐1) 
0.59 
(0.08) 

0.36 (0.09) 0.31 (0.07) 0.38 (0.08) 0.68 (0.06) IIId vs IIda 

FA = fractional anisotropy; MD = mean diffusivity; lADC = longitudinal apparent diffusion coefficient; tADC = 
transverse apparent diffusion coefficient. 
a P < 0.05. 
b P < 0.001. 
 

Comparison of DTI Metrics Between Funiculi 
One‐way ANOVA indicated significant differences between the white matter bundles with regard to the FA (P < 

0.001), MD (P = 0.001), lADC (P < 0.001), and tADC (P = 0.016). The MD and lADC of the dorsal funiculi were the 

highest among all white matter bundles (Tukey test; P < 0.05). The mean FA of the ventral funiculus was the 

lowest among the three white matter compartments (Tukey test; P < 0.05). Other differences between 

individual funiculi throughout the CSC are shown in Table 2. 

Gray Matter 
The mean diffusion metrics of the central gray matter are shown in Table 2. The gray matter FA, MD, and tADC 

were significantly different from the white matter bundles (Tukey test, p<0.01) (Fig. 3). The FA of the gray 

matter increased in a rostral to caudal direction (Spearman's correlation: r= 0.83, P < 0.01). Table 3 shows 

consistent regional differences between DTI metrics of GM and individual WM funiculi. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-note-0003_17
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Figure 3 A–C: Mean FA, MD (×10−3 mm2 s−1) and tADC (×10−3 mm2 s−1) of the ventral, lateral, dorsal funiculi as 
well as central gray matter across the cervical cord (C1–T1). 
 

Table 3. Comparisons of Mean DTI Metrics of WM Funiculi and Central Gray Matter in Different Segmental 

Groups of the Cervical Spinal Cord* 
 

UPPER (C1‐C3) MIDDLE (C4‐C6) LOWER (C7‐T1) 

FA 
   

VF vs GM <0.001 <0.001 0.001 

LF vs GM <0.001 <0.001 <0.001 

DC vs GM <0.001 <0.001 <0.001 

MD 
   

VF vs GM <0.001 <0.001 0.04 

LF vs GM <0.001 <0.001 0.02 

DC vs GM 0.001 0.02 – 

lADC 
   

VF vs GM – – – 

LF vs GM – – – 

DC vs GM 0.003 0.001 – 

tADC 
   

VF vs GM <0.001 <0.007 0.006 

https://onlinelibrary.wiley.com/cms/asset/f36121cc-8175-490d-b9dc-f19a27420f04/jmri24039-fig-0003-m.jpg


LF vs GM <0.001 <0.001 0.002 

DC vs GM <0.001 <0.001 0.005 

P values < 0.05 for individual comparisons are displayed. 
FA = fractional anisotropy; MD = mean diffusivity (×10−3 mm2 s−1); lADC = longitudinal apparent diffusion 
coefficient (×10−3 mm2 s−1); tADC = transverse apparent diffusion coefficient (×10−3 mm2 s−1); VF = ventral 
funiculus; LF = lateral funiculi; DC = dorsal columns; GM‐ gray matter; – = no significant difference. 
 

Change in DTI Metrics With Age 
The FA of the entire cervical cord (C1–T1), upper and middle cervical segments showed a significant inverse 

correlation with age (Pearson's coefficient= −0.55, −0.4, −0.64, P < 0.05, respectively). Lowess curves showed a 

bilinear change in FA with age with a rapid decrease in FA after the age of 55 years (Fig. 4). Regression analysis 

showed that FA was linearly associated with age in subjects over the age of 55 (Fig. 4), while there was no 

significant association in younger subjects. The lower cord FA did not show any significant correlation with age. 

Other DTI metrics also did not correlate with age. 

 
Figure 4 Scatter plots showing the relationship of FA with age. a–c: Lowess curves drawn on scatter plots for all 
subjects (n = 25) showing a sharp decrease in FA after the age of 55 (dotted line); d–f: Linear regression lines for 
entire cervical spinal cord (R2 = 0.5; P = 0.004), upper cervical cord (R2 = 0.52; P = 0.003), and middle cervical 
cord (R2 = 0.44; P = 0.009), showing FA as a function of age in subjects > 55 years (n = 14). 
 

Gender Differences 
No significant differences were found between male (n=12) and female (n = 13) subjects in whole cord, gray and 

white matter DTI metrics from C1–T1 (Student t test, P > 0.05). 

SNR 
The median SNR of the diffusion images across all levels was 7.3 (inter‐quartile range 2.8). The median (IQR) SNR 

of the upper, middle, and lower cervical cord segments were 10.6 (4.8), 5.8 (3.6) and 5.3 (2.4), respectively. The 

SNR significantly differed between the upper (C1–3), middle (C4–6), and lower cervical cord (C7–T1) (Kruskal‐

Wallis; P < 0.001). The upper cord had significantly higher SNR compared with the middle and lower cord (Mann‐

https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-fig-0004
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Whitney; P < 0.001). The middle and lower cords had comparable SNRs (Mann‐Whitney test; P = 0.19). SNRs 

throughout the CSC of individual subjects are shown in Figure 5. 

 
Figure 5 Distribution of signal to noise ratios (SNRs) throughout the cervical spinal cord (C1–T1) showing a 
rostro‐caudal decrease in SNR. “X” denotes the SNR for an individual subject at that particular vertebral level. 
 

DISCUSSION 
The present study has three major findings: (i) FA, MD, and tADC differ between gray and white matter, as well 

as between individual white matter funiculi across all levels of the cervical spinal cord; (ii) Age‐related decreases 

in FA of the CSC are detected specifically in the upper and middle CSC; (iii) Reductions in SNR are observed in a 

rostral to caudal direction. 

Previous authors have measured the diffusivities of gray and white matter in the normal human spinal cord 7-

9, 14, 20-22; however, only few studies, with limited number of subjects (8–11 subjects), have documented DTI 

metrics of the individual white matter funiculi in the CSC 7-9. The mean white matter FA in our study was similar 

to some previously reported values in the cervical cord 8, 22, but higher than others.7, 20 The larger sample size 

and wider age range in this study could account for minor variations in the measured DTI metrics. Similar to 

previous reports 7, 23-25, we found that the ventral funiculus had the lowest FA among all white matter 

bundles. The FA of each funiculus decreased in a rostro‐caudal direction as has been shown previously with 

regard to whole cord FA values 11, 12. The rostro‐caudal decrease in FA in our study, however, is less 

pronounced and may be partly attributed to the overestimation of FA in regions of low SNR (lower CSC) at b 

values closer to 1000 s mm−2 26. It is possible that because several white matter tracts terminate in the cervical 

enlargement, the uniform longitudinal alignment of white matter fibers is disturbed in the lower cervical cord 

leading to a decrease in FA. 

Post mortem 27-31 and other imaging studies 32, 33 have described age‐related degenerative changes in the 

spinal cord such as neuronal loss, astrocytosis, demyelination, and decreased spinal cord volume. The FA of the 

upper CSC has been shown to decrease with age 10, 11. Similar to Agosta et al 10, we found the FA of the CSC to 

decrease rapidly in older subjects. These results further substantiate the sensitivity of FA to age‐related changes 

in the spinal cord, and indicate the need for selecting controls of similar ages when studying spinal cord 

pathology. We believe that the relationship between FA and age, particularly in the lower cord, was affected by 

the differences in SNR across the cervical segments. The lower SNR may have produced minor variations in DTI 

metrics that affected the correlational analysis with age. 

https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-fig-0005
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0014
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0020
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0020
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0012
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0026
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0031
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0032
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0033
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0011
https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.24039#jmri24039-bib-0010
https://onlinelibrary.wiley.com/cms/asset/b8b07348-cc9b-49d6-8f93-fc21b6a1c34b/jmri24039-fig-0005-m.jpg


The present study has brought out important limitations with regards to CSC DTI. The SNR in the C4–T1 

segments was significantly lower than that of the upper CSC (C1–C3). It is likely that the construct of the surface 

coil 34 as well as body morphology negatively impact the signal intensity in these segments. One outcome of low 

SNRs is the overestimation of FA (at b values approaching 1000 s mm−2) 17, 26, particularly in areas of low 

anisotropy 35, 36 such as the central gray matter. This may explain the rostral to caudal increase in FA of the 

gray matter, which was found in this study. We did not try signal‐averaging to increase the accuracy of our 

measurements, because this has been shown to be incapable of correcting such errors 16. Nevertheless, our 

findings are similar to the mean gray matter FA in other studies (within 2 SDs) 8, 14, 22. 

Although significant differences in DTI metrics between GM and WM were seen consistently across the CSC, 

poor spatial resolution in the lower CSC meant that tracing ROIs within specific regions of the spinal cord were 

prone to partial volume effects. Our study may have benefitted from the use of a 3T MR scanner, which has 

been shown to produce images with better resolution 37 and higher signal‐to‐noise ratio 38. While DTI metrics 

are not directly affected by field strength 37, 39, a higher field strength would improve the precision of DTI 

measurements 39, increase the contrast between GM and WM regions 37, and facilitate more accurate tracing 

of ROIs within the spinal cord. 

The trend in SNR values across the CSC has important implications when evaluating spinal cord pathology in the 

middle and lower CSC. In particular, DTI metrics in patients with cervical spondylotic myelopathy (CSM), which 

commonly affects the C4–C7 segments, can potentially be altered by variations in SNR. Minor differences 

between individual patients and controls may also be created by variations in SNR. Additionally, correlational 

analysis with clinical outcomes can be affected by the differences in SNRs. While future studies should try to 

address the technical problems described in our study, it is important that investigators who presently use CSC 

DTI account for variations in SNR when analyzing their results. 

In conclusion, this study provides DTI data for the GM and individual WM funiculi throughout the CSC in 

neurologically intact subjects. While DTI metrics may be used to define cord pathology, variations in metrics due 

to age and signal quality need to be accounted for before making definitive conclusions. 
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