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Abstract: Two layered double hydroxides (LDHs), calcium aluminum 

undecenoate (Ca
3
Al) and calcium iron undecenoate (Ca

3
Fe), have been 

prepared by the co-precipitation method. XRD analysis of these LDHs 
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reveals that they are layered materials and FT-IR and TGA confirmed 

the presence of the undecenoate anions in the material produced. The 

PMMA composites were prepared by bulk polymerization and the 

samples were characterized by XRD, TEM, TGA and cone calorimetry. 

Both additives greatly enhance the thermal stability of PMMA, while 

the calcium aluminum LDH gives better results when the fire 

properties were examined using the cone calorimeter.  

 

1. Introduction  
 

Many investigations have shown that inorganic hydroxide fillers, 

especially magnesium hydroxide (MH) and aluminum trihydrate (ATH) 

are environmentally friendly additives [1,2]. However, they have 

disadvantages, such as the need for quite high loadings and poor 

compatibility with the polymeric matrix, which degrade the mechanical 

properties [3]. The search for other inorganic hydroxide to substitute 

for existing metal hydroxides (MH, ATH) has been of current interest 

[4].  

 

In previous observations on polymer-clay nanocomposite 

flammability using montmorillonite (MMT) as the nanodimensional 

material, it is observed that reduction in the peak heat release rate 

(PHRR) is dependent on the polymer matrix and the quality of the 

nano-dispersion. In the case of polystyrene (PS), polyamide-6 (PA-6) 

and ethylene vinyl acetate copolymer (EVA), the reduction in PHRR is 

quite significant, around 60% [5]. However, in the case of poly(methyl 

methacrylate) (PMMA), only a modest reduction in PHRR, 30%, can be 

achieved [6,7]. It was further observed that the typical small reduction 

in PHRR seems to be dependent on both the identity and amount of 

the surfactant [8,9].  

 

The small reductions in PHRR observed for MMT/PMMA systems 

triggered a search for new additives for this polymer. Layered double 

hydroxides (LDHs), also known as hydrotalcite-like materials, may be 

a good candidate for this, as the composition of the layers can be 

varied, which is not possible with an MMT-like material. This presents 

an advantage, since tuning the LDH may lead to enhancement in some 

properties, but a good understanding of the role of each component of 

the LDH is required for optimization of the properties.  

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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The LDH structure is described with the ideal formula  

inter, where MII is a divalent 

cation such as Mg, Co, Ni, Cu, or Zn and MIII is a trivalent cation such 

as Al, Cr, Fe, V, or Ga with Ax/m
m- an anion of charge 𝑚 such as NO3

−, 

 various carboxylates, etc; intra and inter 

denote the intralayer domain and the interlayer space, respectively. 

The LDH structure consists of brucite-like layers constituted of edge-

sharing M(OH)6 octahedra [10]. 
 

Anionic guest entities, like monomers and polymers [11,12], 

functional biomolecules [13,14], and complexes of reducible transition 

metals [15,16] have been intercalated within an LDH matrix. LDH 

nanocomposites have found applications in mechanical strengthening 

[11,12], as adsorbents [17], or magnetic nanostructures [15,16]. In 

contrast, their potential usage as fire retardants has not been widely 

explored.  

 

In recent work on LDHs as fire retardants for polymers, it was 

observed that matching an LDH with a particular polymer is a key to 

use these nanomaterials effectively [18]. An Mg-Al LDH will disperse 

much better in a polar polymer, like PMMA, than in a non-polar 

polyethylene, polypropylene or polystyrene. This task is not simple, as 

there are many parameters to control: metals (divalent and trivalent), 

anion functional groups (carboxylate, solfonate, sulfate, phosphate, 

etc.), anion sizes, crystallite sizes, stoichiometry and the polymer. The 

variation of the divalent metal cation in an LDH has an influence 

dispersability and fire properties of the corresponding polymer 

(nano)composites [19]. Finally, the length of the carboxylate chain has 

been varied and the dispersability of the LDH and fire properties 

assessed with both PMMA and PS; the dispersion is much better with 

PMMA but there is still a substantial reduction in the peak heat release 

rate even with the LDH poorly dispersed in PS [20]. In this work, two 

trivalent metal ions, aluminum and iron, are used keeping the divalent 

metal and anion the same. 

 

There are a few reports in the literature discussing the use of 

iron in the fire retardancy of polymers. Nangrani et al. [21] reported 

that ferric oxide actually increased the flammability of polycarbonate. 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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Whelan [22) investigated iron oxide as an effective synergist with 

halogens in halogen-containing nitrile polymers. Recently, Jiao et al. 

[4] reported that EVA/(Mg/Al/Fe-CO3) composites containing a variable 

amount of Fe3+ ion obtained a V-0 rating in the UL-94 protocol, while 

with EVA/MgAl-CO3,(an iron-free hydrotalcite), dripping occurred. The 

presence of iron as a substitutional impurity in MMT has been shown to 

lead to radical trapping reactions and a reduction in the PHRR at low 

amounts of clay [23]. Kong et al. have recently reported on a synthetic 

iron-containing MMT analog and found that the iron has a significant 

effect on the degradation and fire properties [24]. 

 

2. Experimental 
 

2.1. Materials 
 

The materials used in the synthesis of the layered double 

hydroxides were analytical grade, obtained from the Aldrich Chemical 

Co. These include 10-undecenoic acid, Ca(NO3)2·4H20, Al(NO3)3·9H20, 

Fe(NO3)3·6H2O, sodium hydroxide. Methyl methacrylate (MMA) and 

benzoyl peroxide (BPO) were used to prepare the polymer composites. 

MMA monomer was passed through an inhibitor remover column 

before use. 

 

2.2. Preparation of the LDHs 
 

The Ca/Al and Ca/Fe LDHs undecenoate were synthesized using 

the co-precipitation method following the literature procedure [25]. 

The preparation was performed in a nitrogen atmosphere to exclude 

CO2 from the LDHs: 2000 ml of deionized water was boiled for 30 min 

while purging with nitrogen, then cooled to room temperature. In a 3 L 

three-neck flask was placed 900 ml of the previously treated water, 

under a constant nitrogen flow. To this was added 50 g (0.27 mol) of 

undecenoic acid and 5 min later, 11 g (0.27 mol) of NaOH. After the 

solution became colorless, the nitrate solution was prepared in 

separate container by dissolving 64 g (0.27 mol) of calcium nitrate and 

34 g (0.091 mol) of aluminum nitrate in 450 ml of previously boiled 

water. This solution was then added dropwise to the 10-undecenoate 

solution, maintaining the pH of the solution at 10.0 ± 0.1. The slurry 

was aged at 60 °C for 2 days, and washed several times with 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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degassed deionized water and dried in a vacuum oven at 80 °C for a 

day to yield the desired calcium aluminum undecenoate LDH (Ca3Al). 

Ca3Fe was obtained similarly, with iron nitrate replacing aluminum 

nitrate and this sample was aged at room temperature. 

 

2.3. Preparation of LDHs/PMMA nanocomposites 
 

The PMMA/LDHs nanocomposites were prepared by a two-stage 

process by in situ bulk polymerization as reported by Wang et al. [25] 

with minor modifications. Briefly, the appropriate LDH loading was 

combined with MMA, total weight 140 g in a 400 ml beaker covered 

with aluminum foil to reduce volatilization, and the mixture was stirred 

vigorously for 1 day. Then, the initiator, BPO, 0.1% was added, and 

the mixture heated to 70 °C to pre-polymerize it. The viscous mixture 

was cooled until a critical viscosity was reached, and another portion of 

initiator, 0.1% (0.14 g) was added to the viscous mixture, which was 

then heated to 120°C for 8 h. At the end, the polymer was placed 

overnight in a vacuum oven at 100 °C to remove unreacted monomer 

and yield the LDH/PMMA nanocomposites. For the two types of LDHs 

prepared in this study, the LDH loadings used with PMMA were 1, 5, 

and 10%. This two-stage process was also used for the preparation of 

the control PMMA sample. 

 

2.4. Determination of molecular weight by viscosity 
 

The molecular weight of PMMA used in this work was obtained 

from viscosity data. The results are an average of three 

determinations, and the Mark-Houwink constants were obtained from 

published data [26].  

 

2.5. Characterization  
 

Thermogravimetric analysis (TGA) was performed on an SDT 

2960 (TA Instruments) at the 15 mg scale under a flowing nitrogen 

atmosphere at a scan rate of 20 °C/min. Temperatures are 

reproducible to ±3 °C, while the error on the fraction of non-volatile 

materials is ±2%. TGA was done in duplicate and the average values 

are reported. Fourier transform infrared (FT-IR) spectra of the solid 

materials were obtained using the ATR mode on a Nicolet Magna-IR 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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560 spectrometer operated at 1 cm
-1 

resolution in the 650-4000 cm
-

1
region. X-ray diffraction (XRD) measurements of the LDHs were 

performed on a Bruker-Nonius APEX2 with CCD detector with 0.5 mm 

Monocap collimator and graphite monochromator with Cu K generator 

(λ = 1.54078 Å) from a sealed X-ray tube. The powder sample was 

prepared as a 0.3 mm ball using a small amount of mineral oil and was 

put on the top of 0.1 mm nylon pin. The data were collected at various 

2θ values in 9° increments using 180° Φ rotations. The polymeric 

samples were compression molded into 20 mm × 15 mm × 1 mm 

plaques for XRD measurements on a Rigaku Miniflex II X-ray 

diffractometer, scaning from 1° to 10° at 0.02° step size.  

Bright field transmission electron microscopy (TEM) images of 

the composites were obtained at 80 kV with a Zeiss 10c electron 

microscope. The samples were ultramicrotomed with a diamond knife 

on a Riechert-Jung Ultra-Cut E microtome at room temperature to give 

~70 nm thick sections. These sections were transferred from a knife-

edge to 600 hexagonal mesh Cu grids. Cone calorimeter 

measurements were performed on an Atlas CONE-2 according to ASTM 

E 1352 at an incident flux of 50 kW/m 
2
, using a cone shaped heater; 

the exhaust flow was set at 24 L/s. The specimens for cone 

calorimetry were prepared by compression molding of the sample 

(about 30 g) into 3 × 100 × 100 mm square plaques. Typical results 

from cone calorimetry are reproducible to within about ± 10%; these 

uncertainties are based on many runs in which thousands of samples 

have been combusted [27].  

 

3. Results and Discussion  

 

XRD patterns of the two LDHs, Ca
3
Al and Ca

3
Fe are shown in 

Fig. 1. The layer structure of the Ca
3
Al is more pronounced as the 

diffraction peaks are more symmetrical and sharp. The Ca
3
Fe produced 

under similar condition is also a layered material, as noted from the 

presence of two other reflection peaks at equidistant 2θ values, but it 

was poorly crystallized, as noted from the asymmetric shape of the 

diffraction peaks. The basal spacing is about 3 nm for both LDHs, 

indicating that the undecenoate anions were successfully intercalated 

between the layers.  

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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Fig. 2 provides the TGA of Ca
3
Al and Ca

3
Fe, in a nitrogen 

environment, run from 50 to 600 °C. Both materials show a 

mass loss below 150 °C, assigned to the loss of gallery water. 

DTA of both materials (Fig. 3) shows that this mass loss is 

endothermic, centered around 130 °C. When heated to higher 

temperature, several other events are visible in the TGA/DTG 

curves. The other events are probably due to the 

dehydroxylation of the layers and total decomposition of the 

materials; this is the normal observation for an LDH [28]. The 

loss of the organic moiety occurs earlier for Ca 3Fe compared to 

Ca3Al. This is shown by the sharp DTG peak around 425 °C and 

an exothermic DTA event (max 450 °C) for Ca3Fe while a similar 

event is observed at 475 °C (DTG) and 492 °C (DTA) for Ca3Al. 

The degradation of Ca3Fe is complete earlier (475 °C) than that 

of Ca3Al (513 °C). The final mass remaining is 47% and 34% for 

Ca3Fe and Ca3Al, respectively. From calculations based on the 

amount of reagents used and expected LDH formulae, a final 

mass of 47% and 44% is expected for Ca3Fe and Ca3Al, 

respectively, which indicates that Ca3 

 

Further characterization of the LDHs used FT-IR (Fig. 4). With 

both materials, the observed bands are characteristic of undecenoate-

containing LDHs, and the assignments of the various bands correlate 

very well to previous work on undecenoate-containing LDH with 

different divalent metals [19]. The carbonate anion, the usual 

contaminant of these materials, is not present as shown by the 

absence of a peak at 1360 cmAl produced contains excess organic. 

-1. An additional band, a sharp band around 1578 cm-1 is also 

observed in these spectra and can be attributed to the asymmetric 

υc=o of a hydrogen-bonded carboxylic acid in the interlayer of the LDH 

material [28,29]. The intercalation of such free acid groups [30] is a 

general phenomenon when excess carboxylate anions are used in the 

exchange or preparation, even at such high pH [31]. Overall, XRD, 

TGA/DTA and FT-IR of these two LDHs confirm that layered materials, 

containing undecenoate anions intercalated in the gallery spacing of 

the LDHs, have been produced. 

 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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Nanocomposites can be described as immiscible, intercalated or 

exfoliated depending on the type of dispersion of the polymer matrix in 

the layers of the nanomaterial. In an immiscible system, also called a 

micro composite, the polymer does not enter into the gallery space of 

the nanomaterial; this is a conventional composite. An intercalated 

nanocomposite is obtained when the polymer enters the gallery space 

and the registry between the layers is maintained. In an exfoliated 

system, also referred to as a delaminated system, excellent nano-

dispersion of the layered material into the polymer matrix is 

accompanied with a loss of the registry between the layers. Wide-

angle X-ray diffraction (XRD) and transmission electron microscopy 

(TEM) are the most commonly used methods to study the dispersion of 

the polymer matrix into the galleries of the inorganic material.  

 

After bulk polymerization of MMA/LDH, the diffraction peaks 

disappeared at all loadings (1, 5, 10%) and for both Ca3Al/(Fig. 5) and 

Ca3Fe/composites (Fig. 6). Two extreme cases can explain the 

disappearance of the diffraction peaks in XRD: (1) complete exfoliation 

of the layers in the polymer matrix, and/or (2) disordering of the LDH 

layers within the polymer matrix with no change in the d-spacing. To 

obtain more insight into the morphology of the PMMA/LDHs, TEMs 

were obtained and are shown in Figs. 7 and 8.  

 

The TEM images of PMMA/5%Ca
3
Fe are shown in Fig. 7. The 

lower magnification image on the left shows agglomeration of smaller 

tactoids dispersed unevenly in the polymer matrix. At higher 

magnification, the tactoids are still seen grouped into a circular disk 

without the presence of individual layers; hexagonal platelets, typical 

of pristine LDH, are also observed. Overall, this TEM suggests poor 

dispersion of this LDH within the PMMA matrix. The TEM image of 

PMMA/5%Ca
3
Al on the other hand (Fig. 8) shows a different 

morphology. The low magnification image shows fair dispersion of the 

LDH within the polymer matrix. The higher magnification image 

reveals that the registry of some of the layers is maintained, but also 

individual exfoliated layers are visible. Overall, a mixed intercalated-

exfoliated morphology is suggested.  

 

The thermal degradation pathways of PMMA are well 

understood. When PMMA is heated, the first small mass loss observed 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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is due to cleavage of weak links, typically head-to-head linkages [32], 

followed by larger mass loss due to scission at the unsaturated ends 

formed through termination by disproportionation. The final main 

event is the random chain scission of the PMMA backbone [33].  

 

The TGA and corresponding derivatized mass, DTG, curves of 

PMMA and its Ca
3
Fe composites heated in nitrogen from 100 to 600°C 

are shown in Figs. 9 and 10, respectively, and the TGA data (onset 

temperature of degradation, T
0.1

, midpoint degradation temperature, 

T
0.5

and the char at 600 °C) are summarized in Table 1. The presence 

of the LDH pushes the TGA curves of the composites to higher 

temperatures showing enhanced thermal stability relative to the pure 

polymer.  

 

The composites and the control polymer all show the two main 

thermal events expected for PMMA. The normal first step of 

degradation of PMMA, due to weak linkages, is not clearly observed in 

these samples. The event attributed to the scission at the unsaturated 

chain end is less pronounced when the LDH is added to the PMMA 

matrix. The molecular weight of the control PMMA sample obtained by 

viscosity measurement was 336,600 ± 8700. It should be pointed out 

that other factors, like the molecular weight of the polymer in a 

PMMA/LDH system can also play an important role in the properties of 

the system. Work is underway to elucidate this possibility. The main 

degradation event, the random scission of the PMMA backbone, occurs 

at a higher temperature relative to the virgin polymer prepared under 

similar conditions. T 
max 

is around 400n °C for all PMMA/Ca
3
Fe 

composites while that for pure PMMA is at 373 °C.  

 

The TGA and corresponding derivatized mass, DTG, curves of 

PMMA and its Ca
3
Al composites heated in nitrogen from 100 to 600 °C 

are shown in Figs. 11 and 12, respectively, and the TGA data (onset 

temperature of degradation, T
0.1 

midpoint degradation temperature, 

T
0.5 

and the char at 600 °C) are summarized in Table 1. As the LDH 

loading is increased, the thermal stability of the composite is gradually 

enhanced. Also, as summarized in Table 1, the char obtained at the  

end of the experiment gradually increases, and the mass of the char 

agrees well with that expected based on the amount of LDH.  

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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The main difference between the thermal behavior of Ca
3
Al and 

Ca
3
Fe is noted in the last step associated with random chain scission of 

the PMMA backbone. As the Ca
3
Al loading increases, both T

0.5 
and T

max 

increase as the loading of the LDH increases while for the iron-

containing material, T
max 

does not depend upon loading of the LDH and 

T
0.5 

is 12 °C higher at 1% loading compared to the aluminum-

containing system. Both additives, Ca
3
Fe and Ca

3
Al, offer significant 

enhancement in thermal stability of the PMMA composites relative to 

the pure polymer.  

 

The fire properties of the PMMA/LDH systems were measured by 

cone calorimetry. Important parameters obtained from such a test are: 

time to ignition, amount of smoke produced, average mass loss rate, 

total heat released, the heat release rate and especially its peak value 

(PHRR). The reduction in PHRR is important for fire safety, as PHRR 

represents the point in a fire where heat is likely to propagate further, 

or ignite adjacent objects [34].  

 

Fig. 13 provides the HRR curves of PMMA and its Ca
3
Fe 

composites while Fig. 14 gives the HRR curves of PMMA/Ca
3
Al 

systems. The summary of the cone calorimetric data is provided in 

Table 2. Overall, increasing the additive loading from 1 to 10% 

enhances the fire properties of the composites, shown by a gradual 

decrease in PHRR for all systems. The greatest reduction (54%) is 

obtained with PMMA/10% Ca
3
Al sample. Bearing in mind that typical 

reductions observed for PMMA/MMT nanocomposites are usually in the 

range of 30% [7], these PMMA/LDH systems are very effective. 

Comparing the aluminum-containing samples with iron-containing 

samples, the former gives greater reductions in PHRR and burn for a 

longer time relative to the iron-containing systems and the virgin 

polymer. The TEM images of the two systems reveal relatively good 

dispersion for the PMMA/5%Ca
3
Al system while poor dispersion was 

noted for PMMA/5%Ca
3
Fe sample. While one may be tempted to 

conclude that the metals play a role in the type of reduction obtained 

in these samples, the differences in the degree of dispersion may also 

explain the differences in the fire properties. Attempting to better 

http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.012
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disperse the iron-containing LDH in PMMA and comparing this new 

system with the PMMA/Ca
3
Al system should be the next challenging 

experiment in order to elucidate the dependence on the trivalent 

metal.  

 

In previous work with various polymer/LDH systems, we have 

seen that there is not a good correlation between the nano-dispersion 

and cone calorimetry results. In several cases, it was observed that 

even a poorly dispersed LDH/polymer system gives as large a 

reduction in the PHRR as seen for a well-dispersed system [18-20]. 

This is completely unlike what has been seen for MMT systems where 

only well-dispersed clay gives a reduction in the PHRR. This continues 

to be a topic of interest in these laboratories.  

 

The effectiveness of PMMA/10%Ca
3
Al composites can be 

compared with fire behavior observed with polymer-MMT 

nanocomposites [6] where the nanocomposites burn for a longer time, 

but since the fuel is released slowly, the HRR stays low throughout the 

burning process. The finding that iron-containing LDH/PMMA system 

giving a higher PHRR relative to aluminum-containing LDH/ PMMA can, 

however, be correlated to the data reported by Jiao et al. [4] where 

their Mg/Al/Fe-CO3 LDHs (sample containing a higher concentration of 

Fe3+) had a higher PHRR value relative to similar materials with lower 

iron content. From the same work, it was observed that the 

introduction of Fe3+ into the LDH prevented dripping in the 

EVA/(Mg/Al/Fe-CO3 LDH) composites and improved the UL-94 ratings. 

Also, from Table 2, the iron-containing PMMA systems produce less 

smoke relative to the aluminum analogs at similar additive loading. 

 

4. Conclusions 
 

Two layered double hydroxides have been prepared and used to 

prepare thermally stable PMMA composites. We successfully prepared 

two layered materials intercalated with 10-undecenoate anions. The 

iron-containing LDH used in this investigation was less crystalline 

relative to its aluminum analog, but both materials give promising 

results when combined with PMMA. Greater reduction in PHRR (54%) 

was recorded with PMMA/10% Ca3Al sample with PMMA/10%Ca3Fe 

giving 34%. While the major difference between the two systems is 
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the metals, aluminum versus iron, it was noted that the dispersion was 

quite different, and the next challenge is to produce a well-dispersed 

iron-containing PMMA/LDH system and evaluate the corresponding fire 

and thermal properties to compare with this data. 
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Appendix  

 

Figure 1: XRD patterns of Ca
3
Al and Ca

3
Fe LDHS-undecenoate 
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Figure 2: TGA and DTG profiles of undecenoate-LDHs. (A) Ca
3
Fe LDH; 

(B) Ca
3
Al LDH. 
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Figure 3: DTA profiles of Ca
3
Al LDH (solid line) and Ca

3
Fe LDH 

(dashed line). 
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Figure 4: FT-IR of Ca
3
Al LDH and Ca

3
Fe LDH (ATR mode). 
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Figure 5: XRD traces of Ca
3
Al LDH and its PMMA composites. 
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Figure 6: XRD traces of Ca
3
Fe LDH and its PMMA composites. 
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Figure 7: TEM image of PMMA/Ca
3
Fe LDH at different magnifications. 
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Figure 8: TEM image of PMMA/Ca
3
Al LDH at different magnifications. 
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Figure 9: TGA curves of PMMA and its Ca
3
Fe undecenoate composites. 

(A) PMMA; (B) PMMA/1% Ca
3
Fe; (C) PMMA/5% Ca

3
Fe; (D) PMMA/10% 

Ca
3
Fe. 
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Figure 10: DTG of PMMA and its Ca
3
Fe composites. 
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Figure 11:  
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Figure 12: DTG of PMMA/Ca
3
Al systems. 
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Figure 13: HRR curves of PMMA and PMMA/Ca3Fe composites at 50 

kW/m
2
. (A) Virgin PMMA; (B) PMMA/5%Ca

3
Fe composites; (C) 

PMMA/10% Ca
3
Fe composites. 
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Figure 14: HRR curves of PMMA and PMMA/Ca3Al composites at 50 

kW/m
2
. (A) Virgin PMMA; (B) PMMA/5%Ca3Al composites; (C) 

PMMA/10% Ca3Al composites. 
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Table 1: TGA summary results of PMMA and its Ca3Al and Ca3Fe 

composites. 

 

 

Table 2: Cone summary results of PMMA and its Ca3Al and Ca3Fe 

composites. 
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