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ABSTRACT  
A NEUROBIOLOGICAL PATHWAY THAT MEDIATES STRESS-INDUCED DRUG 

USE 
 
 

Oliver Vranjkovic B.S.  
 

Marquette University, 2015 
 
 

Cocaine addiction represents a tremendous health and financial burden on our 
society and the high rate of relapse to cocaine use in abstinent addicts represents a major 
barrier to effective therapy.  Thus, understanding the factors that contribute to relapse and 
the underlying neurobiological processes is important for guiding the development of 
treatment for addiction.   Stressful life events often trigger drug use in recovering addicts.  
The contribution of stress to drug use is problematic due to the unpredictable and often 
uncontrollable nature of stress.  A growing literature indicates that norepinephrine and 
corticotropin releasing factor (CRF) in the brain play key roles in stress interactions with 
motivational neurocircuitry that mediate stress-induced drug seeking. Previous work from 
our lab has demonstrated that activation of the CRFR1 receptor within the ventral 
tegmental area (VTA) is both necessary and sufficient for drug-seeking behavior during 
periods of stress. However, the afferent CRF projection into the VTA, and how CRF 
affects the neurocircuitry of VTA to evoke stress-induced relapse are poorly understood.  
 

We report that stress-induced cocaine use involves a beta-2 adrenergic receptor-
regulated CRF pathway from the ventral bed nucleus of the stria terminalis to the VTA 
and a CRFR1 receptor-regulated dopaminergic pathway to the prelimbic cortex.  It is 
hypothesized that dopamine released into the prelimbic cortex activates dopamine D1 
receptors on pyramidal neurons that comprise a glutamatergic projection to the nucleus 
accumbens core that is critical for relapse to drug use in abstinent cocaine addicts.  It is 
also reported that the ability of stressors to trigger drug use is determined by the amount 
and pattern of prior drug use.  Findings suggesting that excessive cocaine use establishes 
susceptibility to stress-induced relapse by recruiting CRF regulation of this key stressor-
responsive mesocortical dopaminergic pathway through increased CRFR1 expression are 
described. 

 
This dissertation defines a key pathway through which stress can promotes 

relapse and describes its recruitment as result of repeated excessive drug use.  
Understanding the processes through which stress contributes to cocaine seeking in these 
rodent models should facilitate translational work aimed targeting these mechanisms 
clinically and therefore the development of new medications or approaches managing for 
addiction.
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Chapter I 
 
 

General Introduction  

 
Risk factors for cocaine addiction 

 

The total cost of drug abuse and addiction due to use of tobacco, alcohol, and 

illegal drugs is estimated at $524 billion a year, while illicit drug use alone, such as 

cocaine, accounts for $181 billion in health care, productivity loss, crime, incarceration 

and drug enforcement (NIDA). Addiction to cocaine and other illicit drugs, is a 

chronically relapsing disorder in which drug use progresses from its initial stages of 

limited, non-dependent intake to later stages of uncontrolled abuse (Koob & Volkow 

2010, Volkow et al 2003). The major risk factors for developing cocaine abuse disorders 

or relapse to cocaine are bipolar disorder, schizophrenia, antisocial personality disorder, 

and other substance abuse disorders (DSM-V). Cocaine use amongst youth can be 

attributed to prenatal cocaine exposure, postnatal cocaine use by parents, and exposure to 

community violence during childhood (DSM-V).   

 
Cellular mechanisms of cocaine 

 
 

The positive reinforcing value of drugs drives the initials periods of drug use, 

while later stages of addiction are driven, in part, by negative reinforcement such as the 

relief of withdrawal which is induced by negative affective states (Koob & Volkow 

2010). The primary reinforcing effects of drugs such as cocaine are thought to occur by 

increased dopamine (DA) signaling that leads to enhanced activity of the brain’s pleasure 

pathway which in turn leads to increased craving. Cocaine physically inhibits the 
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dopamine transporters within the synapse and therefore increases extracellular dopamine 

levels due to decreased reuptake into the presynaptic terminal. Chronic drug use and over 

activation of this pathway is thought to devaluate natural rewards, diminish cognitive 

control of behaviors, and increase salience of drug-related stimuli (Edwards & Koob 

2010, Volkow et al 2003). One major factor that plagues drug users is the high rate of 

relapse, as 70-90% of people have reported periods of relapse.   

 
Stress promotes drug use and relapse 

  

Numerous studies suggest that stress plays a crucial role in addiction. 

Specifically, stress has long been considered an important factor contributing to drug 

craving and relapse of drug use in humans (Kreek & Koob 1998). Interestingly, clinical 

reports indicate that individuals with a history of drug use attribute episodes of relapse to 

stressful life events (Sinha 2001, Wang et al 2001). Consistent with these results, 

controlled clinical experiments in cocaine- and alcohol-dependent patients report a 

significant increase in drug craving following exposure to a personalized stressor (Fox et 

al 2009, Sinha et al 1999). Furthermore, population-based and clinical studies support a 

strong correlation between addiction, chronic distress, and negative affect (Sinha 2008). 

These studies have shown that stressors such as physical or sexual abuse, parental neglect 

and poor family structure increase the likelihood of substance abuse, or relapse of drug 

use (Sinha 2008). While stress and drug use are strongly correlated, the precise 

mechanism by which stress contributes to drug use remains unclear, and in many cases 

involves an interaction between stressful life events, cocaine-related cures, and the effect 

of cocaine itself. In addition, the effects of drug use may vary across different 
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subpopulations of addicts (Preston and Epstein, 2011), making it clear that management 

and treatment of stress-related drug use may need to be individualized.     

  In addition, anxiety and depression are often cited by recovering addicts as key 

contributors of drug craving and relapse (Sinha 2007). Intriguingly, epidemiological 

studies have shown that cocaine dependence is highly correlated with numerous stress-

related disorders such as depression, anxiety, and post-traumatic stress disorder 

(Rounsaville et al 1991). Lifetime cocaine use is strongly correlated with PTSD and 

suicide risk; depressive symptoms with suicidal connotations are generally thought of the 

most serious problems (Narvaez et al 2014). However, studies have also indicated that 

the severity of traumatic events may predate cocaine use (Back et al 2001, Brady et al 

2001). While it is clear that stress-related disorders and cocaine use (the initiation, 

escalation or relapse) go hand in hand, developing and treating stress-related cocaine use 

remains difficult because the appearance of stressors is unpredictable and in most cases 

unavoidable. Therefore, understanding the neurobiological pathways that mediate stress-

related drug use remains an important goal for preventing relapse, the development of 

therapeutics for the management of drug use, and the prevention of stress-related drug 

seeking. To investigate the factors that contribute to stress-induced relapse observed in 

clinical studies, preclinical animal models of relapse, or reinstatement procedures, have 

been developed.       

 
Methods in studying stress-induced cocaine use: Conditioned Place Preference 

 
 
Several different animal models of addiction have been developed to better 

understand the changes in neuronal chemistry, physiology, and behavior that lead to drug 
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seeking during periods of stress. In general, these methods can be grouped into two 

categories based on the method of drug delivery. Non-contingent models involve the 

delivery of drugs by the experimenter; an example of a non-contingent model is 

conditioned place preference. Conditioned place preference (CPP) examines the ability of 

drugs of abuse to establish positive enforcement with learned contextual cues; these cues 

can acquire additional appetitive properties when paired with cocaine or other drugs of 

abuse (Tzschentke 2007). In the CPP model, different compartments of a two, or three 

compartment chamber are paired with either cocaine or saline. CPP first consists of 

determining natural preference, termed preconditioning. To define preconditioning 

preference, the experimenter evaluates the natural value to each compartment by placing 

the rodent in the center compartment of the chamber and allow free access to all three 

compartments for 30 min in the absence of cocaine or saline and the time spent in each 

compartment is compared, and one compartment is designated as the cocaine 

compartment, and the other as the saline compartment. Three methods are used to 

determine preference: in a biased approach, the compartment that was not preferred in the 

preconditioning test is paired with the drug, while an un-biased protocol randomly pairs 

the compartment with the drug, in particular when animals have no general preference 

during preconditioning. Finally, a balanced protocol assigns the chamber so that no group 

as a whole has a preference for a particular chamber (Aguilar et al 2009). After 

preference has been established, the rodent enters the conditioning phase. During the 8-

day conditioning phase of the experiment, mice receive cocaine (15 mg/kg, i.p.) on the 

odd days and saline injections on the even days. Immediately after the injection, mice 

confined (guillotine door closed) to the drug-appropriate compartment for 30 min. A day 
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after the final conditioning session, the mice are tested for the expression of cocaine-

induced CPP by placing them in the center compartment and allowing them full access to 

the apparatus for 30 min. A conditioned place preference is defined as the change in time 

spent (in seconds) in the cocaine-paired compartment after conditioning compared with 

the initial preconditioning session. Mice are determined to exhibit a conditioned place 

preference if they spend more time in the cocaine-paired compartment during the post-

conditioning session compared to the preconditioning session. 

Next, animals are allowed to explore the CPP chamber freely in order to measure, 

and induce extinction behavior, using an approach that involves assessment of the 

incentive motivation properties of the drug-paired environment, until there is no 

significant difference between the times spent in the drug-paired compartment during 

preconditioning. This usually occurs for an average of five to eight days at which, once 

extinction criterion is met, animals undergo reinstatement testing. 

 
Methods in studying stress-induced cocaine use: Self-Administration 

 

Another model of addiction is a contingent model in which the animal requires an 

operant response, such as activating a lever, or activating photobeams through a nose-

poke to receive an intravenous infusion of cocaine; this is coined the self-administration 

model (SA). To study the neurobiological mechanisms involved in reinstatement, studies 

have utilized the reinstatement of drug seeking model following SA. In this model, 

rodents are trained to self-administer a drug of abuse (such as cocaine), followed by an 

extinction phase in which the cocaine is replaced with saline, or they are forced into 

abstinence in which the rodents have no more exposure to the drug of abuse and the 



	   6	  

environment paired with drug use, and are sequestered in their home cage. If a rodent 

undergoes abstinence, exposure to the drug-paired environment will trigger a robust drug-

seeking behavior phenotype from days to months after the last drug-administration 

session (Conrad et al 2008). In the case of extinction, lever responding will progressively 

diminish. Following extinction training, rats may be exposed to either a cue, non-

contingent infusion of the drug of abuse, or a stressor (such as a mild-non noxious 

footshock) to elicit previous drug seeking behavior, and therein overcoming the 

extinction training and increasing lever responding. The SA model allows for the analysis 

of the neurobiological mechanism in drug-seeking behavior because it directly measures 

intake behavior.   

 
Stress as a trigger for relapse 

 
 

Since stress has been cited as a major factor that contributes to drug use in 

humans, studies examining the neurobiological mechanism involved have been 

developed; these studies involve the assessment of stress-induced reinstatement. Stress-

induced reinstatement may involve different types of stressors such as a cold forced swim 

(Conrad et al 2010), or food restriction (Chen et al 2014, Shalev et al 2003); the most 

common type of a stressor utilized for self-administration experiments is an 

uncontrollable intermittent electric-footshock delivered throughout the steel floors of the 

self-administration chamber (Ahmed & Koob 1997, Erb et al 1996). Reinstatement 

testing, more specifically stress-induced reinstatement, is most commonly tested in the 

CPP model by either a forced-swim stressor (Figure 1.1 A-C (Mantsch et al 2010). 

Stress-induced reinstatement in most cases significantly increases the time spent in the 
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cocaine-paired compartment compared to the previous extinction day, and the 

preconditioning day. Once stress-induced reinstatement has been established, different 

neuropharmacological agents may be employed in order to prevent, or in some cases 

evoke, stress-induced drug seeking, allowing for a better understanding of the different 

neurobiological mechanisms that contribute to drug seeking during periods of stress. This 

is important because stress is known to influence the rewarding effects of drugs of abuse 

(Cleck & Blendy 2008, Der-Avakian et al 2005), and stress has a prominent role in 

relapse to drugs of abuse (Sinha 2001).  

 

  
 
 
In the case of SA, the conditions under which stress evokes reinstatement 

involves animals with a specific history of self-administration;  animals that undergo self-

administration for 2 hours will not show reinstatement to an electric footshock stressor, 
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Stress-induced reinstatement in rats following cocaine self- administration and extinction is shown in 
Figs. D–F. Following training, rats (n = 5) self- administered cocaine (1.0 mg/kg/inf) by pressing a lever 
during daily 6-h sessions for 14 days (D) prior to undergoing extinction over a 10-day period during 
daily 2-h sessions (E) and reinstatement testing (F). Stress-induced reinstatement was observed as the 
ability of footshock stress (0.5 mA; 0.5” duration delivered an ave. of 40-s apart over a 15-min session) 
to increase responding on the cocaine lever (*P < 0.05 vs. Bas). 

Figure 1.1 Models of studying 
stress-induced relapse in rodents: 
Stress-induced cocaine seeking in 
mouse (A–C) and rat (D–F) models. 
Stress-induced reinstatement of 
extinguished cocaine-induced CPP is 
shown in Figs. A-C. Preference for a 
cocaine-paired compartment (4 ! 15 
mg/kg, ip) was established (A; 
increase in time spent post-
conditioning vs. pre-conditioning) 
and extinguished (B) in C57BL/6 
mice (n = 4) prior to reinstatement of 
preference by pre-exposure to a 
forced swim session (C; 6-min swim 
in 22 °C water; *P < 0.05 vs. Bas).  !

A. 

D. 

B. C. 

E. F. 
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while animals that undergo self-administration for  6 hours (Figure 1.1 D-F) or more will 

show reinstatement (Mantsch et al 2008a, Mantsch et al 2008b). Preliminary studies have 

indicated that elevated glucocorticoids during 6-hr SA are involved in establishing 

susceptibility to stress-induced drug seeking (Mantsch et al 2008b) though more research 

needs to be conducted to better understand the neurobiological mechanism involved in 

this relapse susceptibility. The Mantsch lab has shown that animals with 6hr access to 

cocaine also show an escalating pattern of cocaine self-administration. In addition, these 

animals are more susceptible to reinstatement by cocaine, footshock, or intra 

cerebroventricular injections of corticotropin releasing factor -( Mantsch et al., 2008a). In 

addition, surgical adrenalectomy, which eliminates corticosterone production, slows the 

escalation, and prevents the establishment of stress-induced reinstatement when 

conducted prior to but not after repeated daily 6-hr cocaine self-administration (Mantsch 

et al., 2008b). This suggests that corticosterone, and other adrenal hormones, may induce 

neuroplastic changes, possibly in the mesocortical system to make rats more susceptible 

to stress-induced relapse.  These neuroplastic changes have been proposed to promote 

drug use during periods of stress through actions of corticotropin releasing factor (an 

important peptide in stress-induced reinstatement) or its receptor which may be up-

regulated by drug use. Both factors are explored in this body of work.  

Using the approaches mentioned above has allowed us to better understand the 

neurobiological mechanisms that contribute to drug use during stress. The CPP model has 

allowed us to explore which noradrenergic receptors mediate this process; this is 

important because clonidine, an agonist at the alpha-2 adrenergic receptor (AR) has been 

shown to decrease drug craving during periods of stress (Jobes et al 2011, Shaham et al 
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2000b). Our studies have also shown that the beta-2 AR is both necessary and sufficient 

in promoting drug use during periods of stress (Mantsch et al. 2010, Vranjkovic et al. 

2012). Using this information, we moved our studies into the SA model and showed that 

activation of the beta-2 AR within the ventral bed nucleus of the stria terminalis 

mobilizes a corticotropin releasing factor pathway projection into the ventral tegmental 

area (Vranjkovic 2014; this data is presented in this dissertation). 

 
Neurocircuitry involved in stress-induced cocaine seeking 

 

Using the self-administration/reinstatement approach in rats, we have focused on 

defining the neurocircuitry (Figure 1.2) involved in stress-evoked drug seeking. 

Particularly, stress-induced reinstatement appears to involve a glutamatergic projection 

from the prelimbic cortex to the nucleus accumbens core (Kalivas and McFarland, 2003), 

which likely regulates motor outputs to produce drug-seeking behavior. This pathway 

may be regulated by glutamate release from the prefrontal cortex, because studies have 

shown that inhibition of the nucleus accumbens core with GABA receptor agonist 

cocktail blocks footshock-induced reinstatement in rats (McFarland et al., 2004) while 

other groups have found that dopamine release within the prelimbic cortex is required for 

stress-induced drug seeking (Capriles et al., 2003, McFarland et al., 2004). Specifically, 

administration of fluphenazine into the prelimbic, but not the core of the nucleus 

accumbens blocked footshock-induced reinstatement; the same study showed that a 

footshock stressor increased both glutamate and dopamine release within the prelimbic 

cortex, however, only glutamate but not dopamine was increased within the nucleus 

accumbens core (McFarland et al., 2004). In addition studies have shown that AMPA 
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administration within the core induced reinstatement while an AMPA antagonist was able 

to block cocaine primed reinstatement (Cornish and Kalivas., 2000) . This dopamine 

likely acts on pyramidal D1 receptors to increase the excitability of pyramidal neurons 

that specifically project to the nucleus accumbens core (Lewis and O’Donnell, 2000; 

Seamans et al., 2001).  

 

 

 
The aim of this body of work is to identify the stress-related neurocircuitry that 

acts up-stream from the cortical-accumbens pathway. Here we will examine the actions 

of the neuropeptide corticotropin releasing factor (CRF) in different stress-related brain 

nuclei, most notably the bed nucleus of the stria terminalis; specifically we will examine 

its interaction with the noradrenergic system within the bed nucleus. We will also 
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 Neuroanatomical projections involved in stress-induced cocaine seeking: An electric footshock stressor will activate a 
noradrenergic projection from the ventral noradrenergic bundle into the ventral bed nucleus of the stria terminalis. Here 
norepinephrine will activate beta-2AR receptors and release corticotropin releasing factor (CRF). CRF will increase the drive 
on CRF ventral tegmental area (VTA)  projecting neurons. A CRF projection from the vBNST into the VTA will be activated, 
and CRF will be released within the VTA. CRF will activate CRFR1 on VTA dopamine neurons that project into the 
prelimbic cortex. DA within the prelimbic cortex will activate D1R and increase the firing rate of pyramidal neurons that 
project into the core of the nucleus accumbens. This will activate sub-motor circuits to engage in drug seeking behavior. 
(Figure adapted from Mantsch et al., 2015)     
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examine its actions within the VTA and how it engages CRFR1 to promote drug seeking 

by activating a dopaminergic projection to the prelimbic cortex.   

 
Bed Nucleus of the Stria Terminalis: General Introduction and anatomy 

 
 

 

 
The bed nucleus of the stria terminalis (BNST) is considered the central 

coordinator between stress-responsive regions such as the amygdala, the paraventricular 

nucleus of the hypothalamus, and the brainstem and motivation systems such as the 

ventral tegmental area (VTA), and the nucleus accumbens (Georges & Aston-Jones 2001, 

Jalabert et al 2009). Structurally, the BNST is a rostral forebrain structure that is enclosed 
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Figure 1.3: The BNST can be divided into three subregions 
Based on the location of the lateral ventricle and the anterior 
commissure; the BNST is divided into a dorsal part: medial of 
the lateral ventricle and lateral of the lateral ventricle, and 
below the anterior commissure or the ventral BNST. Each of 
these subregions comprise of nearly 20 subnuclei.  
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by the lateral ventricles, lateral septum, fornix, the nucleus accumbens, the preoptic area, 

and the hypothalamus (Crestani et al 2013).  

It is made up of 20 different subregions based on cyto- and chemo-architectonic 

studies; the BNST has been subdivided along an anterior to posterior axis. The anterior 

BNST is involved in autonomic control, while the posterior division is involved in 

controlling neuroendocrine responses (Bayer 1987, Ju & Swanson 1989, Ju et al 1989). In 

addition, the BNST can be divided into the dorsal medial, dorsal lateral, and ventral 

subregions (figure 1.3) though some early anatomical studies have suggested that the 

dorsal lateral and ventral portions of the BNST are a continuous structure (Swanson 

1989). Recently, studies have shown that both the dorsal and ventral lateral divisions of 

the BNST are critical in bridging the pathway between stress and reward. The role of the 

dorsal BNST in stress-related drug use has been extensively studied by the Winder group 

(Flavin & Winder 2013, McElligott & Winder 2009). The current body of work will 

examine the ventral portion because studies have suggested that it has a direct 

involvement in stress-induced drug seeking as inhibition of the ventral BNST by a 

GABA agonist cocktail has been shown to prevent footshock-induced drug seeking 

(McFarland et al., 2004). 

 
Bed Nucleus of the Stria Terminalis: Stress-Related Connectivity 

  

The BNST is a critical modulator of stress-induced relapse of drug seeking 

(Aston-Jones et al 1999, Aston-Jones & Druhan 1999, Leri et al 2002, Rodaros et al 

2007) partly due to its connectivity with different limbic brain structures. The BNST 

receives dense glutamatergic projections from the infralimbic cortex, prelimbic cortex, 
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insular cortex, entrorhinal cortex, and the orbital frontal cortex (McDonald 1998) and a 

dense GABAergic projection from the amygdaloidal nuclei (Dong & Swanson 2006). 

Interestingly, the BNST sends both GABAergic and glutamatergic projections to the 

VTA, a region critical in motivated behavior. These projections synapse in part onto 

putative VTA GABA neurons, indicating that the BNST can directly modulate VTA 

firing (Dumont & Williams 2004, Jalabert et al 2009, Kudo et al 2012, Silberman et al 

2013). Specifically, recent data has shown that stimulation of the ventral portion of the 

BNST (vBNST) potently and consistently activates VTA dopamine neurons (Georges & 

Aston-Jones 2001, Massi et al 2008). This may indicate that dopamine firing within the 

VTA is, in part, dependent upon BNST-mediated inhibition of local VTA GABA 

neurons. In addition, other studies have shown that activation of the ventral BNST have 

an excitatory input on to VTA DA neurons (Georges and Aston Jones 2002). It is also 

important to note that both the ventral pallidum (Mahler et al 2014), and the tail of the 

VTA (tVTA or RMTg) have been shown to send GABA inputs to the VTA that are 

prominent during reinstatement behaviors (Barrot et al 2012, Sanchez-Catalan et al 

2014). This indicates that multiple GABAergic inputs into the VTA, and possibly 

glutamatergic inputs, may regulate dopamine release in terminal regions. In this body of 

work, we have focused on the interaction between the vBNST and the VTA.  

 
The Role of Norepinephrine in stress-related drug use 

 

Norepinephrine is an important stress-related neuromodulator that is released 

within the BNST in response to aversive stimuli (Park et al 2012), and during periods of 

stress (Pacak et al., 1995) and has been suggested to promote drug use during times of 
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stress (Brown et al., 2009). Central noradrenergic (NE) neurons are activated by stress 

and play an important role in the stress response. Noradrenergic projections in the brain 

originate from seven distinctive cell bodies in the brainstem (A1-A7) (Dahlstrom & Fuxe 

1964). These projections are divided into the dorsal noradrenergic bundle, which 

provides sole NE projections to the cortex, hippocampus, thalamus, and cerebellum; or 

the ventral noradrenergic bundle, which provides sole NE projections to the 

hypothalamus, and regions of the limbic forebrain such as the amygdala and the BNST.  

These projections are thought to be largely ipsilateral, and innervate a majority of the 

CNS (Moore & Bloom 1979). Importantly, the ventral forebrain bundles sends NE from 

the A2 region into the BNST (Wang et al 2001). Interestingly, it was determined that the 

ventral, but not the dorsal, NE pathway is responsible for footshock-induced 

reinstatement. For example, animals were given 6-hydroxydopamine (6-OHDA; a 

neurotoxin that enters the neuron through monoamine transporters) lesions in either the 

dorsal or ventral forebrain bundle and subsequently tested for footshock-induced 

reinstatement of heroin seeking; only lesions in the ventral NE pathway significantly 

attenuated the effects of footshock on reinstatement for heroin (Shaham et al 2000b), 

morphine (Wang et al 2001), and opioids (Aston-Jones et al 1999). Taken together, this 

suggests that the innervation of NE from the ventral forebrain bundle to the BNST is 

crucial in mediating reinstatement to drugs during times of stress.  

In addition to the ventral forebrain bundle, the locus coeruleus (A6 group) is 

another major NE input into limbic forebrain structures such as the prefrontal cortex, and 

the BNST. The locus coeruleus has a major role in mediating the sleep-wake cycle, 

attention and memory, cognitive flexibility, and stress responses (Schwartz & Roth 
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2008). Recent studies have suggested that the kappa-opioid system interacts with the LC 

to contribute to drug-induced cocaine seeking (Al-Hasani et al 2013, McCall et al 2015, 

Siuda et al 2015). 

 
Noradrenergic receptors and their involvement in stress-related drug use: alpha-2  

Adrenergic receptors 
 
 

Norepinephrine can activate five distinct adrenoceptor (-AR) subtypes: alpha-1 

AR (Gq), alpha-2 AR (Gi), beta-1 AR, beta-2 AR, and beta-3 AR (all Gs), all of which are 

coupled to a G-protein and activate unique secondary messenger signals. All of the 

receptors are distributed throughout the central nervous system (Asanuma et al 1991, 

Bing et al 1992, Levin 1982, Young & Kuhar 1980). Both alpha-1 AR and the beta-ARs 

are largely located on post-synaptic cells; whereas alpha-2 ARs mainly assert their effects 

on the presynaptic cell to serve as auto/heteroreceptor: to function as a negative feedback 

system for neurotransmitter release. However, it has also become evident that many 

alpha-2 ARs are postsynaptic and may regulate brain function in a manner that can 

contribute to drug-seeking behavior (see e.g., (Zhang et al 2009)). Importantly, many 

studies examining the role of norepinephrine in stress have used the alpha-2 AR agonist 

clonidine and related drugs to prevent further NE release, and therefore block stress-

induced reinstatement; importantly, clonidine has been shown to block stress-induced 

cocaine seeking in humans (Jobes et al 2011). The alpha-2 AR antagonist yohimbine and 

related agents, which stimulate NE release, have been used to mimic a stressor in 

preclinical settings and has been shown to induce cocaine-seeking behavior (Mantsch et 

al 2010, Shepard et al 2004).      
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Stress-induced reinstatement studies show that activation of noradrenergic 

receptors plays a crucial role in either forced swim or footshock stress induced 

reinstatement of drug seeking. For example, we have used the alpha-2 AR antagonists 

yohimbine, and BRL4408 (Kiss et al 1995) to induce reinstatement of extinguished 

cocaine CPP (Mantsch et al 2010) and yohimbine has been shown to reinstate drug 

seeking following self-administration (Shepard et al 2004). Systemic injections of the 

alpha-2 AR agonist clonidine have been shown to block footshock-induced reinstatement 

of cocaine seeking (Erb et al 2000), and forced swim-induced reinstatement of CPP 

(Mantsch et al 2010). In addition, central injections of clonidine into the lateral or fourth 

ventricles blocks footshock-induced reinstatement of heroin seeking (Shaham et al 

2000b). While using these drugs has implied that the noradrenergic system plays a major 

role in stress-induced drug seeking, their use has some limitations. For example, 

yohimbine has other targets besides the alpha-2 AR; yohimbine has been shown to 

enhance turnover of dopamine and serotonin (Millan et al 2000), so this promiscuous 

effect of yohimbine makes it difficult to pinpoint its mechanism of action. However, 

work from the Erb lab has shown that central injections of norepinephrine induced 

reinstatement of cocaine seeking (Brown et al 2011), suggesting that norepinephrine does 

indeed have a prominent role in promoting drug seeking by ARs in the brain.    

 
Noradrenergic receptors and their involvement in stress-related drug use: alpha-1 

adrenergic receptors 
 
 

Studies have examined the role of alpha-1 ARs on stress-induced reinstatement. 

These studies have produced mixed results: some studies found that the alpha-1 AR 

antagonist prazosin can block yohimbine-induced reinstatement of food, and alcohol 
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seeking, as well as footshock-induced reinstatement of alcohol seeking (Le et al 2011), 

whereas we observed a failure of prazosin to block forced-swim induced reinstatement of 

cocaine CPP (Mantsch et al 2010). More studies need to be performed to fully understand 

the role of alpha-1 ARs in stress-induced reinstatement, in part because it may have 

indirect effects through modulation of BNST activity. For example, application of an 

alpha-1 AR agonist induced a long-term depression in excitatory neurons of the BNST 

(McElligott & Winder 2008), which might be involved in promoting mood disorders and 

could regulate drug seeking. However, research on the role of the alpha-1 ARs in stress-

related drug use has been overshadowed by the positive results with the beta-ARs.  

 
Noradrenergic receptors and their involvement in stress-related drug use: 

beta adrenergic receptors 
 
 

Studies have indicated that the beta-ARs play a crucial role in stress-induced 

reinstatement. Studies from our lab have found that pretreatment with the nonspecific 

beta-AR antagonist propranolol blocks stress-, but not cocaine-induced reinstatement 

(Mantsch et al 2010). Furthermore, we have shown this to be specific to beta-2 ARs as 

the beta-2 AR antagonist ICI 118,551, and not the beta-1 AR antagonist betaxolol, 

blocked forced swim-induced reinstatement (Mantsch et al 2010). Further studies from 

our lab have shown that beta-ARs, specifically beta-2 ARs, are both necessary and 

sufficient for stress-induced reinstatement because 1) the non-specific beta-AR agonist 

isoproterenol is sufficient to induce reinstatement; 2) beta-AR knockout mice failed to 

reinstate following forced swim; 3) the beta-2 AR agonist clenbuterol is sufficient to 

induce reinstatement (Vranjkovic et al 2012). Interestingly, other studies have indicated 

that beta-ARs are necessary for footshock-induced reinstatement in both the central 
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nucleus of the amygdala, and the vBNST, as a cocktail of betaxolol and ICI 118,551 

(beta-1 AR, and beta-2 AR antagonist respectively) prevented reinstatement when 

injected into either of the two structures (Leri et al 2002). Taken together, these studies 

indicate that beta-AR activation within the central nucleus of the amygdala and the 

vBNST might be a key contributor to stress-induced reinstatement. Furthermore, studies 

have suggested that the noradrenergic system directly interacts with, and may stimulate 

the release of corticotropin releasing factor to induce cocaine seeking because central 

injections of NE causes reinstatement, and this is blocked by pretreatment with a 

nonspecific CRF receptor antagonist (Brown et al 2009).    

 
Introduction to Corticotropin Releasing Factor 

 

Corticotropin Releasing Factor (CRF) is a 41-amino acid peptide that has been 

found to play a critical role in the behavioral and neuroendocrine responses to stress. 

CRF binds to the 7-domain transmembrane receptors CRFR1 and CRFR2. CRFR1 and 

CRFR2 share approximately 70% amino acid identity, however, CRF has a greater 

affinity for CRFR1 compared to CRFR2 (Bale & Vale 2004). In addition, CRF interacts 

with the CRF-binding protein (CRF-BP). The CRF-BP has a high affinity for CRF, and it 

most likely prevents CRF from activating its receptors by directly binding CRF, and 

promoting its clearance and degradation (Woods et al 1999).  

Genetically, CRFR1 and CRFR2 are produced from distinct genes with several 

splice variants (Bale and Vale, 2004). Both CRFR1 and CRFR2 are expressed throughout 

the central nervous system; CRFR1 is expressed more abundantly than CRFR2 (Steckler 

& Holsboer 1999).  There is a 70% sequence homology between CRFR1 and CRFR2, 
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with an 8% homology at the transmembrane and intracellular domain levels (Lovenberg 

et al., 1995).  

 

 

 
CRF: Endocrine Function 

  

In its endocrine role, CRF initiates a cascade of events that activates the 

hypothalamic-pituitary-adrenocortical axis (HPA). Specifically, CRF is released from 

parvocellular neurosecretory cells in the paraventricular nucleus (PVN) of the 

hypothalamus via the median eminence in response to a stressors. CRF travels to the 

anterior pituitary gland where it acts on CRFR1 to initiate the production and release of 

adrenocorticotropic hormone (ACTH), which travels into the circulation and in turn 

promotes the release of corticosterone from the adrenal cortex. In addition to its 

plasticity and adapts to the demands of the environment.
Thus, a variety of stressors have been shown to up-
regulate CRH1, but not CRH2!, mRNA in the rat PVN
(Lacroix and Rivest 1996; Lee and Rivier 1997; Mansi et
al 1996), which suggests that functional adaptation of the
HPA axis to stress may be primarily mediated through
increased CRH1 and not CRH2!, although the latter
seems to be the prime receptor subtype expressed at the
level of the PVN under basal conditions. Likewise, stress
increased CRH1 expression in various cortical areas in
C57BL/6 but not in DBA/2 mice (Giardino et al 1996). On
the other hand, CRH1 binding in the BLA is reduced
following chronic exposure to cocaine (Ambrosio et al
1997), suggesting that CRH1 at the level of the BLA may
play a role in the modulation of behavior associated with
drug withdrawal, which will be discussed in greater detail
below.
CRH2! has also been shown to exhibit plasticity,

however, albeit to a different set of stimuli. For example,
CRH2!mRNA in the VMH is reduced following maternal
deprivation in infant rats (Eghbal-Ahmadi et al 1997) and,

more recently, this effect has been shown to be reversed by
mimicking maternal contact and licking of maternally
deprived pups, but not by merely restoring food intake
(Eghbal-Ahmadi et al 1999). This is of particular rele-
vance, as it has been shown that VMH CRH2! mRNA
also decreased in response to food deprivation in rats
(Makino et al 1998; Timofeeva and Richard 1997). Thus,
there is evidence suggesting that CRH2! might play a role
in social types of behavior—or at least in stress-related
changes induced by maternal deprivation—and feeding.

CRH1 and CRH2! Mediate Different Types
of Behavior
Based on these findings, a range of neuroendocrine and
behavioral effects can be predicted for these two receptor
subtypes. First, the action of CRH on the HPA axis may be
predominantly CRH1-mediated (at least in the rodent),
whereas the central effects leading to this activation, via
CeA, BNST, PVN and the hippocampus, may involve both
receptor subtypes. A role for CRH1 in the regulation of

Figure 1. Schematic illustration of the distribution of CRH1 and CRH2! in the brain. Red circles represent CRH1, whereas blue
squares illustrate the distribution of CRH2!. Although there is limited overlap in the distribution of the two receptor subtypes, CRH1
and CRH2! are frequently expressed in distinct brain areas. It should be noted that the exact expression pattern in the pedunculopontine
tegmental nucleus is not clear at present. The suggestion of CRH1 expression in the locus coeruleus is based on primate data. AON,
anterior olfactory nucleus; APit, anterior pituitary; BLA, basolateral amygdala; BNST, bed nucleus of the stria terminalis; CA1-CA4,
hippocampal areas CA1 to CA4; CeA, central nucleus of the amygdala; Cereb, cerebellum; CoA, cortical nuclei of the amygdala;
CingCx, cingulate cortex; DBB, diagonal band of Broca; DG, dentate gyrus; FrCx, frontal cortex; IC, inferior colliculus; IO, inferior
olive; LC, locus coeruleus (based on primate data); LDTg, laterodorsal tegmental nucleus; LS, lateral septum; MA, medial amygdala;
MS, medial septum; NV, trigeminal nuclei; OB, olfactory bulb; OccCx, occipital cortex; PAG, periaqueductal gray; ParCx, parietal
cortex; PPTg, pedunculopontine tegmental nucleus; PVN, paraventricular hypothalamic nucleus; R, red nucleus; RN, raphe nuclei; SC,
superior colliculus; SN, substantia nigra; Thal, thalamus; VMH, ventromedial hypothalamus.

CRH Receptor Subtypes and Emotion 1483BIOL PSYCHIATRY
1999;46:1480–1508

!"#$
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Figure 1.3: Representation of CRFR1 ( red) and CRFR2 ( blue) are 
expressed throughout the CNS. Both receptors overlap in key brain areas 
such as the ventral tegmental area and the bed nucleus of the stria 
terminalis that regulate drug- seeking during periods of stress. These 
areas are depicted with a star (adapted from Steckler and Holsboer 1999).   
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endocrine role, CRF acts within the brain. Within the central nervous systems, CRF, and 

other neuropeptides in general, have a very unique role.  

 
Neuropeptide Signaling 

  

Neuropeptides act differently compared to small amino acids transmitters such as 

glutamate, GABA, or glycine. In general, these neurotransmitters (i.e., glutamate, GABA, 

and glycine) are rapidly released at a presynaptic active zone; they diffuse across a 

synapse, which is only a few nanometers in length, and rapidly activate their receptors, 

and are then rapidly degraded or transported within an astrocyte or the presynaptic 

terminal (van den Pol 2012). In contrast, neuropeptides are contained in dense-core 

vesicles and may be released at multiple sites along the neuron. Once released, the 

neuropeptide can travel a significantly greater distance (in the order of microns; volume 

transmission) and therefore can diffuse throughout a specific brain area. Neuropeptides 

are not degraded quickly so they remain within a synapse longer and diffuse vast 

distances (Nassel 2009, Palkovits 1995). Binding proteins may interact with the 

neuropeptides to inhibit their actions (Kormos & Gaszner 2013). 

  Classical neurotransmitters are often synthesized within the presynaptic terminal. 

The enzymes required to convert the precursors for classical neurotransmitters are 

synthesized in the cell body; they travel down the axon and convert the precursor 

molecule to the proper neurotransmitter, which is then loaded into the vesicle at the 

presynaptic site. In contrast, neuropeptides are synthesized as pre-propeptides and are 

modified within the endoplasmic reticulum to pro-peptides. Subsequently, they travel to 

the Golgi apparatus and are packaged into dense-core vesicles. Within the vesicles, pro-
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peptides are modified by hydrolysis, glycosylation, phosphorylation, and disulfide bond 

formation to produce the final product (van den Pol 2012). 

In addition, compared to classical neurotransmitters, neuropeptides exclusively 

activate G-protein coupled receptors; these G-protein receptors usually have a high 

affinity for their peptides (it would take nanomoles to activate CRFR1 by CRF, as 

compared to micromoles of glutamate for NMDA receptors).  

 

 

 
Furthermore, all neuropeptides are thought to be co-released with classical 

neurotransmitters or neuromodulators. G-protein activation of neuropeptides will change 

many aspects of the cell’s physiology; importantly, they have been shown to modulate 

receptor trafficking, and alter the  conductance of different ion channels (van den Pol 

Fast Amino Acid Transmission 
Glutamate  

GABA 
Glycine  

Neuropeptide Transmission 
CRF 

Dynorphin  
NPY 

Fig. 3.
Comparison of fast amino acid synaptic transmission (left) and slower neuropeptide
transmission (right).

van den Pol Page 30

Neuron. Author manuscript; available in PMC 2014 February 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Fast Amino Acid Transmission 
-  Fast vesicle recycling  

-  Short distance to receptor  
-  Ionotropic or  

metabotropic receptor activation   

Neuropeptide Transmission 
-  Slow vesicle recycling  

-  Short and long( µm to mm) 
 distance to receptor  
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Figure 1.6 Actions of Neuropeptides: Neuropeptides display volume 
transmission in which they can act locally, or affect neurons that are a long 
distance away. They have no reuptake mechanism, and they are not degraded 
within the synapse, allowing for a unique signaling mechanism. They are 
released from the same terminal such as GABA or glutamate, but at different 
locations. Figure adapted from van den Pol 2012) 
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2012). Importantly, neuropeptides are produced throughout the central nervous system, 

where they can act locally, or project vast distances. These characteristics allow for 

neuropeptides such as CRF to act on multiple different synapses to both promote, and 

inhibit the activity of the same cell population.  

 
The role of Corticotropin Releasing Factor in stress-induced reinstatement of drug 

seeking 
 
 

 
 

In addition to the PVN, other brain nuclei produce CRF as a neuromodulator in 

response to various physiological and emotional stressors. Accordingly, CRF cell bodies 

and receptors are widely distributed throughout the brain (Chen et al 2015, De Souza et al 

1985, Perrin & Vale 1999). Importantly, CRF has been found in the BNST, both the 
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dorsal and the ventral subdivision (Chen et al 2015), and expression of CRFR1 and 

CRFR2 have been reported within the BNST and VTA (Justice et al 2008, Sawchenko et 

al 1993). 

  Given the importance of CRF in stress, early neurobiological investigations of 

stress-induced reinstatement focused on the role of CRF. Experiments found that 

intracerebroventricular pretreatment with the non-selective CRF receptor antagonists D-

Phe CRF, and alpha-helical CRF9-41, significantly attenuates, or blocks, footshock-

induced reinstatement of heroin, cocaine, and alcohol seeking (Erb et al 1998, Le et al 

2000, Liu & Weiss 2002, Zislis et al 2007). Conversely, central injections of CRF itself 

reinstate drug seeking (Erb & Brown 2006, Mantsch et al 2008a). These studies strongly 

suggest that CRF plays an important role in reinstatement of drug seeking during periods 

of stress. However, the site of action of CRF and the receptor that CRF acts on was just 

recently discovered. 

 The effects of CRF on footshock-induced reinstatement have been attributed to 

actions at the CRFR1 receptor. Administration of the selective CRFR1 receptor 

antagonist, CP-154, 526, prior to footshock stress blocked reinstatement of cocaine and 

heroin seeking (Blacktop et al 2011, Gehlert et al 2007, Shaham et al 2000a). In contrast, 

pretreatment with the selective CRFR2 receptor antagonist, antisauvagine failed to block 

footshock-induced reinstatement of extinguished nicotine seeking (Gehlert et al 2007, Lu 

et al 2000), or footshock-induced reinstatement of extinguished cocaine seeking 

(Blacktop et al., 2011). Interestingly, the actions of CRF on CRFR1 have been localized 

in part to the VTA. For example, studies have shown that CRF is released transiently in 

the VTA and that CRF release is enhanced during electric footshock (Wang et al 2005). 
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Recent data suggest that activation of CRFR1 in the VTA during electric footshock 

mediates stress-induced reinstatement of cocaine, heroin, and nicotine seeking (Blacktop 

et al 2011, Grieder et al 2014, Wang et al 2006). Therefore, from these studies, it can be 

concluded that CRFR1 activation within the VTA is an important contributing factor in 

the neurobiology of stress-mediated relapse. However, other studies have suggested that 

the CRFR2 receptor and not the CRFR1 receptor is involved in stress-induced drug 

seeking (Wise and Morales, 2010).  Additionally, several different brain areas may 

contribute to stress-related drug use in conjunction with CRF including the locus 

coeruleus (Al-Hasani et al 2013, McCall et al 2015), the central nucleus of the amygdala 

(Erb et al 2001b), and the dorsal raphe nucleus (Zorrilla et al 2012). The source of the 

CRF input into the VTA is not yet known, though the BNST has been placed as a likely 

candidate.   

 
Convergence of the noradrenergic and CRF systems within the BNST 
 

The BNST has two stress-related noradrenergic inputs that modulate its activity 

and may lead to drug seeking during periods of stress. The first stress-related input is into 

the ventral BNST (vBNST); it receives arguably the strongest NE projections from the 

ventral forebrain bundle (Forray & Gysling 2004). In addition, NE release within the 

vBNST has been shown to contribute to stress-induced reinstatement through the actions 

of the beta-adrenergic receptors (Leri et al 2002). Signaling through beta-ARs can 

increase both GABAergic and glutamatergic transmission through presynaptic 

mechanisms; beta-AR transmission increase IPSC frequency within the BNST (Dumont 

& Williams 2004, Egli et al 2005, McElligott et al 2010, Nobis et al 2011). Specifically, 
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NE can enhance, or decrease glutamate transmission in the dBNST, while its effects in 

the vBNST are less clear.  NE, via a beta-AR mechanism, has been reported to inhibit 

glutamate transmission in the vBNST (Egli et al., 2005). However, studies have shown 

that beta-1 AR activation within the BNST produces a CRF-dependent increase of 

excitatory transmission; specifically, activation of beta-AR receptors causes an increase 

in spontaneous EPSC.  However, in the presence of a CRFR1 antagonist, this effect is not 

observed, indicating that beta-AR dependent EPSCs are mediated by activation of 

CRFR1 (Nobis et al. 2011). This suggests that beta-ARs within the BNST may contribute 

to stress-dependent reinstatement, since stress-dependent norepinephrine release 

modulates BNST activity, most likely activating excitatory signaling through CRF-

dependent actions of beta-AR within the BNST. Based on our work, we believe that 

activation of the beta-2 AR (Mantsch et al 2010, Vranjkovic et al 2014) within the BNST 

modulates stress-responsive signaling in a CRF-dependent manner.     

The second stress-related input to the BNST is CRF. The BNST contains a local 

pool of CRF-positive cells that not only act within the BNST but also send CRF to other 

putative brain regions (Sakanaka et al 1986, Sink et al 2013, Wang et al 2011). Notably, 

stress exposure increases crf mRNA in the BNST (Funk et al 2006). For example, 

footshock has been shown to increase crf mRNA within the dorsal, but not ventral, BNST 

of withdrawn heroin animals (Shalev et al 2001). This suggests that CRF within the 

dBNST might act on other targets such as the vBNST to initiate reinstatement. 

Furthermore, injections of CRF within the BNST reinstates drug-seeking behavior, 

whereas CRF injections within the amygdala fail to promote the same response (Erb & 
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Stewart 1999). This further indicates that CRF signaling within the BNST is crucial for 

reinstatement.  

  Neuroanatomical evidence has shown that ventral NE projections, which are 

critical to stress-induced reinstatement, make direct synaptic contact with CRF cells 

within the ventral BNST (Hornby & Piekut 1989, Phelix et al 1994). Interestingly, within 

the BNST, CRF enhances beta-AR transmission though activation of CRFR1 (Nobis et al 

2011). In addition, activation of the beta-AR depolarizes BNST CRF neurons, and CRF 

enhances the frequency of spontaneous EPSCs in BNST neurons that project to the VTA 

(Silberman et al 2013). These findings suggest that beta-AR activation may enhance CRF 

release from local BNST CRF sources, leading to enhancement of excitatory 

neurotransmission on VTA-projecting neurons by the activation of either CRFR1 on 

VTA-projecting cells, or the activation of CRFR1 on glutamate cells that interact with 

BNST cells projecting to the VTA. These findings place the BNST as a main candidate 

for a CRF projection to the VTA. However, no studies have shown that a direct BNST to 

VTA CRF projection mediates stress-induced reinstatement. In addition, no studies have 

analyzed the role of interactions of CRF and NE within the BNST in mediating stress-

induced reinstatement. 

 
 

CRF acts within the VTA to promote drug seeking during periods of stress 
 

The VTA has been implicated as a key area where a number of pathways 

converge to regulate motivated behavior and reward to promote drug-seeking behavior 

when faced with a stressor. The VTA is the main source of dopamine within the central 

nervous system and via its two primary spokes, the mesocortical, and mesolimbic 
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systems, the VTA can coordinate drug-seeking behavior. Specifically, ~70% of VTA 

neurons are dopaminergic, ~30% of neurons are GABAergic, and about ~1-2% are 

glutamatergic (Nair-Roberts et al 2008, Walsh & Han 2014, Yamaguchi et al 2015).  

Within the VTA, drug-dependent neuroplasticity can make an addict more 

susceptible to relapse when faced with a stressor (Mantsch et al., 2014). In order to 

develop therapeutics for the treatment of stress-dependent drug seeking, we need to better 

understand the neurobiological mechanisms through which stressors trigger drug seeking.  

Actions of CRF within the VTA have been shown to promote drug use during 

periods of stress. Studies have shown that CRF administration into the VTA is sufficient 

to cause drug-seeking behavior (Blacktop et al 2011, Wang et al 2005, Wang et al 2007), 

and that the actions of CRFR1 (Blacktop et al 2011, Chen et al 2014), CRFR2 (Wang et 

al 2005, Wang et al 2007) and the CRF binding protein (Wang et al 2007) are necessary 

for stress-induced drug, and food (Chen et al 2014) seeking following cocaine self-

administration. CRF inputs into the VTA have been shown to come from the oval bed 

nucleus of the stria terminalis, the paraventricular nucleus of the hypothalamus, and the 

central nucleus of the amygdala (Rodaros et al 2007); however, only the CRF input from 

the oval bed nucleus has been shown to be involved in stress-related drug-seeking 

behavior (Erb et al 2001a, Erb & Stewart 1999, Rodaros et al 2007). Studies have shown 

footshock stress promotes CRF release within the VTA in both drug-naïve, and drug-

experienced rodents (Wang et al 2005).  

Interestingly, a recent study has suggested that chronic nicotine self-

administration upregulates local VTA CRF production, and that this CRF gets released in 

the posterior VTA in an autocrine fashion to activate CRFR1 on DA cells to promote 
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stress-induced nicotine relapse (Grieder et al 2014). This suggests that within the VTA, 

CRF may be released from terminals that originate from the amygdala, bed nucleus, or 

the paraventricular nucleus of the hypothalamus, or from VTA cell bodies during periods 

of stress where it most likely acts on CRFR1 to modulate VTA activity. 

 
CRF receptor subtypes within the VTA 

 

Polymorphisms in genes that encode CRF receptors are associated with 

exacerbated stress responses and propensity to develop drug addiction (Blomeyer et al 

2008, Clarke & Schumann 2009, De Luca et al 2007, Enoch et al 2008, Treutlein et al 

2006) indicating that CRF receptor function can contribute to substance abuse/addiction. 

CRF, and both of its receptors (CRFR1 and CRFR2) are expressed within the VTA 

(Ungless et al., 2003, Korotkova et al., 2006, (Grieder et al 2014). CRFR1 is expressed at 

much lower levels in VTA compared to other brain areas and is localized to both 

dopaminergic and GABAergic cells. Repeated drug use may increase the expression of 

CRFR1, partly; CRF binding is increased within the VTA due to chronic cocaine 

administration as assessed through receptor autoradiography (Goeders et al., 1990).  

Stress seems drive DA activation within the VTA through a CRF-dependent 

mechanism. We have shown that CRFR1 receptor activation is both necessary and 

sufficient for stress-induced drug seeking (Blacktop et al., 2011). In addition, deletion of 

CRFR1 within VTA DA neurons has been shown to be anxiogenic, and decrease DA 

release within the prelimbic cortex (Refojo et al., 2011). Moreover, a VTA viral-mediated 

knockdown of CRFR1 decreased food deprivation stress-induced reinstatement of 

cocaine seeking in mice (Chen et al., 2014). We hypothesize that stress induces an 
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activation of VTA DA neurons that project into the prelimbic cortex (Deutch et al., 1991) 

and therefore increases the release of DA within the prelimbic cortex ( Thierry et al., 

1976; Sorg and Kalivas, 1993). While some studies have suggested this is a CRFR1 

dependent process (Refojo et al., 2011), no studies have directly shown this to be the case 

as it relates to stress-induced drug seeking  

Traditional in situ hybridization methods have failed to detect CRFR2 within the 

VTA (Van Pett et al., 2000); this may indicate that CRFR2 are localized on projecting 

presynaptic terminals within the VTA. In addition, other studies have suggested that both 

CRFR1 and CRFR2 within the VTA mediated EPSC potentiation and attenuation 

respectively (Williams et al., 2014). In addition, the same study showed that CRFR2 

activation facilitated GABA release within the VTA (Williams et al., 2014). These 

studies have indicated that while CRFR1 within the VTA may directly mediate stress-

induced drug seeking, it may do so in coordination with the CRFR2 receptors in a poorly 

understood fashion. 

 
Actions of CRF on VTA neurons 

 
 
The cellular effects of CRF within the VTA are diverse and have been shown to 

include regulation of both glutamatergic and GABAergic inputs; CRF has been 

hypothesized to directly modulate VTA DA firing at presynaptic, postsynaptic, and 

extrasynaptic sites. Studies have indicated that aversive stimuli may differently act upon 

VTA DA projections to either the prelimbic cortex or the nucleus accumbens. 

Specifically many studies have indicated that aversive stimuli (through actions of CRF 

within the VTA) increase DA release within the prefrontal cortex (Abercrombie et al 
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1989, Lammel et al 2008, Lammel et al 2012, Refojo et al 2011, Wanat et al 2008), while 

within the nucleus accumbens, some aversive stimuli such as quinine, an aversive tastant, 

may decrease DA release (Twining et al 2015). This may be attributed to differential 

actions of CRF on VTA DA-projecting neurons; CRF may enhance DA signaling into the 

prelimbic cortex, while have differential effects on, possibly attenuating, the DA 

projection to the nucleus accumbens.  

Specifically, studies have shown that CRF, through activation of CRFR1 within 

the VTA, increases VTA DA Ih currents and dopamine neuron excitability through a 

PKC-dependent mechanism (Wanat et al., 2008). Other studies have shown that chronic 

cocaine use potentiates the magnitude and duration of CRF-induced NMDA currents, and 

that only mice treated with cocaine showed a CRF-dependent enhancement of AMPA 

transmission (Hahn et al., 2009). In addition, other studies have suggested that the 

potentiation of the NMDA receptor-mediated signaling is attributable to CRFR1 

activation (Sparta et al., 2013). These studies suggest that CRF within the VTA enhances 

excitatory transmission, in part through regulation of NMDA and AMPA receptors.  

Other studies have suggested that activation of CRFR1 within the VTA decreases 

VTA DA cell excitability (Beckstead et al., 2009), and dopamine release within the 

nucleus accumbens (Wanat et al., 2013;Twining et al., 2015). Specifically, Beckstead et 

al showed that CRF facilitated GIRK currents and reduced DA neuron excitability via 

activation of CRFR1.  Moreover, CRF administration into the VTA has been reported to 

cause a decrease in basal nucleus accumbens DA (Wanat et al., 2013),  while a CRFR1 

antagonist administered into the VTA blocked the drop in accumbens DA, which is 

observed with intra-oral quinine (Twining et al., 2015).  Interestingly, intra-oral quinine 
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also induces reinstatement. Therefore, these studies suggest that, during periods of stress, 

CRF may act to decrease the VTA DA projection into the accumbens (Twining et al., 

2015).              

 
Glutamate-CRF actions within the VTA promote drug use 

 

The VTA receives glutamatergic inputs from many brain regions (Geisler et al 

2007). Glutamatergic inputs to VTA DA neurons have been found to originate from the 

medial prefrontal cortex, mesopontine tegmentum nucleus, lateral habenula, 

periaqueductal gray, and the dorsal raphe (Charara et al 1996, Clements & Grant 1990, 

Omelchenko et al 2009, Omelchenko & Sesack 2007, Omelchenko & Sesack 2010, Qi et 

al 2014, Sesack & Pickel 1992). However, it is important to note that some of these 

glutamatergic regions also project to non-DA neurons within the VTA, and that 

glutamatergic inputs and outputs to the VTA can manipulate behavior in different ways. 

For example, reward-mediating inputs can come from the laterodorsal tegmental area, 

while aversion-mediating inputs can originate from the lateral habenula (Lammel et al 

2012). These observations are an important indication that isolating selective inputs to the 

VTA using current techniques, such as optogenetics, is critical in order to link specific 

behaviors to specific inputs. Therefore, using current advances in optogenetics and 

chemogenetics, specific inputs onto specific cell populations is an important future 

research objective.  

 CRF actions within the VTA have mainly focused on the interaction between 

CRF and glutamate. Studies have shown that CRF-containing neurons make 

morphologically asymmetric synapses with VTA DA neurons, suggesting that CRF-
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releasing terminals are predominantly glutamatergic (Tagliaferro & Morales 2008). CRF 

directly excites both DA and non-DA neurons within the VTA (Korotkova et al 2006, 

Wanat et al 2008). In addition, CRF increases NMDA current that uses a CRFR2-

dependent mechanism (Ungless et al 2003), while actions on CRFR1 have been shown to 

potentiate both NMDA and AMPA currents in cocaine-experienced mice (Hahn et al 

2009). VTA glutamate levels are increased by the direct administration of CRF within the 

VTA (Wang et al 2005) while administration of the AMPA/NMDA receptor antagonist 

kynurenic acid into the VTA has been reported to prevent both footshock-induced 

reinstatement and the increase in VTA DA levels (Wang et al 2005, Wise & Morales 

2010). This suggests that CRF enhances glutamatergic transmission on VTA DA cells. 

However, it is important to note that VTA DA neurons do not ubiquitously project to the 

same terminals; the balance between VTA DA projection activation and inhibition may 

coordinate a differential behavioral response based on the output of the VTA DA 

neurons; for example, studies have shown that laterodorsal tegmentum neurons 

preferentially synapse on DA neurons projecting into the nucleus accumbens lateral shell, 

while lateral habenula neurons synapse primarily on DA neurons that project to the 

medial prefrontal cortex, and GABAergic neurons located within the tail of the 

VTA(Lammel et al 2014, Lammel et al 2012). This is important because studies have 

shown that the lateral habenula is activated during aversive stimuli (Barrot et al 2012, 

Jhou et al 2013, Stamatakis & Stuber 2012) which suggests that the stress-dependent 

increase of DA release within the prefrontal cortex may be dependent on activation of 

VTA DA neurons by the lateral habenula.   
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GABA neurotransmission within the VTA during stress-induced relapse 
   
  

Much research has focused on the role of excitatory neurotransmission within the 

VTA that leads to relapse during periods of stress. However, the inhibitory 

neurotransmitter γ-aminobutyric acid (GABA) may have diverse functions in controlling 

DA cell firing within the VTA. It is important to note that the VTA is not only comprised 

of DA neurons, but also a subset of GABAergic neurons that are interneurons (Cruz et al 

2004, Steffensen et al 1998) or GABAergic-projecting neurons (Pupe & Wallen-

Mackenzie 2015, Walsh & Han 2014). Specifically, ~70% of VTA neurons are 

dopaminergic, ~30% of neurons are GABAergic, and about ~1-2% are glutamatergic 

(Nair-Roberts et al 2008, Walsh & Han 2014, Yamaguchi et al 2015). Interestingly, very 

small subsets of neurons have been found to co-release DA along with either glutamate, 

or GABA in their terminal region (Stuber et al 2010, Sulzer et al 1998, Tritsch et al 

2012). In addition, the VTA receives GABAergic input from various other brain areas 

such as: the nucleus accumbens (Bocklisch et al 2013, Yim & Mogenson 1980), the 

periaqueductal gray (Omelchenko & Sesack 2010, Zhang et al 2015), the bed nucleus of 

the stria terminals (Kudo et al 2012), the lateral septum (Luo et al 2011), laterodorsal 

tegmentum (Omelchenko & Sesack 2005), and the rostromedial tegmental area (Barrot et 

al 2012, Jhou et al 2009). Once released, GABA may act on either GABAA receptors, to 

open up a Cl- channel to hyperpolarize the cell and thus decrease the chance of firing an 

action potential, or it can activate GABAB receptors, which will also decrease the 

membrane potential by activating a potassium channel (GIRK) through a G-protein (Gi) 

that is coupled onto the GABAB receptor (Johnston 1996, Kasten & Boehm 2015). Both 

GABAA and GABAB receptors are located on VTA DA neurons where they can modulate 
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DA activity (Creed et al 2014, Enoch 2008, Lomazzi et al 2008); the diversity of these 

VTA DA neurons can contribute to the complexity of how stress-related inputs regulate 

VTA DA neurons. For example, studies have shown that CRF modulates DA and 

GABA-mediated inhibition within the midbrain by activating inhibitory postsynaptic 

currents through GIRK channels on DA cells. Specifically, CRF enhances the amplitude 

and slows the kinetics of inhibitory postsynaptic current through interactions with 

GABAB receptors and D2 receptors (Beckstead et al 2009).      

 Studies have shown that stress may “turn off the brakes” on VTA DA cells by 

blocking long-term potentiation of GABAergic neurons that synapse onto DA cells 

(Graziane et al 2013). In addition, GABA release is increased within the VTA during 

periods of stress in animals that received daily non-contingent cocaine injections 

(Sotomayor-Zarate et al 2015). Some studies have suggested that CRF interacts with 

GABA neurons; studies have shown that CRF regulates GABA release through a pre-

synaptic mechanism (Kasten & Boehm 2015, Williams et al 2014). This would suggest 

that GABA acts to disinhibit DA firing. However, other literature has suggested that 

GABA directly acts to decrease DA firing. Studies have shown that footshock excites 

VTA GABA neurons while concurrently inhibiting DA neurons (Tan et al 2012). In 

addition, footshock stressors have been shown to reduce the firing of VTA DA neurons 

(Ungless et al 2004). Interestingly, we have recently found that GABAB receptors are 

necessary for both stress-, and CRF-induced drug seeking; our data indicates that GABAB 

activation may be upstream from the actions of CRF (Blacktop et al., 2015). This 

demonstrates that VTA neurons may have a dual action in response to aversive stimuli; 

some neurons will increase their firing rate, while others will have a decrease in firing. It 
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is important to understand the projection areas of these differentially responding VTA 

neurons.  

VTA projections to the PFC 

 
Recent innovations in optogenetics and viral mediated-gene transfer have led to 

findings that DA neurons located in the medial posterior VTA selectively project to the 

medial prefrontal cortex (Lammel et al 2008). These neurons are very unique because 

they have the ability to fire at a very high frequency, have longer waveforms, and have 

significantly smaller after-hyperpolarization curves, indicating that these neurons have 

the potential to fire rapidly. Interestingly, these neurons express relatively low amounts of 

the DA transporter, and they lack somatodendritic D2 receptors and autoreceptor DA D2 

receptors on their presynaptic terminals which interact with G-protein inward rectifying 

receptors, in addition, these pyramidal neurons have been shown to lack GIRK channels 

as well (Lammel et al 2008).   

Studies have indicated that VTA DA neurons innervate pyramidal neurons (the 

principal glutamatergic neuron of the prefrontal cortex) located in layers II, and V/VI 

within the prelimbic cortex (Swanson 1982). Pyramidal neurons in this layer may be 

found in two types of state: a down-state in which the neurons display a negative resting 

membrane potential and therefore are less excitable, and an up-state which is 

characterized by a plateau depolarization and therefore are more excitable (Peters et al 

2000). Electrical stimulation of VTA DA neurons have been shown to evoke a long-

lasting transition of pyramidal neurons from the down-state to the up-state and this effect 

was blocked by administration of a D1 receptor antagonist (Lewis & O'Donnell 2000). 

The activation of D1 receptors within the prefrontal cortex is thought to increase current 
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through the NMDA receptor via a PKA-, and Ca+2-dependent mechanism (Wang & 

O'Donnell 2001). In addition, studies have suggested that activation of D1 receptors on 

pyramidal neurons also inhibits G protein-dependent inward recertifying currents 

(Witkowski et al 2008). These results suggest that VTA DA neurons control the 

probability of prefrontal pyramidal firing and/or synchronize pyramidal neuron activity. 

This is very important because the prefrontal cortex is necessary for stress-induced drug 

seeking, particularly pyramidal neurons (McFarland et al 2004), and drug seeking during 

periods of stress may be mediated by the activation of D1 receptors in this region 

(Capriles et al 2003). However, no studies have directly shown that mesocortical DA 

neurons are recruited in a CRF-dependent manner to promote drug use during periods of 

stress.   

 
The prefrontal cortex is involved in cocaine use during periods of stress 

 

Drugs of abuse decrease the value of natural reward, diminish cognitive control, and 

enhance glutamatergic drive to drug-associated stimuli within the cortico-accumbens 

pathway (Kalivas & Volkow 2005). It is well accepted that the reinforcing properties of 

cocaine and other drugs of abuse involves the activation of the mesocorticolimbic reward 

pathway, which includes DA neurons originating from the VTA and projecting to the 

ventral striatum and PFC. The PFC is involved in driving cognitive processes, and 

executive functioning by processing information from vast sensory modalities to form 

memories, perception, and decision-making (Siddiqui et al 2008). Our early 

understanding of the PFC comes from Phineas Gage who was unfortunate enough to have 

a metal rod obliterate his left PFC in an explosion. Phineas Gage developed both memory 
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problems and a change in personality. However, our understanding of the role of the PFC 

in stress-related drug use remains unclear.    

 Preclinical studies have indicated that acute cocaine administration increases the 

activity of the PFC. Studies have shown that non-contingent cocaine administration 

increases blood flow to the dorsolateral PFC and self-administration of cocaine increases 

blood flow to both the dorsolateral PFC and the anterior cingulate cortex (Howell et al 

2002, Howell et al 2010). Blood oxygen level-dependent (BOLD) responses are elevated 

in subregions of the PFC such as the dorsolateral prefrontal cortex, anterior cingulate, 

anterior orbital gyrus, orbitofrontal cortex, medial orbital gyrus, and frontopolar cortex 

(Goldstein & Volkow 2011). In addition, intracerebroventricular administration of 

cocaine resulted in a large fMRI response within the PFC, and other brain areas (Febo et 

al 2004). This increase in activity of the prefrontal cortex has been proposed to induce 

neuroplastic changes that transform drug habits from recreational to regular and even 

uncontrollable use (Goldstein & Volkow 2011). In addition, BOLD signals have 

indicated that the human PFC response is linked to both liking and wanting of cocaine 

because BOLD signals in most PFC regions are correlated with the “rush” ratings 

(Breiter et al 1997) and are increased when cocaine administration is expected (Kufahl et 

al 2008). Theses human studies make it very apparent that subregions of the PFC are 

highly involved in drug-seeking behavior.  

 
 

Cocaine intake induces hypofronatality within the prefrontal cortex 
  

It has been hypothesized that chronic cocaine intake may cause hypofrontality 

within the prefrontal cortex, which may be reversed when addicts are exposed to 
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environments that are previously associated with drug taking (Childress et al., 1999). It 

has been hypothesized that hypofrontality also occurs with repeated cocaine intake in 

rats; studies using rats trained to self-administer cocaine showed that overall firing and 

burst rates were significantly decreased after the first cocaine exposure relative to prior 

activity; these effects dissipated after 10 days of drug SA, and were replaced by a 

significant increase in burst duration and firing rate (Sun & Rebec 2006). Interestingly, 

imaging data has indicated that activity of the PFC in drug addicts is lower compared 

with controls (Volkow et al., 2003); these studies however cannot determine whether this 

hypofronatality is induced by cocaine or a pre-existing condition. In addition, BOLD 

signals cannot differentiate the activity between pyramidal neurons or interneurons. 

However, theories have proposed that while drug addiction devaluates natural rewards 

through hypofronatality, drugs, and drug-related cues, may enhance the activity of the 

prefrontal cortex (Volkow et al 2003). In addition, extensive drug use (such as our long-

access self-administration model) has been hypothesized to enhance the activity of the 

cortico-striatal pathways by priming the system to triggers such as cues or exposure to a 

stressor (Sinha 2013). Furthermore, studies have indicated that magnitude of stress-

induced craving correlates with levels of prior-drug use in humans (Fox et al 2005). This 

would suggest that a history of increased drug use might prime the prefrontal cortex to be 

more active when exposed to a stressor. However fMRI assessment of the PFC in cocaine 

addicts upon exposure to stress-related imagery has shown that BOLD signal is actually 

reduced rather than increased (Sinha et al., 2009).  

Interestingly, studies have also suggested that chronic drug use alters CRF activity 

(Sinha 2013). Therefore, it is intriguing to speculate that a CRF-dependent mechanism 
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may control the activity of the prefrontal cortex during stressful stimuli that in a manner 

that elicits relapse to drug use.             

 

Neuroanatomy of the rat prefrontal cortex 

  
In the rodent, the prefrontal cortex is comprised of three different topographical 

regions (medial, orbital, and lateral parts(Ongur & Price 2000). The medial PFC can be 

subdivided into four main structures: the medial granular, the anterior cingulate, the 

prelimbic cortex (PL), and the infralimbic cortex (IL; (Hoover & Vertes 2007). The 

medial PFC can be divided into dorsal and ventral divisions; the dorsal medial PFC is 

involved in motor behaviors (medial granular), while the ventral medial PFC is involved 

in emotional, and cognitive processing (anterior cingulate, PL, and IL; (Heidbreder & 

Groenewegen 2003). While this work focuses mainly on the VTA DA projection to the 

prelimbic cortex, this region does receive numerous projections from other areas. 

Notably, the main projections to the PL and IL are the orbital medial prefrontal, agranular 

insular, perirhinal and entorhinal cortices, the hippocampus, the claustrum, the medial 

basal forebrain, the basal nuclei of the amygdala, the midline thalamus, and the locus 

coeruleus of the brainstem (Hoover & Vertes 2007). Conversely, both the PL and IL 

cortices project to multiple brain areas, all of which may be reviewed by the works of 

Vertes; the important projections as it pertains to stress-evoked drug use, are the lateral 

septum, the bed nucleus of the stria terminalis, and the parabrachial nucleus of the 

brainstem for the IL and the nucleus accumbens, and mediodorsal nucleus of the 

thalamus for the PL (Vertes 2004). These projections suggest that the IL is involved, in 

part, in visceral/autonomic activity, while the PL is involved in cognitive function (Vertes 
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2004). The infralimbic cortex sends a glutamatergic projection to the shell of the nucleus 

accumbens that is thought to be involved in extinction learning (LaLumiere et al 2010, 

LaLumiere et al 2012). Furthermore, it has been shown that the glutamatergic projection 

from the IL to the shell of the accumbens exerts suppression of drug seeking (Peters et al 

2009, Peters et al 2008). Specifically, inactivation of the infralimbic cortex, or the shell of 

the nucleus accumbens, reinstates drug seeking in the absence of drugs, cue, or stressful 

triggers (Peters et al 2008)   

 
The prelimbic cortex is involved in stress-related cocaine use 

 

While much attention has been placed on the role of the PFC as it pertains to drug 

taking, the PFC also has a prominent role in stress-related relapse to drug use. Stress-

related drug use has been mimicked in the rodent using a mild-non-noxious footshock 

stressor. Interestingly, in 1976, Glowinski found that an electric-footshock stressor 

significantly increased DA, but not norepinephrine, release within the prefrontal cortex 

while DA release was not increased within the ventral striatum (Thierry et al 1976). In 

addition, retrograde tracing studies have shown that a restraint stressor increased Fos 

protein (a neuronal activity marker) immunoreactivity within VTA DA neurons that 

project to the PFC; however, Fos expression was not increased in any DA projections to 

the nucleus accumbens (Deutch et al 1991), in addition studies have shown that a tail-

shock increased DA reactivity by 95% within the PFC; and to much lesser extents in the 

nucleus accumbens, and other terminal areas (Abercrombie et al 1989). These studies 

pioneered the idea that stress may selectively activate DA projections from midbrain DA 

neurons to the PFC, which likely precipitate drug use during periods of stress (Capriles et 
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al 2003, McFarland et al 2004). Many studies have shown that aversive stimuli, such as  

footshock, increase DA release in terminal regions of the mesocorticolimbic DA system 

(Abercrombie et al 1989, Gresch et al 1994, Kalivas & Duffy 1995). This is also seen 

with other triggers for relapse, such as exposure to cues previously associated with the 

drug, and the drug itself (see Mantsch et al., 2015 for review).  The prefrontal cortex 

appears to process these different triggers to relapse by engaging the nucleus accumbens 

core. Electrophysiological data has suggested that prefrontal cortical DA activation is 

involved in cocaine seeking rather than the hedonic process of cocaine itself (Rebec & 

Sun 2005).  

 
Topographical organization of the DA projection from the VTA to the PFC 

 

As mentioned previously, dopamine originates from the VTA/substantia nigra (or 

A10) and projects to most limbic system structures, especially the prefrontal cortex 

(Swanson 1982). Most cells that project to the prefrontal cortex from the VTA are located 

in medial/caudal  parts of the VTA (Lammel et al 2014) and are mostly topographically 

organized wherein dorsomedial parts of the VTA project to the anterior cingulate, while 

ventromedial parts of the VTA project to the dorsomedial prefrontal cortex (Swanson 

1982).  

Interestingly, roughly 11% of cells that project to the PFC cross the midline and 

66% of cells that project to the PFC are dopaminergic (Swanson 1982). Most studies 

have examined the DA projection from the VTA to the PFC in mice using TH-cre/DAT-

cre GFP mouse line.  Combining this approach with retrograde tracers, studies have 

started to suggest that VTA DA projections differentially encode reward and aversion in 
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mice (Lammel et al., 2012) and non-human primates (Kormos & Gaszner 2013). While 

mouse and rodent brains are fairly similar, the lack of genetically modified rats has made 

it difficult to pinpoint VTA DA neurons that are 1) activated by aversive stimuli and 2) 

are topographically located within the VTA. 

Activation of DA receptors 

  
Once DA is released into the synaptic cleft, it can act on five major receptor 

subtypes, designated D1-D5. All of these receptors belong to the seven transmembrane 

domain G-protein coupled receptors. The DA receptors are commonly categorized as 

either D1-like (D1 and D5) or D2-like (D2, D3, and D4) based on sequence homology and 

G-protein coupling. Activation of D1-like receptors activates the G-protein Gsα, leading to 

activation of adenylyl cyclase, and an increase in second messengers such as cAMP, 

while activation of D2-like receptors are inhibitory through actions of the G-protein Gai.  

 
Dopamine receptor location within the PFC 

 

D1-like and D2-like receptors are found within the PFC, specifically within layers 

II-VI of the PFC with the highest density observed within layer V and VI of the 

prefrontal cortex; these layers also receive a prominent projection from the VTA as 

compared to layers II-III (Swanson 1982, Vincent et al 1993). Studies have suggested 

that D1-like receptors are located post-synaptically (Levey et al 1993) on pyramidal 

neurons (Vincent et al 1993) while D2-like receptors interface with the extrasynaptic 

space of the presynaptic projecting neurons where they act as autoreceptor to inhibit DA 

release (Goldstein et al 1990). However, some D2-like receptors have been localized to 

GABAergic interneurons and some expression has been observed on astrocytes (Vincent 
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et al 1993). Interestingly, some studies have reported that D1-like receptors are also 

present on parvalbumin-containing interneurons; these neurons control the 

synchronization of PFC pyramidal neurons (Muly et al 1998). This serves to show the 

complexity of the PFC, in that DA within the PFC can act to either increase or decrease 

the excitability of pyramidal neurons based the location of DA release and/or targeted 

receptor, and neuroplastic changes can occur in many different areas to shape the output 

of the prelimbic cortex. However, in the case of the projection from the VTA, D1-like 

receptors are preferentially expressed postsynaptically on pyramidal neurons in the PFC 

(Boyson et al 1986). Therefore, DA will act on D1-like receptors to increase the 

likelihood of firing rate of PFC pyramidal neurons (Lewis & O'Donnell 2000); these PFC 

neurons are thought to project to the core of the nucleus accumbens (NAc) whereby DA 

indirectly modulates the NAc by increasing the size of the NMDA component of an 

excitatory postsynaptic potential on these neurons (Lewis & O'Donnell 2000, Seamans et 

al 2001, Yang & Seamans 1996). The pyramidal neuron projections from the PFC to the 

NAc is glutamatergic. This suggests that during periods of stress, DA release from the 

VTA to the PFC is increased and activates D1-like receptors on pyramidal neurons, 

leading to an increase in the firing rate of glutamatergic projection neurons to the NAc, 

and therefore promoting drug seeking.  

 
Prelimbic interneurons regulate pyramidal neurons through actions of both D1 and 

D2 receptors 
 

 
While mesocortical DA fibers innervate pyramidal neurons (Goldman-Rakic et al 

1989, Verney et al 1990), they also innervate GABAergic interneurons (Sesack et al 

1995, Vincent et al 1993). These GABAergic interneurons are important in initiating and 
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maintaining rhythm and synaptic kinetics within the prefrontal cortex (Gupta et al 2000) 

through their variable intrinsic firing rates (Markram et al. 2004). Parvalbumin 

interneurons constitute the majority of interneurons within cortical layer V (Markram et 

al. 2004) where they synapse close to pyramidal neurons and other local interneurons 

(Kawaguchi and Kubota 1997, 1998). DA can increase the excitability of interneurons, as 

evidenced by the finding that bath application of the D2 agonist quinpirole or the D1 

agonist SK38393 induces an increase in the interneuron excitability (Tseng and 

O’Donnell 2007) and therefore may increase GABAergic synaptic transmission onto 

pyramidal neurons within the prefrontal cortex. At low DA levels, D1 receptors are 

activated therefore increase interneuron excitability (Gorelova et al., 2002, Trantham-

Davidson et al., 2004a,Trantham-Davidson 2004b) and D1 agonists have been shown to 

enhance spontaneous (sIPSCs) inhibitory neurotransmission, indicating that the intrinsic 

excitability of interneurons is increased (Seamans et al., 2001). By contrast, activation of 

D2 receptors during times of high DA concentrations has been shown to decrease cortical 

IPSCs via a postsynaptic mechanism on interneurons (Trantham-Davidson 2004b) and D2 

receptor agonists reduce the postsynaptic response to a GABAA agonist, indicating that 

signaling through D2 receptors may work via a postsynaptic mechanism to reduce the 

GABA tone of interneurons (Seamans et al., 2001). Other studies have shown that DA 

can decrease IPSCs in the prefrontal cortex by acting on presynaptic D1 receptors likely 

located on interneuron terminals (Gonzalez-Islas and Hablitz et al, 2001). All of these 

studies suggest that dopamine interactions with interneurons within the prefrontal cortex 

is very complex, since it can control interneuron firing, and since these interneurons can 
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coordinate pyramidal neuron firing by either synchronizing them, or inhibiting other 

interneurons.                

Evidence implicating DA in footshock-induced reinstatement of cocaine seeking 

comes from Capriles and colleagues (2003). This group showed that local administration 

of the D1-like and not the D2-like receptor antagonist into the PFC or the orbital frontal 

cortex blocked footshock-induced reinstatement (Capriles et al 2003). In addition, other 

findings have shown that either administration of fluphenazine (a D1/D2 like receptor 

antagonist) into the PFC (McFarland et al 2004) inhibits stress-induced reinstatement. 

The actions of D1 receptors on pyramidal neurons are thought to increase the excitability 

of pyramidal neurons that project to the nucleus accumbens core. Within layer V of the 

prefrontal cortex, activation of D1-like receptors has been shown to increase the size of 

the NMDA current (Seamans et al 2001). This suggests that VTA DA projections to the 

PFC are important in stress-induced reinstatement.     

 
CRF may regulate the DA projection to the prelimbic cortex 

   

Recent research suggests that stress, in part through the actions of CRF, activates 

the mesocortical DA system to induce reinstatement following footshock. This 

interaction between CRF and DA systems has been shown by both behavioral and 

neuroanatomical studies, which suggests that these systems converge in key brain regions 

known to play an important role in stress-evoked reinstatement. Early studies employed 

microdialysis to measure catecholamine release in the PFC and the medial hypothalamus 

during systemic and central administration of CRF. These studies demonstrated that 

intracerebroventricular CRF injections increase DA release in the PFC (Lavicky & Dunn 
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1993). Patch-clamp recordings from VTA slices demonstrated that CRF, through the 

actions of CRFR1, dose-dependently increased VTA dopamine firing (Wanat et al 2008). 

In addition, studies have reported that bath application of CRF to VTA DA neurons 

induces an increase in NMDA receptor-meditated excitatory postsynaptic potential 

(Ungless et al 2003). This effect is attributed to activation of CRFR2 receptors and the 

CRF-binding protein; this is interesting because many studies have suggested that drug 

seeking (Blacktop et al 2011, Boyson et al 2014, Grieder et al 2014), or food seeking 

during periods of stress (Chen et al 2014), is attributed to actions on CRFR1 and not 

CRFR2. However, some studies have suggested that CRFR2 and not CRFR1 is involved 

in drug-seeking behavior(Ungless et al 2003, Wang et al 2007). This difference may be 

attributed to different receptor localization, or it may be attributed to differences in prior 

drug-taking behavior (Mantsch et al 2015, Mantsch et al 2014). Interestingly, recent 

reports have shown that CRFR1 mediates DA release within the PFC and controls 

anxiety since a deletion of CRFR1 within midbrain DA neurons decreased DA release 

within the PFC, and increased anxiety levels in mice (Refojo et al 2011). CRF neurons 

that project to the VTA may contain, and therefore may co-release, glutamate onto VTA 

DA neurons. Electron microscopy work has shown that CRF terminals that synapse onto 

tyrosine hydroxylase-positive cells (TH; the precursor for DA) form asymmetric synapses 

and therefore most likely release glutamate (Tagliaferro & Morales 2008). This suggests 

that the presence of, and release of CRF during a footshock stressor may promote 

glutamatergic excitation of VTA DA neurons.  However, as previously noted, many 

CRF-releasing inputs are likely GABAergic. It is not clear whether stress-induced 

reinstatement is dependent on DA cells that are activated by CRF to precipitate stress-
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related drug use, since electron microscopy has only focused on CRF terminals that 

synapse onto DA neurons, and not GABAergic cells. 

 
Dopamine within the nucleus accumbens during stress-induced reinstatement 

 
 
In addition to the PFC, the nucleus accumbens receives VTA DA projections. 

Microdialysis studies have shown that stress can increase DA levels within the NAc shell 

(Kalivas & Duffy 1995, Sorg & Kalivas 1991). Temporary inactivation of the NAc core 

and shell with GABA receptor agonists prevents footshock-induced reinstatement 

(McFarland et al 2004). However, local infusion of fluphenazine (the non-specific DA 

antagonist) into the NAc core fails to block footshock-induced reinstatement, suggesting 

that activity at the DA receptors within the NAc core does not mediate relapse due to 

stress; however shock-induced reinstatement of heroin seeking has been reported to be 

blocked by a D1 receptor antagonist (Shaham et al., 1996). Moreover, it has been found 

that, in contrast to glutamate, DA levels in the NAc core are not changed during 

footshock stress-induce reinstatement of cocaine seeking (McFarland et al 2004). Taken 

together these studies suggest that stress-induced reinstatement may depend on activation 

of VTA DA neurons projecting to the PFC, which in turn stimulates glutamate release 

within the NAc, but not on elevated NAc DA. 

 
 

Anatomy of the nucleus accumbens 
 
 

Generally, the NAc, also termed the ventral striatum, is divided into two 

subregions, based on different cytoarchitecture, and unique functions. The first subregion 

is the nucleus accumbens core; this subdivision is considered an extension of the dorsal 
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striatum (motor pathway), which is involved in instrumental learning and reinstatement 

behavior, specifically during periods of stress (Cardinal & Everitt 2004, Ito et al 2000, Ito 

et al 2004). The NAc core receives glutamate input from the prelimbic cortex (PL); 

specifically layers V/VI (Gabbott et al 2005, Reynolds & Zahm 2005). This is thought to 

represent the final common pathway in mediating reinstatement of drug-seeking behavior 

in response to a cue, a stressor, or the drug itself (Kalivas & Volkow 2005). The second 

subregion is the nucleus accumbens shell, which is an extension of the extended 

amygdala; this part of the NAc is critical for the reinforcing/rewarding effects of drugs of 

abuse.  In contrast to glutamatergic projections from the PFC to the core, PFC projections 

to the shell are thought to inhibit drug-seeking behavior, especially since inhibiting these 

projections can induce reinstatement without the presence of a cue, a stressor, or a drug 

(Kalivas 2005, Pierce & Kumaresan 2006). In addition, a recent study has indicated that 

the dorsomedial shell encodes reward, while the ventromedial shell encodes aversion in a 

dynorphin-dependent manner (Al-Hasani et al 2013). The shell receives glutamatergic 

input from the infralimbic cortex (Gabbott et al 2005, Reynolds & Zahm 2005).  

Both the core and the shell have similar, but yet distinct output pathways. Both of 

these regions have a distinct topographical projection to the ventral pallidum and the 

entopeduncular nucleus (Groenewegen & Russchen 1984). The core projects to the 

dorsolateral part of the ventral pallidum while the shell projects to the medial part of the 

subcommissural ventral pallidum (Groenewegen et al 1993). The core has a midbrain 

projection to the substantia nigra pars reticulata (which sends input to the thalamus) 

(Deniau et al 1994), while the shell projects to the VTA (Ikemoto 2007). In addition, the 

core has some sparse projections to the lateral hypothalamus, while the shell projects 
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diffusely throughout the lateral hypothalamus, but mainly to the extended amygdala 

(Heimer et al 1991, Kelley 1999).  

Medium spiny neurons within the nucleus accumbens are GABAergic and can be 

subdivided into either the direct or the indirect pathway based dopamine receptor 

expression. Although the presumed organization of NAc MSN outputs has been recently 

called into question (Kupchik et al., 2015), it has been suggested that one subpopulation 

of medium spiny neurons expresses D1R and sends projections to midbrain regions, most 

notably the substantia nigra, while another subset of MSNs express D2R and putatively 

sends projections to the ventral pallidum (although projections to the SN have been 

identified). It is believed that direct and indirect pathway have complementary, and 

possibly, opposing actions on behavior that are controlled by the cortico-accumbal 

pathway (Gerfen and Sumeier 2011). Studies have shown that the D1R-regulated 

pathway increases conditioned place preference for cocaine, whereas activation of the 

D2R-regulated pathway decrease conditioned place preference for cocaine (Lobo et al., 

2010). Studies have also shown that activating glutamatergic inputs onto subpopulations 

of MSNs in the NAc determine cocaine susceptibility and AMPA/NMDA ratios can be 

differentially altered in excitatory synapses on different MSN population in mice exposed 

to cocaine (Bock et al., 2012). It has been hypothesized that the activation of the “direct” 

(D1R) pathway causes an increase in the motivation to seek cocaine, while the “indirect” 

(D2R) pathway serves to decrease cocaine-seeking behavior when activated (Bock et al., 

2012).          

The NAc is an important brain region that serves as the gateway through which 

the limbic system (basolateral amygdala, VTA, PFC, and NAc) communicates with the 
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motor subcircuit (motor cortex, dorsal striatum, and the substantia nigra; (Groenewegen 

et al 1996, Kalivas 2009). Studies have found that the NAc can act to engage and 

implement adaptive behaviors for a desired outcome by priming the motor system (Doya 

2008). For example, if a response such as activation of a lever leads to a positive outcome 

(such as delivery of a sucrose pellet) the NAc will engage the motor subcircuit to 

recognize this response. It has been proposed that as behavior becomes 

persistent/habitual, activation of the NAc diminishes, while the motor system becomes 

more organized to adapt to this behavior. However, if lever activation fails to yield an 

expected outcome, then the limbic subcircuit is strongly engaged, while the motor 

subcircuit becomes more disorganized (Kalivas 2009). This allows the limbic system to 

prime the motor system to maximize adaptive behavior through interactions of the NAc 

with the motor system. When it comes to relapse to cocaine use, the current thinking 

states “drug seeking arises from an impaired ability of the limbic subcircuit to effectively 

process and/or use the negative environmental contingencies associated with relapse” 

(Kalivas 2009); in other words, drug use can hijack the limbic system so that the learned 

behavior is never truly extinguished, and that environmental stimuli such as a footshock 

stressor may overcome the learned behavior of extinction and promote drug use through a 

mechanisms in which DA from the VTA potentiates PFC pyramidal neuron firing to 

activate the nucleus accumbens core.  

The primary neurons of the NAc are medium spiny neurons (MSN) and they are 

critical for goal-directed behavior. These MSNs are mainly GABAergic. The MSNs of 

the NAc integrate emotional salience from the amygdala, contextual cues from the 

hippocampus, and executive or motor control from the PFC to produce a response by 
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influencing motor regions that execute motivated-behavior (Groenewegen et al 1999, 

Kelley 1999). Rodent models have shown that activation of NAc MSN by AMPA 

receptors is required for cocaine-seeking behavior, a process that is facilitated by 

neuroplastic changes that occur on AMPA containing synapses of MSNs with repeated 

cocaine use (Wolf 2010). Studies have indicated that prefrontal glutamatergic innervation 

of the NAc is changed with chronic drug use, in that the compulsivity of drug use in 

addicts becomes more desirable than natural rewards (Kalivas & Volkow 2005). This 

neuroadaptation to drug use is mediated by at least three different mechanisms, 1) 

changes in AMPA receptor expression within the NAc (e.g. an increase in Ca+2 

permeable AMPA, the Glu-A2 lacking AMPA receptors); 2) impaired cysteine-glutamate 

exchange leading to a decrease in extracellular glutamate release and therefore decreased 

negative feedback through metabotropic glutamate receptors; 3) changes in the intrinsic 

excitability of MSNs (Wolf 2010). These adaptations serve to increase the excitability of 

MSNs.   However the NAc also receives a distinct DA projection from the VTA, which 

may also effect the excitability of MSNs. 

Dopamine in the nucleus accumbens is critical for the rewarding and stimulant 

effects of cocaine.  It has been shown that DA infused into the NAc core will induce an 

increase in locomotion, which can be inhibited by inactivating the globus pallidus with 

injections of GABA (Jones & Mogenson 1980).  Studies have shown that DA receptor 

agonists are self-administered by rodents, and non-human primates when given 

systemically, and when infused directly into the nucleus accumbens (Carlezon et al 1995, 

Woolverton et al 1984, Yokel & Wise 1978). Microdialysis studies have shown that both 

non-contingent, and contingent administration of cocaine (and other drugs of abuse) 
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increases dopamine levels within the NAc (Di Chiara & Imperato 1988, Di Ciano et al 

1998, Di Ciano et al 1995, Imperato et al 1992, Kalivas & Duffy 1990, Kalivas & Duffy 

1993, Wise et al 1995, Wise et al 2008). Interestingly, the same studies have shown that 

rats will administer cocaine in order to keep DA levels consistent within the NAc such 

that when DA levels start to decrease, the animal will self-administer more cocaine in 

order to keep the levels stable (Wise et al 1995). Therefore, these studies suggest that 

fluctuating DA levels within the NAc correlate with increased drug use. 

Studies have also examined the role of the nucleus accumbens core during either 

cocaine self-administration, or following extinction training during reinstatement 

behavior. Since, intra- nucleus accumbens core administration of DA receptor antagonists 

increases cocaine self-administration suggesting that inhibition of DA receptors decreases 

the rewarding properties of cocaine (Caine et al 1995, Koob et al 1994). While 

administration of wither AMPA or NMDA within the nucleus accumbens during self-

administration caused a significant leftward shift of cocaine responding which suggested 

enhancement of cocaine reward (Cornish et al 1999).  

Dopamine in the NAc core does not appear to be necessary for cocaine seeking; 

however, glutamatergic neurotransmission in the NAc is critical (Cornish and Kalivas, 

2000). Administration of either AMPA or NMDA following SA and extinction in rats 

reinstates drug seeking (Cornish et al 1999). At a cellular level, glutamatergic terminals 

originating from the prelimbic cortex, and dopamine originating from the VTA converge 

on the same medium spiny neurons; therefore the observation that intra-accumbens 

AMPA administration could reinstate cocaine-seeking behavior could be explained by 

AMPA directly activating MSN. Since numerous studies have shown that DA release is 



	   53	  

increased within the prelimbic cortex during stress-related behaviors (McFarland et al 

2004, Moghaddam 1994, Refojo et al 2011, Thierry et al 1976), and that this increase in 

DA modulates pyramidal neuron fringing into the nucleus accumbens it is hypothesized 

that increases in glutamatergic transmission in the nucleus accumbens driven in part by 

elevated DA in the prelimbic cortex is an important factor for initiating relapse to drug 

taking; this has been shown to be involved in drug-primed reinstatement since an AMPA 

antagonist, and not a DA antagonist infused into the nucleus accumbens prevents 

reinstatement(Cornish & Kalivas 2000).  

 
Neurocircuitry involved in stress-induced drug seeking 

  
 
The use of a rodent reinstatement model of drug relapse is extremely important in 

understanding the neurobiological pathways that mediate drug seeking during periods of 

stress. This is especially important since the vulnerability to relapse due to a stressor 

persists years after the cessation of drug use. This dissertation will explore different 

aspects of this pathway to understand how stress triggers relapse, and hopefully provide 

aid in the development of therapeutics that can better manage or prevent drug use that is 

stress-related. Chapter 2 will test the hypothesis that beta-2 ARs are required for stress-

induced activation of CRF pathways responsible for reinstatement. Work done in our lab, 

and others, has suggested that noradrenergic receptors (Leri et al., 2002), specifically 

beta-2 ARs (Mantsch et al., 2010; Vranjkovic et al., 2012) may be critically involved in 

the interaction with the CRF system. Second, the self-administration model will be used 

to test the hypothesis that stress-induced reinstatement is dependent upon a beta-2 AR 

regulated vBNST-to-VTA CRF-releasing pathway, wherein stress-induced CRF will 
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activate CRFR1 on VTA neurons. Finally, this dissertation will explore how excessive 

cocaine use establishes susceptibility to stress-induced relapse by recruiting CRF 

regulation of a key stressor-responsive mesocortical dopaminergic pathway.  
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Chapter II 
 
  

Beta-2 adrenergic receptors mediate stress-evoked reinstatement of cocaine-
induced conditioned place preference and increases in CRF mRNA in the bed 

nucleus of the stria terminalis in mice 
 
 

Abstract 
 

 
 Rationale: Understanding the mechanisms responsible for stress-induced relapse 

is important for guiding treatment strategies aimed at minimizing the contribution of 

stress to addiction. Evidence suggests that these mechanisms involve interactions 

between noradrenergic systems and the neuropeptide corticotropin-releasing factor 

(CRF).  

Objectives: The interaction between beta-adrenergic receptors (ARs) and CRF as 

it relates to the reinstatement of cocaine-conditioned reward in response to a stressor was 

examined in mice. We hypothesized that beta 2-ARs are required for stress-induced 

activation of CRF pathways responsible for reinstatement.  

Methods: Stress-induced relapse was examined based on the re-establishment of 

cocaine-induced conditioned place preference (CPP; 4×15 mg/kg cocaine, i.p.) after 

extinction using forced swim (6 min at 22 °C) or an injection of the beta 2-AR agonist, 

clenbuterol (4 mg/kg, i.p.). The CRF-R1 antagonist antalarmin (10 mg/kg, i.p.) or the 

beta 2-AR antagonist ICI- 118,551 (1 mg/kg, i.p.) were given 30 min prior to reinstating 

stimuli. Quantitative PCR was conducted in dissected bed nucleus of the stria terminalis 

(BNST) and amygdala, putative sources of CRF that contribute to reinstatement, to 

examine the effects of ICI-118,551 on swim-induced increases in CRF messenger RNA 

(mRNA) in mice with a cocaine history.  
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Results:  

Pretreatment with ICI-118,551 or antalarmin blocked swim-induced reinstatement of 

CPP. Reinstatement by clenbuterol was also blocked by antalarmin. ICI-118,551 

pretreatment prevented swim-induced increases in CRF mRNA in the BNST. Effects in 

the amygdala were not observed. Conclusions These findings indicate that, during stress, 

norepinephrine, via beta 2-ARs, either directly or indirectly activates CRF-releasing 

neurons in the BNST that interface with motivational neurocircuitry to induce 

reinstatement of cocaine conditioned reward. 

 
Introduction 

 
 

Understanding the mechanisms through which stress promotes relapse to drug use 

by cocaine addicts continues to be a critical research objective. Outcome measures for 

current treatment approaches aimed at relapse prevention remain poor, and stress is a 

pervasive trigger for relapse as it is typically unavoidable in daily life. In addition, there 

is currently no FDA-approved medication for cocaine addiction, making it a critical 

unmet need. Stress-induced relapse to cocaine use can be modeled in mice using a 

cocaine-induced conditioned place preference (CPP) approach in which, after extinction, 

preference can be re-established (i.e., reinstated) using stressors such as forced 

swim(Kreibich et al 2009, Mantsch et al 2010).  

A role for noradrenergic signaling in stress-induced reinstatement of cocaine-

conditioned reward has been established. Using the CPP/reinstatement approach in mice, 

our laboratory has found that functional antagonism of noradrenergic neurotransmission 
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via administration of the α2-adrenergic receptor (AR) agonist clonidine blocks swim-

induced reinstatement of extinguished CPP(Mantsch et al 2010), while disinhibition of 

noradrenergic activity via administration of yohimbine or the highly selective α2-AR 

antagonist BRL 44,408 is sufficient to reinstate(Mantsch et al 2010, Vranjkovic et al 

2012). These findings parallel those in rats demonstrating α2-adrenergic AR agonist 

blockade of shock-induced reinstatement following cocaine self-administration (SA;(Erb 

et al 2000)) and sufficiency of central administration of norepinephrine or systemic 

delivery of yohimbine for reinstatement of cocaine seeking (Brown et al 2011, Brown et 

al 2009, Feltenstein & See 2006). More importantly, they are consistent with reports that 

α2-AR agonists attenuate drug craving in human cocaine addicts upon presentation of 

stress-associated imagery(Jobes et al 2011). 

Stress-induced increases in noradrenergic activity appear to induce reinstatement 

of cocaine-conditioned reward in part via activation of beta-AR. We have found that 

swim-induced reinstatement of cocaine-induced CPP is blocked by the nonselective β-AR 

antagonist propranolol (Mantsch et al 2010)and is not observed in beta-AR-deficient 

mice (Vranjkovic et al 2012) while the non-selective beta-AR agonist isoproterenol 

induces reinstatement (Vranjkovic et al 2012). More specifically, our findings suggest 

that beta 2-ARs are necessary for stress-induced reinstatement of cocaine-conditioned 

reward, as swim-induced reinstatement of CPP is blocked by the selective beta 2-AR 

antagonist ICI-118,551 and administration of the selective beta 2-AR agonist clenbuterol 

is sufficient for reinstatement of CPP(Vranjkovic et al 2012). 

The sites at which stress-induced increases in beta-AR activation promote 

reinstatement behavior appear to include the bed nucleus of the stria terminalis (BNST) 
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and central amygdala (CeA), both of which receive dense noradrenergic projections 

(Ricardo & Koh 1978, Woulfe et al 1988), express beta-ARs (Asanuma et al 1991, 

Cecchi et al 2007, Rainbow et al 1984), and are required for stress-induced reinstatement 

of lever pressing following SA in rats (Erb et al 2001, Leri et al 2002, McFarland et al 

2004) or cocaine-induced CPP in mice (Briand & Blendy 2010). In rats, delivery of a 

cocktail of beta 1- and beta 2-AR antagonists directly into either the BNST or the CeA 

prevents shock-induced reinstatement of cocaine seeking following self-administration 

(Leri et al 2002). The BNST and CeA are components of the extended amygdala and 

serve as key interfaces between the stress and reward systems. Both regions are highly 

interconnected with the mesocorticolimbic system through which they likely regulate 

drug-seeking behavior and reinstatement of cocaine-conditioned reward, although the 

precise pathways and mechanisms through which this regulation occurs are not fully 

understood. 

The link between the mesocorticolimbic circuitry that has been implicated in 

relapse and beta-AR actions in the BNST and amygdala likely involves the neuropeptide, 

corticotropin releasing factor (CRF). CRF is a key mediator of stress induced 

reinstatement of cocaine seeking following SA in rats(Mantsch et al 2008) (Buffalari et al 

2012, Erb et al 2006, Erb et al 1998, Graf et al 2011, Shaham et al 1998) and has been 

reported to contribute to stress-induced reinstatement of lever pressing following SA via 

actions in the BNST (Erb et al 2001) and the ventral tegmental area (VTA;(Blacktop et al 

2011, Wang et al 2005). In the BNST, evidence suggests that stress-induced increases in 

CRF arise in part from local release from intrinsic cell populations(Silberman et al 2013). 

Moreover, CRF release into the VTA is thought to involve projections from the BNST 
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and the CeA(Rodaros et al 2007). In light of the requirement for beta-AR signaling in 

these regions for stress-induced cocaine seeking in rats following SA (Leri et al 2002) 

and evidence suggesting CRF-dependence of beta-AR actions in BNST (Nobis et al 

2011, Silberman et al 2013), we hypothesized that beta 2-AR activation is required for 

stress-induced regulation of CRF releasing neurons in one or both of these regions and 

for relapse to drug use during periods of stress. In support of this hypothesis, it has been 

reported that reinstatement in response to central norepinephrine is CRF-

dependent(Brown et al 2009). 

 Here, we further test this hypothesis by (1) investigating the ability of the CRF-R1 

receptor antagonist, antalarmin, to prevent reinstatement of cocaine-induced CPP in mice 

by a stressor, forced swim, and administration of the beta 2-AR agonist clenbuterol and 

(2) testing for the ability of the beta 2-AR selective antagonist ICI-118,551, which blocks 

swim-induced cocaine-conditioned reward, to also prevent swim-induced activation of 

CRF neurons in the BNST and amygdala, as assessed by increases in CRF mRNA 

measured using qPCR quantification in dissected tissue from mice with a prior history of 

cocaine administration. 

 
 

 
Methods 

 
 
 Subjects: A total of 116 male C57BL/6 mice (8–10 weeks old; 20 mice for CPP 

testing and 96 for qPCR testing), purchased from Harlan Laboratories, were housed 

individually in a humidity- and temperature-controlled, AAALAC-accredited animal 

facility under a 12 h/12 h light/dark cycle (lights on at 0700 hours) with food and water 
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available ad libitum, except when in the experimental chambers. All procedures were 

carried out in compliance with the NIH guidelines and the Guide for Care and Use of 

Laboratory Animals and were approved by Marquette University. 

 Conditioned place preference apparatus: Behavioral testing was conducted as 

previously described (Mantsch et al. 2010; Vranjkovic et al. 2012). Six ENV-3013 mouse 

CPP chambers from Med Associates, Inc. were used. The stainless-steel and polyvinyl 

chloride chambers consisted of three distinct compartments separated by 5 cm wide×5.9 

cm high manual guillotine doors. The two 46.5×12.7×12.7-cm side compartments 

consisted of a white compartment with a 6.35×6.35-mm stainless-steel mesh floor and a 

black compartment with a stainless-steel grid rod floor consisting of 3.2-mm rods spaced 

7.9 mm apart. The side compartments were attached via a gray colored 7.2-cm-long 

center compartment with a smooth floor. The clear tops of the compartments were hinged 

to permit placement and removal of the mice. Ceiling lights were attached to each top. To 

balance unconditioned side preferences, only the light in the black compartment was 

illuminated during the training, testing, and extinction phases. Automated data collection 

was accomplished by using photobeams (six beams for the white and black test areas and 

two beams for the center gray area) that were evenly spaced across the length of the 

chamber and interfaced with a computer containing MED-PC software (MED 

Associates). Using this automated photobeam system, entry into a side compartment was 

defined as consecutive breaks of the first two-photocell beams in that compartment 

located adjacent to the door separating that compartment from the center compartment. 

Exiting of a side compartment (and entry into the center compartment) was indicated by 

occlusion of the beams in the center compartment. 
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 Cocaine-induced conditioned place preference: Cocaine-induced conditioned 

place preference (CPP) was conducted using an unbiased approach by pairing one 

compartment with cocaine and the other with saline as previously described (Mantsch et 

al. 2010). These assignments were made randomly. On the first day of CPP, mice were 

placed into the center compartment of the chamber and given free access to all three 

compartments for 30 min in the absence of cocaine or saline to determine preconditioning 

preference. During the 8-day conditioning phase of the experiment, mice received 

cocaine (15 mg/kg, i.p.) on the odd days and saline injections on the even days. 

Immediately after the injection, mice were confined (guillotine door closed) to the drug-

appropriate compartment for 30 min. A day after the final conditioning session, the mice 

were tested for the expression of cocaine-induced CPP by placing them in the center 

compartment and allowing them full access to the apparatus for 30 min. CPP was defined 

as the change in time spent (in seconds) in the cocaine-paired compartment after 

conditioning compared with the initial preconditioning session. Mice were determined to 

exhibit a CPP if they spent more time in the cocaine-paired compartment during the post-

conditioning session compared to the preconditioning session. 

 Extinction: Daily extinction training was conducted after conditioning. During the 

extinction sessions, the mice had free access to the entire apparatus for 30 min following 

placement in the center compartment with both guillotine doors open. Mice underwent 

daily extinction training until the extinction criterion was met (50 % reduction in the 

preference for the cocaine-paired compartment). Mice were tested for reinstatement 24 h 

after this criterion was reached. 



	   62	  

 Reinstatement: Aside from exposure to a reinstating stimulus, the reinstatement 

test sessions were identical to extinction conditions: mice were provided free access to 

the entire apparatus for 30 min following placement in the center compartment with both 

guillotine doors open. Most mice were tested multiple times for reinstatement. The 

sequence of reinstatement test conditions was counter-balanced using a Latin square 

design. The mice underwent additional extinction prior to each subsequent test and were 

not tested again until the criterion for extinction was once again reached. Reinstatement 

was defined as the difference in the time spent (in seconds) in the cocaine-paired 

compartment between the reinstatement test day and the prior extinction day. 

 Drugs: Cocaine HCl (15 mg/kg) was obtained from the National Institute on Drug 

Abuse (NIDA) through the NIDA Drug Supply Program. The CRF-R1 antagonist 

antalarmin (10 mg/kg), the beta 2-adrenergic receptor (AR) agonist clenbuterol (4 

mg/kg), and the beta 2-AR antagonist ICI-118,551 (1 mg/kg) were purchased from 

Sigma-Aldrich. Cocaine, clenbuterol, and ICI-118,551 were dissolved in saline (0.9 % 

bacteriostatic saline). Antalarmin was dissolved in 5 % DMSO. All drugs were 

administered i.p. in a volume of 0.1 ml per 25 g body weight. 

 
Experiment 1: role of beta-2 AR and CRF-R1 receptors in stress-induced 

reinstatement of CPP 
 

 Forced swim-induced reinstatement Stress-induced reinstatement was induced 

using a forced swim (FS) protocol as previously reported(Kreibich & Blendy 2004, 

Mantsch et al 2010). Briefly, mice were placed into a 30 cm high× 20 cm deep cylindrical 

polypropylene container filled with water (20–25 °C) for 6 min. After the forced swim, 

mice were placed back into their home cages for 3 to 4 min before being introduced into 
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the center compartment of the CPP apparatus with free access to the entire apparatus for 

reinstatement testing, as described above. 

 The role of beta 2-ARs and CRF-R1 receptors in swim-induced reinstatement We 

have previously reported that either pharmacological blockade of the β2-AR or genetic 

beta 2-AR deletion prevents stress-induced, but not cocaine-induced, reinstatement of 

extinguished cocaine-induced CPP in mice (Mantsch et al. 2010; Vranjkovic et al. 2012). 

To confirm the role of beta 2-ARs in swim-induced reinstatement and to determine the 

role of CRF-R1 receptors, mice (n = 8) underwent cocaine-induced CPP and extinction as 

described above before testing for swim-induced reinstatement following pretreatment 

with the beta 2-AR antagonist ICI-118,551 (1 mg/kg i.p.), the CRF-R1 antagonist 

antalarmin (10 mg/kg i.p.), or vehicle. The mice received injections 30 min prior to 

forced swim. The sequence of the treatments was counter-balanced using a Latin square 

design.  

 
Experiment 2: effects of CRF-R1 antagonism on beta 2-AR agonist-induced 

reinstatement 
 
  

We previously reported that the beta-2-AR agonist clenbuterol reinstates 

extinguished cocaine-induced CPP (Vranjkovic et al. 2012). To determine if the beta 2-

AR induces cocaine- conditioned reward via a CRF-dependent mechanism, the mice (n = 

12) were tested for reinstatement in response to administration of the beta 2-AR agonist 

clenbuterol (4 mg/kg, i.p.) or vehicle 30 min after pretreatment with CRF-R1 receptor 

antagonist antalarmin (10 mg/kg, i.p.; Kreibich et al., 2009) or vehicle. The mice were 

introduced into the experimental chambers 30 min after clenbuterol administration and 

tested for reinstatement. The sequence of the treatments was counter-balanced using a 
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Latin square design. Notably, we have found that reinstatement of extinguished CPP by 

this dose of clenbuterol is not attenuated by pretreatment with the beta-1 AR antagonist, 

betaxolol (10 mg/kg, i.p.), suggesting that its agonist actions are selective for the beta-2 

AR and/or that beta-1 AR, if activated, do not con- tribute to reinstatement (Ext: 558.28 

± 72.45; Clen/Betax: 1075.11 ± 94.03; Significant reinstatement, paired t test; p < 0.001). 

 
Experiment 3: role of beta 2-ARs in swim-induced effects on crf mRNA in the BNST 

and amygdala 
 
  

In order to examine the role of beta 2-ARs on stress-induced CRF mRNA, mice 

received an injection of cocaine (15 mg/kg, i.p.) or saline on alternating days for 8 days. 

Following the cocaine treatment, mice were given an 8-day withdrawal period before 

exposure to the stressor. Mice were pretreated with either ICI- 118,551 (1 mg/kg, i.p.) or 

vehicle 30 min prior to forced swim. After forced swim, the mice were placed back in 

their home cages for 30 min prior to sacrifice. The remaining mice did not undergo 

forced swim but instead were euthanized 60 min after the ICI-118,551 or vehicle 

injection. The groups were as follows: vehicle, vehicle + forced swim, ICI, ICI + forced 

swim.  

Tissue extraction: Mice were killed by cervical dislocation and their brains were rapidly 

removed and flash frozen by submersion for 30 s in a beaker filled with 2-methylbutane 

sitting in dry ice and brains were then stored at −80 °C. A cryostat was used to cut one 

500-µm-thick coronal section from frozen brain tissue at the level of the BNST (+0.45 to 

−0.05 mm from Bregma; Fig. 2.3a), and tissue punches were taken from the BNST using 

a tissue punch kit (1.00 mm in diameter), with hemispheres pooled into one sample for 

each mouse. In the same brain, a cryostat was used to cut two 500-µm-thick coronal 
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sections from frozen brain tissue at the level of the amygdala (−0.82 to −1.82 mm from 

Bregma; Fig. 2.3b), and tissue punches were taken from the amygdala, with hemi- 

spheres pooled into one sample for each mouse. The tissue punches were stored at −80 ° 

C for later quantitative real-time polymerase chain reaction (qPCR) analysis.  

 RNA was extracted from frozen brain punches using a phenol: chloroform 

method. Due to the small amount of tissue, tissue from two mice was pooled for each 

sample. Briefly, tissue punches were homogenized in Trizol using a 20 ga. followed by a 

25 ga. needle. Homogenized samples were incubated at room temperature with 

chloroform and then centrifuged at 11,000×g for 15 min. The upper aqueous phase was 

separated into a new tube and isopropranolol was added. Following incubation at room 

temperature, samples were centrifuged at 12,000×g for 10 min. The isopropranolol was 

poured off and samples were washed twice in 70 % ethanol followed by centrifugation at 

12,000×g for 5 min. The pellet was finally stored in 70 % ethanol at −20 °C. 

 Reverse transcription and qPCR: For complementary DNA (cDNA) production, the 

ethanol was poured off and the RNA pellet was allowed to air dry before being re-

suspended in RNAse free water. Samples were then treated with DNAse (Invitrogen) to 

remove genomic DNA. Following DNAse treatment, cDNA was created using Oligo(dT) 

primers, and a Superscript II reverse transcription kit (Invitrogen). cDNA was diluted 1:3 

and stored at −20 °C for qPCR analysis. All qPCR was run using the StepOne real-time 

PCR sys- tem (Applied Biosystem). For qPCR analysis, reactions containing PerfeCTa 

SYBR Green FastMix with ROX (Quanta Biosciences), 20 µM of forward and reverse 

primers, and cDNA were loaded into the wells of a 48-well plate on ice. The cycling 

parameters were 95 °C for 30s followed by 40cycles of 95°C (5s), 60°C (15s), and 70°C 



	   66	  

(10s) followed by a melting curve to ensure amplification of a single product. All 

reactions were performed in triplicate and the mean threshold cycle for each gene product 

for each sample was used for analysis. The mRNA levels of CRF were normalized to the 

housekeeping gene, TATA binding protein (TBP). Primer sequences were generously 

provided by Dr. Julie Blendy(Cleck et al 2008). 

Results 

Prior to testing for reinstatement, mice underwent CPP and extinction as 

previously described (Mantsch et al. 2010). All mice displayed cocaine-induced CPP and 

met criteria for extinction. Five mice were excluded from testing because they did not 

display CPP (two mice) or did not extinguish (three mice). The mean time spent in the 

cocaine-paired compartment prior to and after conditioning and during extinction for 

each CPP experiment (Exp. 1 and 2) is shown in Table 2.1.  
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Experiment 1: role of beta 2-AR and CRF-R1 receptors in stress-induced 
reinstatement of CPP 
 

For this experiment, mice (n=8) were tested for the effects of vehicle, the CRF-R1 

antagonist antalarmin, and the beta 2-AR antagonist ICI-118,551 on reinstatement of 

extinguished CPP following forced swim. The pretreatments in combination with forced 

swim were tested in counterbalanced sequence determined using a Latin square design. 

The effects are shown in Fig. 2.1. 

Table 2.1: Cocaine-induced conditioned place preference (CPP) and 
extinction. Mice underwent CPP using an unbiased 8-day (4 x alternating 15 
mg/kg, ip cocaine and vehicle administration) approach. Data represent the 
mean time (sec ± S.E.) spent in the cocaine compartment prior to conditioning 
(Pre-Cond.), after conditioning (Post-Cond.), and on the first and last (prior to 
the first reinstatement test) days of extinction (First and Last Ext) in mice used 
for Experiments 1 and 2. Mice used in both experiments displayed significant 
CPP (*p<0.01; paired t-test Post-Cond. vs. Pre-) and showed extinction 
(**p<0.001; paired t-test, First Ext. vs.  Last). 
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1.1: Effects of the beta 2-AR antagonist, ICI-118,551, on stress- induced reinstatement of 

CPP. We previously reported that the beta 2-AR antagonist, ICI-118,551, prevented 

swim-induced re- instatement of CPP in mice (Vranjkovic et al. 2012). This effect of ICI-

118,551 (1 mg/kg, i.p.) was also observed in the present study (Fig. 2.1a). Consistent 

with our earlier report, two- way repeated measures ANOVA showed significant overall 

effects of forced swim (F(1,7)=22.423; p<0.01) and ICI- 118,551 (F(1,7) = 8.829; p < 

0.05) and a significant interaction between swim-induced reinstatement and ICI-118,551 

pre- treatment (F(1,7) = 14.272; p < 0.01). ICI-118,551 prevented swim-induced 

reinstatement. Post hoc testing showed that significant reinstatement was observed in 
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FIGURE 2.1 : Stress- (swim-) induced reinstatement of extinguished cocaine-
induced CPP requires β-2 adrenergic and CRF-R1 receptor activation. Data 
represent the time spent in the compartment previously paired with cocaine (s ± 
S.E.) during the preceding extinction session (Ext) or during reinstatement testing 
following a 6-min forced swim (22°C) in mice (n=8) pretreated with the β-2 AR 
antagonist, ICI-118,551 (1 mg/kg, ip; 1A), the CRF-R1 receptor antagonist, 
antalarmin (10 mg/kg, ip; 1B) or Veh. Both ICI-118,551 and antalarmin prevented 
swim-induced reinstatement. In both cases, significant reinstatement was observed 
in vehicle- but not antagonist-pretreated mice (*p<0.01 vs. Ext) and reinstatement 
was significantly lower following antagonist pretreatment (#p<0.01 vs. Veh). 
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vehicle but not ICI-118,551 pretreated mice (p < 0.01 vs.the prior extinction session) and 

was significantly reduced following ICI-118,551 pretreatment (p<0.01 vs. vehicle).  

 

1.2: Effects of the CRF-R1 receptor antagonist, antalarmin on stress-induced 

reinstatement of CPP The neuropeptide CRF has also been implicated in stress-induced 

cocaine seeking (Erb et al 1998, Shaham et al 1998). To test for the involvement of CRF 

in swim-induced reinstatement of CPP, mice received pretreatment with the CRF-R1 

receptor antagonist, antalarmin (10 mg/kg, i.p.). Antalarmin prevented reinstatement 

following forced swim (Fig. 2.1b). Two-way repeated measures ANOVA showed 

significant overall effects of forced swim (F(1,7)= 5.710; p < 0.05) and antalarmin 

(F(1,7) = 13.642;p < 0.01) and a significant interaction between swim-induced 

reinstatement and antalarmin pretreatment (F(1,7)=67.375; p<0.01). Post hoc testing 

showed that significant reinstatement was observed in vehicle-pretreated but not 

antalarmin-pretreated mice (p<0.01 vs. extinction) and was significantly reduced 

following antalarmin pretreatment (p<0.01 vs. vehicle).  

 
Experiment 2: effects of CRF-R1 antagonism on beta 2-AR agonist-induced 

reinstatement 
 
 

We previously reported that the administration of beta 2-AR agonist, clenbuterol 

(4 mg/kg, i.p.), is sufficient to reinstate extinguished cocaine-induced CPP in mice 

(Vranjkovic et al. 2012). Here, we demonstrate that, like forced swim, clenbuterol-

induced reinstatement is blocked by pretreatment with the CRF-R1 receptor antagonist, 

antalarmin. Pretreatment with antalarmin (10 mg/kg, i.p.) prevented clenbuterol- induce 

reinstatement (Fig. 2.2).  
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Twelve mice were tested for reinstatement following vehicle pretreatment. Nine were 

tested for reinstatement following antalarmin. Since some mice were not tested for effects 

of both vehicle and antalarmin on clenbuterol-induced reinstatement, a mixed two-way 

clenbuterol reinstatement (repeated measure) × antalarmin pretreatment condition 

(between subjects measure) ANOVA was used. A significant overall effect of clenbuterol 

administration (F(1,19)=26.335; p<0.001) and a significant interaction be- tween 

antalarmin pretreatment and clenbuterol-induced rein- statement (F(1,19) =4.294; 

p=0.050) were observed. Antalarmin prevented clenbuterol-induced reinstatement. 

Significant reinstatement was observed in vehicle-pretreated but not antalarmin-

pretreated mice (p < 0.01 vs. extinction), and time spent in the cocaine-paired 
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FIGURE 2.2: Clenbuterol-induced reinstatement is 
significantly decreased by pretreatment with the CRF-R1 
receptor antagonist, antalarmin. Data represent the time 
spent in the compartment previously paired with cocaine (s ± 
S.E.) during the preceding extinction session (Ext) or during 
reinstatement testing following administration of clenbuterol (4 
mg/kg, ip) after pretreatment with the CRF-R1 receptor 
antagonist, antalarmin (10 mg/kg, ip; n=9) or vehicle (n=12). 
Significant reinstatement was observed in vehicle- but not 
antalarmin-pretreated mice (*p<0.01 vs. Ext) and reinstatement 
was significantly lower following antalarmin pretreatment 
(#p<0.05 vs. Veh). 
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compartment was increased in mice pretreated with vehicle compared to mice pretreated 

with antalarmin (p=0.05).  

 
Experiment 3: Role of beta 2-ARs in stress-induced effects on CRF mRNA in the 

BNST and amygdala 
 

Since reinstatement of CPP following administration of the beta 2-AR agonist, 

ICI-118,551, was dependent on CRF receptor activation, we hypothesized that beta 2-AR 

receptors regulate, either directly or indirectly, CRF-producing neurons in brain regions 

previously implicated in CRF-dependent stress- induced cocaine seeking. To test this 

hypothesis, we quantified CRF mRNA in the BNST and amygdala dissected from 

cocaine-treated mice 30 min following the termination of a 6- min forced swim using 

qPCR after pretreatment with ICI- 118,551 (1 mg/kg, i.p.) or vehicle. Schematics 

depicting the areas targeted for dissection are included in Fig. 2.3. 
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3.1: Effects on crf mRNA in the BNST: The BNST is involved in stress-induced 

cocaine seeking following SA in rats(Leri et al 2002, McFarland et al 2004), and both 

beta -AR signaling and CRF actions in the BNST are important for stress-induced 

reinstatement(Erb & Stewart 1999, Leri et al 2002, Wang et al 2006), suggesting that the 

BNST is a critical site in which beta 2-ARs can either directly or indirectly regulate CRF. 

Here, we examined the effect of pretreatment with the beta 2-AR antagonist ICI-118,551 

(1 mg/kg, i.p.) on swim-induced levels of CRF mRNA in the BNST following cocaine 

treatment and withdrawal (Fig. 2.4a). 

induced reinstatement of cocaine-induced CPP but it is also
necessary for reinstatement in response to the β2-AR agonist
clenbuterol, suggesting thatβ2-AR signaling is upstream from
CRF actions in the neural pathway responsible for stress-
induced reinstatement of cocaine-conditioned reward. In sup-
port of this hypothesis, we also found that forced swim can
significantly increase CRF mRNA levels in the BNST, a
region necessary for stress-induced reinstatement, and that
this effect can be prevented by pretreatment with the β2-AR
antagonist ICI-118,551. Surprisingly, this effect does not oc-
cur in the amygdala. Taken altogether, these data raise the
possibility that β2-AR-dependent activation of CRF-
expressing neurons in the BNST mediates stress-induced re-
instatement of cocaine-conditioned reward, a process that
likely contributes to relapse.

The BNST is an important site for integration of stress and
reward networks (Flavin and Winder 2013). The BNST re-
ceives heavy innervation from most subregions of the amyg-
dala (Dong et al. 2001a; Weller and Smith 1982), a structure
known to be involved in stress, fear and anxiety, and projects
to regions involved in neuroendocrine, autonomic and behav-
ioral control (Dong and Swanson 2006) such as the PVN and
the amygdala (Cullinan et al. 1993; Dong et al. 2001a; Dong
et al. 2001b). In addition to its connectivity with stress-related

structures, BNST efferent projections target regions involved
in motivation and reward, such as the nucleus accumbens
(Dong et al. 2001b) and the VTA (Georges and Aston-Jones
2001; 2002). The BNST is activated during stress-induced
reinstatement (Briand et al. 2010; Brown et al. 2011) and is
necessary for stress-induced reinstatement in mice and rats
(Briand and Blendy 2010; Erb and Stewart 1999; Leri et al.
2002; McFarland et al. 2004). In addition, it is an important
region for CRF actions that mediate stress-induced reinstate-
ment following SA, as CRF-R1 activation in the BNST is both
necessary (Erb et al. 2001; Erb and Stewart 1999) and suffi-
cient (Erb and Stewart 1999) for reinstatement, and stress can
increase CRF mRNA in the BNST in rats (Funk et al. 2006).
Indeed, our own findings support this hypothesis by demon-
strating that CRF-R1 receptor activation is necessary for
forced swim induced reinstatement of CPP in mice and that
the same stressor increases CRFmRNA levels in the BNSTof
mice with a prior history of cocaine, albeit in the absence of
CPP. These data suggest that the BNST is a major site of
regulation of CRF actions during stress-induced reinstatement
of cocaine-conditioned reward.

In addition to CRF, the noradrenergic system plays an
important role in reward and stress (Flavin and Winder
2013; Weinshenker and Schroeder 2007). In particular, this

Fig. 3 Tissue dissection schematic for qPCR analysis. (a) For the BNST,
a tissue punch (1.00 mm in diameter) was taken from one 500-μm
section. The punch site is shown in the shaded circle and both the dorsal
and ventral portions of the BNSTwere collected. (b) For the amygdala, a

tissue punch (1.00 mm in diameter) was taken from two 500-μm sections.
The punch site is shown in the shaded circle and the majority of the
amygdala was collected. For both regions, hemispheres were pooled into
one sample. Adapted from Franklin and Paxinos (2007)
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Fig. 2.3 Tissue dissection schematic for qPCR analysis. (a) For the 
BNST, a tissue punch (1.00 mm in diameter) was taken from one 500-µm 
section. The punch site is shown in the shaded circle and both the dorsal 
and ventral portions of the BNST were collected. (b) For the amygdala, a 
tissue punch (1.00 mm in diameter) was taken from two 500-µm sections. 
The punch site is shown in the shaded circle and the majority of the 
amygdala was collected. For both regions, hemispheres were pooled into 
one sample. Adapted from Franklin and Paxinos (2007) 
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Two-way ANOVA did not show a significant main effect of forced swim 

(F(1,36)=3.737, p= 0.061) or ICI-118,551 (F(1,36)=1.919, p=0.174) on CRF mRNA 

levels in the BNST but did show a significant inter- action between forced swim and ICI-

118,551 (F(1,36)=4.851, p<0.05). Mice that received vehicle pretreatment and forced 

swim had significantly higher CRF mRNA levels in the BNST compared to the vehicle 

	  

FIGURE 2.4: Stress- (forced swim-) induced increases in crf mRNA in 
the BNST, but not the amygdala, are blocked by pretreatment with a 
beta-2 adrenergic receptor antagonist. Data represent the fold change in 
crf mRNA ± S.E. The mRNA changes were assessed using quantitative real-
time polymerase chain reaction (qPCR) on tissue from the BNST (A) and 
amygdala (B) of mice exposed to a 6-min forced swim (22°C) after cocaine 
treatment and withdrawal. The mean threshold cycle for crf was normalized 
to the endogenous control TATA binding protein (tbp). Forced swim 
significantly increased crf mRNA levels in the BNST in mice that received a 
vehicle pretreatment (*p<.05, compared to vehicle alone). However, in mice 
that received a pretreatment the beta-2 AR antagonist, ICI-118,551 (1 mg/kg, 
ip), forced swim no longer increased crf mRNA levels in the BNST while the 
pretreatment of ICI-118,551 alone had no effect on crf mRNA. In contrast, in 
the amygdala, neither forced swim nor ICI-118,551 had a significant effect 
on crf mRNA. 
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treatment alone (p < 0.05). However, when mice were pretreated with ICI-118,551, 

forced swim no longer increased CRF mRNA levels in the BNST (p>0.05 compared to 

vehicle treatment), while the treatment with ICI-118,551 alone had no significant effect 

on CRF mRNA levels (p>0.05, compared to vehicle treatment alone).  

 

3.2: Effects on crf mRNA in the amygdala Like the BNST, the amygdala has been 

implicated in stress-induced cocaine seeking following SA in rats(McFarland et al 2004). 

Moreover, beta-AR signaling in the central nucleus of the amygdala con- tributes to 

stress-induced reinstatement(Leri et al 2002) and forced swim following protracted 

withdrawal after binge cocaine access has been reported to increase CRF mRNA levels in 

the amygdala(Cleck et al 2008). Thus, the amygdala is a potential site at which CRF is 

either directly or indirectly regulated by beta 2-ARs to promote cocaine use. Here, we 

examined the effect of the beta 2-AR antagonist ICI-118,551 (1 mg/kg, i.p.) on swim-

induced levels of CRF mRNA in the amygdala following cocaine treatment and 

withdrawal (Fig. 2.4b). In contrast to the BNST, a two-way ANOVA did not show a 

significant main effect of forced swim (F(1,39) = 2.033, p = 0.162), ICI-118,551 

(F(1,39)=0.046, p=0.83), or an interaction between forced swim and ICI-118,551 on CRF 

mRNA in the amygdala (F(1,39)=0.558, p=0.459). 

 
Discussion 

 

The main finding of this study is that an interaction between beta 2-ARs and 

CRF-R1 receptors is critical for stress-induced reinstatement of extinguished cocaine-

induced CPP in mice. Additionally, beta 2-AR signaling is required for the stress- 
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induced regulation of CRF mRNA levels in the BNST. We found that not only is CRF-

R1 activation necessary for swim induced reinstatement of cocaine-induced CPP but it is 

also necessary for reinstatement in response to the beta 2-AR agonist clenbuterol, 

suggesting that beta 2-AR signaling is upstream from CRF actions in the neural pathway 

responsible for stress- induced reinstatement of cocaine-conditioned reward. In support of 

this hypothesis, we also found that forced swim can significantly increase CRF mRNA 

levels in the BNST, a region necessary for stress-induced reinstatement, and that this 

effect can be prevented by pretreatment with the beta 2-AR antagonist ICI-118,551. 

Surprisingly, this effect does not occur in the amygdala. Taken altogether, these data raise 

the possibility that beta 2-AR-dependent activation of CRF- expressing neurons in the 

BNST mediates stress-induced re- instatement of cocaine-conditioned reward, a process 

that likely contributes to relapse. 

 The BNST is an important site for integration of stress and reward networks 

(Flavin & Winder 2013). The BNST receives heavy innervation from most subregions of 

the amygdala(Dong et al 2001a, Weller & Smith 1982), a structure known to be involved 

in stress, fear and anxiety, and projects to regions involved in neuroendocrine, autonomic 

and behavioral control (Dong & Swanson 2006) such as the PVN and the 

amygdala(Cullinan et al 1993, Dong et al 2001a, Dong et al 2001b). In addition to its 

connectivity with stress-related structures, BNST efferent projections target regions 

involved in motivation and reward, such as the nucleus accumbens (Dong et al 2001b) 

and the VTA (Georges & Aston-Jones 2001, Georges & Aston-Jones 2002). The BNST 

is activated during stress-induced reinstatement (Briand et al 2010, Brown et al 2011) and 

is necessary for stress-induced reinstatement in mice and rats (Briand & Blendy 2010, 
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Erb & Stewart 1999, Leri et al 2002, McFarland et al 2004). In addition, it is an important 

region for CRF actions that mediate stress-induced reinstatement following SA, as CRF-

R1 activation in the BNST is both necessary (Erb et al. 2001; Erb and Stewart 1999) and 

sufficient (Erb and Stewart 1999) for reinstatement, and stress can increase CRF mRNA 

in the BNST in rats(Funk et al 2006). Indeed, our own findings support this hypothesis by 

demonstrating that CRF-R1 receptor activation is necessary for forced swim induced 

reinstatement of CPP in mice and that the same stressor increases CRF mRNA levels in 

the BNST of mice with a prior history of cocaine, albeit in the absence of CPP. These 

data suggest that the BNST is a major site of regulation of CRF actions during stress-

induced reinstatement of cocaine-conditioned reward.  

 In addition to CRF, the noradrenergic system plays an important role in reward 

and stress (Flavin & Winder 2013, Weinshenker & Schroeder 2007). In particular, this 

system is heavily involved in stress-induced reinstatement behaviors. For example, 

reducing norepinephrine levels through alpha 2-AR agonism blocks stress-induced 

reinstatement of cocaine seeking following SA in rats (Erb et al. 2000) and reinstatement 

of cocaine-conditioned reward in mice (Mantsch et al. 2010), as well as stress-associated 

cocaine craving in humans(Jobes et al 2011). Norepinephrine is also sufficient for 

reinstatement as elevation of norepinephrine levels through central administration of 

norepinephrine or alpha 2-AR antagonism promotes reinstatement behaviors in both rats 

and mice (Brown et al. 2011; Brown et al. 2009; Feltenstein and See 2006; Mantsch et al. 

2010). 

 We have previously demonstrated, using the mouse CPP/ reinstatement approach 

that, specifically, beta 2-ARs are required for stress-induced reinstatement (Mantsch et al. 
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2010; Vranjkovic et al. 2012). Reinstatement of CPP by either forced swim or yohimbine 

is blocked by the beta 2-AR-selective antagonist, ICI-118,551, but not the beta1-AR-

selective antagonist, betaxolol, while administration of the beta 2-AR-selective agonist, 

clenbuterol, is sufficient to reinstate CPP. Our current findings confirm this role for beta 

2-ARs. In rats, the BNST, which receives dense noradrenergic innervation through the 

ventral noradrenergic bundle (Ricardo & Koh 1978, Woulfe et al 1988) and displays 

increased norepinephrine levels following stress (Pacak et al 1995), appears to be a key 

site for beta-AR regulation of cocaine seeking during stress. Blockade of beta 1- and beta 

2-ARs in the BNST using a cocktail of ICI-118,551 and betaxolol prevents footshock-

induced reinstatement of cocaine seeking following SA in rats (Leri et al. 2002). 

 The precise mechanism through which beta 2-ARs regulate reinstatement of 

cocaine seeking and CPP is unclear, but we hypothesize that it involves effects on CRF 

neurons in the BNST. Beta-AR activation increases excitatory transmission in the BNST 

(Egli et al 2005), and these effects appear to be mediated in part via a CRF-R1-dependent 

mechanism(Nobis et al 2011). In addition, norepinephrine-induced reinstatement is 

prevented by CRF receptor antagonism, but CRF- induced reinstatement is not blocked 

by inhibition of noradrenergic neurotransmission(Brown et al 2009), suggesting that 

noradrenergic signaling is upstream from CRF in the chain of events that lead to 

reinstatement. Our own findings support this possibility, as we found that reinstatement 

of CPP induced by the beta 2-AR agonist clenbuterol is blocked by the CRF-R1 

antagonist antalarmin and that stress-induced increases in CRF mRNA in the BNST are 

prevented by the beta 2-AR antagonist ICI-118,551. CRF released into the BNST may 

originate from CRF-releasing afferent projections to the BNST or from local cell 
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populations(Veinante et al 1997). The latter possibility is supported by findings from 

Silberman et al. (2013) suggesting that norepinephrine depolarizes CRF- containing 

neurons intrinsic to the BNST, thereby releasing CRF locally, which then enhances 

glutamatergic neurotransmission via presynaptic effects. 

 CRF neurons in the BNST also send efferent projections to a number of brain 

regions, most notably the VTA (Rodaros et al. 2007). The VTA is a heterogeneous region 

that is the source of dopamine neurons that comprise the mesocorticolimbic system and 

has a well-established role in stress-induced cocaine seeking(Mantsch et al 2014, 

McFarland et al 2004). CRF actions in the VTA are necessary for stress-induced 

reinstatement and are mediated by activation of CRF-R1 receptors(Blacktop et al 2011). 

Emerging evidence suggests that the BNST-VTA pathway is essential for stress-induced 

cocaine seeking and reinstatement of CPP (Mantsch et al. 2014). For example, reinstating 

stimuli such as forced swim increase c-fos expression specifically in BNST neurons that 

project to the VTA (Briand et al. 2010). The BNST sends both glutamatergic and 

GABAergic projections to the VTA(Georges & Aston-Jones 2001, Kudo et al 2012), 

which appear to have distinct roles in reward and aversion(Jennings et al 2013). 

However, the relative roles of GABAergic vs. glutamatergic projections from the BNST 

to the VTA in the regulation of stress-induced reinstatement behaviors are not clear. 

Notably, withdrawal from chronic ethanol exposure enhances basal glutamatergic 

regulation of VTA-projecting BNST neurons in a CRF-R1 dependent manner (Silberman 

et al. 2013). Understanding how projections from the BNST to the VTA promote relapse 

to drug use during stress and delineation of the processes in the BNST that regulate these 

projections represent important goals for future research. 
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 In general, the role for CRF and NE in stress-induced reinstatement behaviors, as 

demonstrated in the present study, extends to other classes of abused drugs. Antagonism 

of CRF receptors prevents stress-induced reinstatement following alcohol (Le et al 2000), 

heroin(Shaham et al 1997) , and nicotine (Bruijnzeel et al 2009, Zislis et al 2007)SA, as 

does suppression of noradrenergic neurotransmission using alpha-2 AR agonist drugs(Le 

et al 2005, Shaham et al 2000, Zislis et al 2007). However, subtle differences in the 

mechanisms underlying stress- induced reinstatement appear to exist. For example, the 

alpha-1 AR antagonist, prazosin, blocks stress-induced reinstatement (Le et al 

2011),while the highly selective alpha-2 AR antagonist, RS-79948, fails to evoke 

reinstatement following alcohol SA in rats(Dzung Le et al 2009). Thus, application of the 

current findings to other drugs of abuse will require further investigation. 

 There is some evidence that suggests that targeting ARs in human cocaine addicts 

may be an effective treatment strategy. In humans, alpha 2-AR agonists, which 

functionally antagonize noradrenergic neurotransmission, reduce stress-induced (Jobes et 

al 2011)and cue-induced(Fox et al 2012) cocaine craving. The effectiveness of beta 

blockers in cocaine users classified as dependent has also been examined(Kampman et al 

2001). It is noteworthy that, while the beta-blocker propranolol did not universally 

improve treatment outcome measures, positive responses were observed in subjects who 

displayed more severe cocaine withdrawal symptoms. Considering that such symptoms 

are largely stress-related, we view these findings as supportive of a role for beta-ARs in 

stress-induced relapse. 

 Similar to the BNST, the amygdala is a region known to be involved in both 

reward and stress. The amygdala is comprised of a number of subnuclei that are highly 
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interconnected with regions involved in stress-related responses such as the PVN and 

BNST, as well those involved in reward-related processes, such as the NAc, the PFC, and 

the VTA(McDonald 1991a, McDonald 1991b, Rodaros et al 2007, Silverman et al 1981). 

As is the case for the BNST, it has been reported that the amygdala is essential for stress-

induced reinstatement (McFarland et al. 2004) and that the CeA sends CRF-positive 

projections to the VTA (Rodaros et al. 2007). Moreover, beta 2-AR signaling in the CeA 

(Leri et al. 2002) and a projection from the CeA that regulates CRF release in the BNST 

(Erb et al. 2001) have been reported to be necessary for stress-induced cocaine seeking 

following SA in rats, suggesting that beta 2-AR regulation of CRF neurons may occur in 

the amygdala as well. Surprisingly, we found that forced swim stress did not alter CRF 

mRNA levels in the amygdala. This is in contrast to a prior study demonstrating swim-

induced in- creases in CRF mRNA levels in the amygdala of mice with a prior history of 

cocaine(Cleck et al 2008). However, in that study, mice received greater amounts of 

cocaine and the increase in CRF mRNA levels was only observed following prolonged 

withdrawal (Cleck et al. 2008). Importantly, in the present study, mice were tested for 

CRF mRNA responses after repeated exposure to cocaine but in the absence of the CPP 

context. It is not clear how conditioning to cocaine and testing for swim effects on CRF 

mRNA measured following exposure to the CPP chambers could have influenced our 

results. It should also be noted that since our dissections were gross dissections of the 

amygdala due to the small amount of tissue yielded from a mouse brain, we cannot 

exclude the possibility that a more specific dissection of the CeA may yield different 

results. In contrast to its regulatory role in anxiety, CRF actions in the CeA do not appear 

to be necessary for stress-induced reinstatement following SA or CPP (Erb and Stewart 
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1999; Wang et al. 2006). Our findings also suggest that, while CeA regulation of CRF 

release into the BNST is necessary for stress-induced reinstatement behaviors (Erb et al. 

2001), the source of CRF may consist of CRF projections from regions other than the 

CeA or cells that intrinsic to the BNST and not CRF neurons originating in the CeA.  

 Our current findings support a hypothesis that places beta2- AR signaling 

upstream from CRF actions in the BNST in the neural pathway that mediates stress-

induced reinstatement of cocaine-conditioned reward. While there are long-established 

roles for AR and CRF individually in stress-induced reinstatement, it has become clear 

that an interaction between beta2-AR signaling and CRF producing neurons, possibly in 

the BNST is likely critical. For this reason, further investigation of the precise 

mechanisms through which beta2-ARs contribute to the stress-induced regulation of CRF 

neurons in the BNST is needed. Finally, our findings also suggest that medications 

targeting beta2-ARs hold some promise for potential treatment aimed at minimizing the 

contribution of stress to relapse.  
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Chapter III 
 
 

Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated 
pathway from the ventral bed nucleus of the stria terminalis that regulates CRF 

actions in the ventral tegmental area 
 
 

Abstract 
 
 

The ventral bed nucleus of the stria terminalis (vBNST) has been implicated in 

stress-induced cocaine use. Here we demonstrate that, in the vBNST, corticotropin 

releasing factor (CRF) is expressed in neurons that innervate the ventral tegmental area 

(VTA), a site where the CRF receptor antagonist antalarmin prevents the reinstatement of 

cocaine seeking by a stressor, intermittent footshock, following intravenous self-

administration in rats. The vBNST receives dense noradrenergic innervation and 

expresses β adrenergic receptors (ARs). Footshock-induced reinstatement was prevented 

by bilateral intra-vBNST injection of the β-2 AR antagonist, ICI-118,551, but not the β-1 

AR antagonist, betaxolol. Moreover, bilateral intra-vBNST injection of the β-2 AR 

agonist, clenbuterol, but not the β-1 agonist, dobutamine, reinstated cocaine seeking, 

suggesting that activation of vBNST β-2 AR is both necessary for stress-induced 

reinstatement and sufficient to induce cocaine seeking. The contribution of a β-2 AR-

regulated vBNST-to-VTA pathway that releases CRF was investigated using a 

disconnection approach. Injection of ICI-118,551 into the vBNST in one hemisphere and 

antalarmin into the VTA of the contralateral hemisphere prevented footshock-induced 

reinstatement, whereas ipsilateral manipulations failed to attenuate stress-induced cocaine 

seeking, suggesting that β-2 AR regulate vBNST efferents that release CRF into the 

VTA, activating CRF receptors, and promoting cocaine use. Last, reinstatement by 
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clenbuterol delivered bilaterally into the vBNST was prevented by bilateral vBNST 

pretreatment with antalarmin, indicating that β-2 AR-mediated actions in the vBNST also 

require local CRF receptor activation. Understanding the processes through which stress 

induces cocaine seeking should guide the development of new treatments for addiction. 

Introduction 
 

In many cocaine addicts, relapse to drug use is triggered by the onset of craving in 

response to episodes of stress. Due to the uncontrollable and often unavoidable nature of 

stress, its contribution to relapse is particularly problematic when managing cocaine 

addiction. 

Using rodent reinstatement models, preclinical researchers have begun to define 

the neurocircuitry that underlies stress-induced relapse. One prominent pathway that has 

been implicated consists of a dopaminergic projection from the ventral tegmental area 

(VTA) to the medial prefrontal cortex, where dopamine D1 receptor activation increases 

the activity of a glutamatergic pathway to the nucleus accumbens that is critical for 

cocaine seeking (Capriles et al 2003, McFarland et al 2004). During stress, the VTA is 

regulated by the neuropeptide corticotropin releasing factor (CRF; (Wang et al 2005), in 

part via CRF-R1 receptors (Blacktop et al 2011), to evoke cocaine seeking. 

The VTA receives inputs from brain regions involved in integration of the stress 

response, including those comprising the “extended amygdala”: the nucleus accumbens 

shell, central amygdala, and bed nucleus of the stria terminalis (BNST;(Phillipson 1979). 

Among these structures, the BNST, which serves as an interface between stress and 

motivational/reward systems, appears to be particularly important for stress-induced 
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cocaine seeking, in that its inactivation prevents stress-induced reinstatement in rodents 

((Briand et al 2010, McFarland et al 2004). A subgroup of neurons projecting from the 

BNST to the VTA express CRF (Rodaros et al 2007)and therefore may be responsible for 

stress-induced increases in VTA CRF and CRF-dependent cocaine seeking. However, 

CRF projections to the VTA from the ventral BNST (vBNST), the subregion implicated 

in stress-induced cocaine seeking (McFarland et al., 2004), have not been described. The 

BNST, particularly the vBNST, receives dense noradrenergic innervation (Phelix et al 

1992) and expresses β adrenergic receptors (ARs; (Cecchi et al 2007)), which have been 

reported to regulate efferent projections (Nobis et al 2011), including those that innervate 

the VTA (Dumont & Williams 2004, Silberman et al 2013). Both stress-induced 

reinstatement (Erb et al 2001, Erb & Stewart 1999) and noradrenergic regulation of 

BNST efferents to the VTA (Silberman et al., 2013) require BNST CRF receptor 

activation, suggesting that norepinephrine in the BNST promotes local CRF release, 

thereby activating a second CRF-releasing pathway to the VTA. 

Considering the important role for noradrenergic signaling in stress-induced 

reinstatement in rodents (Erb et al 2000, Mantsch et al 2010)and craving in human 

cocaine-dependent populations (Jobes et al 2011), AR regulation of a vBNST-to-VTA 

CRF-releasing pathway is a likely mechanism through which stress promotes cocaine 

seeking. We have found that β-2 AR activation is both necessary and sufficient for stress-

induced reinstatement in mouse models (Vranjkovic et al 2012). Moreover, it has been 

demonstrated that a mixture of β-AR antagonists, administered into the vBNST, prevents 

stress-induced reinstatement(Leri et al 2002). In this study, we demonstrate direct CRF 

neuronal projections from the vBNST to the VTA and examine the relationship between 
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stress-induced β-2 AR activation in the vBNST and CRF-R1 receptor-dependent actions 

in the VTA that lead to cocaine seeking. 

Materials and Methods: 
 

Subjects 

Male Sprague Dawley rats (Harlan Laboratories) ∼90-d-old at the time of delivery (325 

g) were used. Rats were housed singly in a temperature- and humidity-controlled, 

Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility under a 12 h light/dark cycle (lights off at 07:00 h) and had access to food and 

water at all times, except during the food training periods during which they were kept at 

90% of their free-feeding body weight. All procedures were performed in accordance 

with the NIH Guide for the Care and Use of Laboratory Animals. 

Drugs 

Cocaine HCl was acquired from the National Institute on Drug Abuse through its drug 

supply program. The selective β-1 AR antagonist betaxolol HCl, the selective β-2 AR 

antagonist (-)-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) 

HCl, the selective β-1 AR agonist dobutamine HCl, the selective β-2 AR agonist 

clenbuterol, and the axonal transport inhibitor colchicine HCl were purchased from 

Sigma-Aldrich. Cocaine was dissolved in bacteriostatic saline. Other drugs were 

dissolved in sterile water. Colchicine was delivered intra cerebroventricularly in a 

volume of 2 µl over a 5 min period. Intracranial drug injections occurred in a volume of 

0.2 µl/side over a 1 min period. 
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Catheter and cannula implantation 

For intravenous self-administration (SA) and reinstatement testing, rats were implanted 

with catheters into the jugular vein under ketamine HCl (100 mg/kg i.p.) and xylazine (2 

mg/kg, i.p.) anesthesia, as described previously (Blacktop et al 2011), along with 11 mm 

26-gauge guide cannulae aimed at the vBNST (0.6 mm posterior to bregma; 3.5 mm 

lateral to midline; 6.9 mm ventral to the skull surface at a 15° angle), and/or the VTA 

(5.6 mm posterior to bregma; 2.2 mm lateral to midline; 6.9 ventral to the skull surface at 

a 12° angle) for intracranial injections. The tips of the guide cannulae were aimed 0.5 mm 

above the target injection sites. 

Cocaine self-administration 

Following a 2 week recovery from surgery, rats were trained to self-administer cocaine 

(1.0 mg/kg/inf, i.v.) by pressing a response lever under an FR1 schedule in a computer-

interfaced operant conditioning chamber (Med Associates) during daily 2 h sessions. 

During these sessions, the active (front) lever was extended into the chamber and the 

corresponding stimulus light was illuminated. Pressing this lever resulted in a cocaine 

infusion (200 µl over 5 s), followed by a 25 s time-out period during which the stimulus 

light was extinguished but the lever remained extended. Responding on a second, inactive 

lever was recorded but had no programmed consequences. Once stable SA under the FR1 

schedule was observed (>15 infusions), the requirements for SA were gradually increased 

until rats displayed stable responding under ta FR4 schedule (<10% variation from the 

mean over 3 sessions), at which time daily access was increased to 6 h. Rat were 

permitted to self-administer daily under these conditions for 14 consecutive days after 

which they underwent extinction training. 
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Extinction training and reinstatement testing 

Extinction sessions were identical to SA conditions except that (1) the sessions were 2 h 

in duration and (2) the cocaine solution was replaced with saline. Daily extinction 

training sessions were conducted until rats displayed <15 cocaine lever responses for 

consecutive sessions (range, 6–10 d) at which time rats were tested for reinstatement. 

Reinstatement sessions were identical to extinction sessions except that they were 

preceded by exposure to shock and/or intracranial drug delivery. Shocks (0.5 mA, 0.5 s 

duration) were delivered on average every 40 s (range, 10–70 s) through the grid floors of 

the chambers over a 15 min period that immediately preceded the 2 h reinstatement test 

session (Blacktop et al 2011, Graf et al 2011). During the shock session, the levers were 

retracted and the stimulus lights were off, but a houselight in the chamber was 

illuminated. Reinstatement was defined as an increase in cocaine lever responding 

relative to the prior extinction session. When rats were tested multiple times for 

reinstatement, test sessions were separated by additional extinction session and were 

required to display <15 cocaine lever responses before retesting. 

Effects on food-reinforced lever pressing 

In most cases where significant reductions in shock-induced reinstatement were 

observed, the effects of the same manipulations on lever pressing reinforced by food 

delivery (45 mg sucrose-sweetened food pellets; BioServ) were also examined in separate 

rats to confirm that reduced reinstatement was not attributable to motor impairment that 

interfered with the ability of the rats to press the lever. Following surgical intracranial 

implantation of guide cannulae and recovery, these rats were maintained at 90% of their 

free-feeding body weights and trained to self-administer food pellets by pressing a lever 
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under a FR4 schedule. Effects on food-reinforced responding were tested after stable 

patterns of lever pressing were observed (<10% variation from the mean over 3 sessions). 

Histological confirmation of injection sites 

The accuracy of cannula implantation was confirmed postmortem in each rat after cardiac 

perfusion with 60 ml 0.15% NaCl followed by 60 ml of 2.5% buffered neutral formalin 

under sodium pentobarbital anesthesia (55 mg/kg). Brains were removed and stored in 

2.5% buffered formalin before vibratome sectioning (40 µm), slide mounting, and 

staining with cresyl violet for examination using a light microscope. Rats with injection 

sites outside of the VTA or the vBNST were excluded from data analysis. 

Experiment 1: effects of intra-BNST β AR antagonists on stress-induced reinstatement 

We initially examined the role of β-1 and β-2 AR activation in the vBNST in stress-

induced reinstatement by testing rats for shock-induced reinstatement following bilateral 

intra-vBNST injection of the β-1 AR selective antagonist, betaxolol (1 nmol/307 ng per 

side), the β-2 AR antagonist selective antagonist, ICI-118,551 (1 nmol/277 ng per side) 

or vehicle (sterile water). Concentrations were selected based on selectivity for human β 

receptor subtypes (Baker 2005). Moreover, the antagonist concentrations were previously 

used to selectively target brain β ARs(Cecchi et al 2007, Delfs et al 2000, LaLumiere et 

al 2010, Leri et al 2002). Rats received vBNST injections 15 min before shock. Nine total 

rats were used for this experiment. Five rats were tested for shock-induced reinstatement 

following pretreatment with vehicle, betaxolol, and ICI-118,551; two rats were tested 

following only vehicle and betaxolol; and two rats were tested for following only vehicle 
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and ICI-118,551. An additional group of rats (n = 6) was tested for the effects of ICI-

118,551 and vehicle on food-reinforced lever pressing. 

Experiment 2: reinstatement by intra-vBNST injection of β-AR agonists 

To further examine the role of vBNST β-1 and β-2 ARs in stress-induced cocaine 

seeking, a separate group of rats was tested for the ability of bilateral intra-vBNST 

injection of the β-1 AR selective agonist dobutamine (1 nmol/ 301 ng per side) or the β-2 

AR selective agonist clenbuterol (36 pmol/10 ng per side) to induce reinstatement. 

Concentrations were again chosen based on selectivity for human β receptor subtypes 

(Baker 2010). Further, the clenbuterol dose has been previously used to selectively target 

brain β-2 ARs(LaLumiere et al 2010, Roozendaal et al 2008). Ten total rats were used for 

this experiment. Seven rats were tested for reinstatement in response to dobutamine, 

clenbuterol, and vehicle. An additional three rats were tested only with clenbuterol and 

vehicle. 

Experiment 3: effect of VTA CRF receptor antagonism on stress-induced 
reinstatement 
 
To confirm our earlier finding that shock-induced reinstatement requires CRF receptor 

activation in the VTA (Blacktop et al., 2011), we also tested rats for the effects of intra-

VTA pretreatment with the CRF-R1 receptor antagonist, antalarmin ((Webster et al 

1996); 1.32 nmol/500 ng/side). We (Blacktop et al., 2011) and others (Lowery-Gionta et 

al 2012) have used this antalarmin dose to investigate CRF-R1 receptor-dependent 

contributions to behavior. Six rats were used for this experiment. Each of them was tested 

for the effects of both antalarmin and vehicle on shock-induced reinstatement. 
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Experiment 4: identification of CRF-positive neurons in the vBNST that project to the 
VTA 
 

Retrograde tracing using CTb. 

We used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons in the 

vBNST with direct efferent projections to the VTA. Rats were anesthetized with 

ketamine and xylazine and placed in a stereotaxic frame. Heat-sterilized Hamilton 

syringes were used to pressure inject 0.2 µl biotinylated CTb (List Biological 

Laboratories) unilaterally into the VTA over a 10 min period (posterior to bregma −5.6 

mm, lateral −2.6 mm, ventral −8.6 mm; Paxinos and Watson, 2006). Syringes were left in 

place for 20 min after injections and slowly removed from the brain over a 10 min period. 

Colchicine treatment. 

Because it has been reported that inhibition of axonal transport using pretreatment with 

the microtubule polymerization inhibitor colchicine is necessary for detection of CRF-

immunoreactive cell bodies within the vBNST (Sakanaka et al 1986) anesthetized rats 

received injections of colchicine (1.25 µmol/500 µg in 2 µl) into a lateral ventricle 

(posterior to bregma −1.0 mm, lateral 1.4 mm, ventral −5.3 mm) 10 d after injection with 

CTb, thus avoiding interference with retrograde transport of CTb. 

Tissue collection and preparation. 

Twenty-four hours after the colchicine injections, rats were anesthetized with sodium 

pentobarbital (55 mg/kg, i.p.) and perfused transcardially with 30 ml of 0.9% NaCl, 

followed by 60 ml of cold (4°C) 4% paraformaldehyde in 0.1 M phosphate buffer, pH 

7.0. Brains were quickly removed and immersed in fixative for 24 h at 4°C. Brains were 

washed twice in 0.1 Msodium phosphate buffer for 12 h each, after which they were 
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cryoprotected in 30% sucrose in 0.1 M-phosphate buffer for 3 d at 4°C. Brains were 

rapidly frozen and serial coronal sections (30 µm) were cut on a cryostat. Sections were 

stored at −20°C until immunofluorescence procedures were conducted. 

Fluorescence immunocytochemistry. 

Immunofluorescence for CTb and CRF was conducted on free-floating 30 µm sections. 

Sections were rinsed three times for 10 min in 0.05 M KPBS and once for 10 min in 

0.1 M glycine in 0.05 KPBS, followed by blocking in 3% normal donkey serum in 0.4% 

Triton KPBS for 20 min. Sections were then incubated for 48 h at 4°C with rabbit anti-

CRF (supplied by Dr Wylie Vale, The Salk Institute) diluted 1:8000 in 0.1% Triton 

KPBS with 3% normal donkey serum. Sections were then rinsed 3× 10 min in 

0.05 M KPBS, followed by incubation with an AlexaFluor 488-conjugated donkey anti-

rabbit secondary antibody (Catalog #A11008; 1:500; Life Technologies) in 0.05 M KPBS 

for 2 h at room temperature, and rinsed three times for 10 min in 0.05 M KPBS. For 

detection of biotinylated CTb, sections were incubated for 24 h at 4°C in goat anti-biotin 

polyclonal antibody (Catalog # SP 3000; Vector Laboratories) diluted 1:30,000 in 0.1% 

Triton KPBS and 3% normal donkey serum. After rinsing, sections were incubated 2 h 

with AlexaFluor 598-conjugated donkey anti-goat IgG (Catalog #A-110581; 1:500; Life 

Technologies) and washed three times for 10 min in 0.05 M KPBS. Sections were briefly 

rinsed in distilled water and mounted onto gel-coated SuperFrost Plus slides and 

coverslipped using Vectashield mounting medium with DAPI (Catalog #H-1200; Vector 

Laboratories). Photomicrographs were acquired using a Retiga 2000R digital camera 

(QImaging) on a Nikon 80i microscope using NIS Elements software (Nikon 

Instruments). 
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Experiment 5: effects of vBNST and VTA disconnection on stress-induced cocaine 
seeking 
 

A disconnection approach was used to determine whether a β 2-AR activated, 

CRF-dependent pathway between the vBNST and the VTA is required for stress-induced 

cocaine seeking. At the time of catheterization, separate groups of rats were implanted 

with two cannulae aimed unilaterally at the vBNST and VTA in either the contralateral or 

the ipsilateral hemisphere(s) of the brain. The effect of pathway disconnection was 

examined in six rats by injection of the β-2 AR antagonist ICI 118,551 (1 nmol/277 ng) 

into the vBNST in one hemisphere and the CRF-R1 receptor antagonist antalarmin (1.32 

nmol/500 ng) into the VTA of the other before testing for shock-induced reinstatement. 

For comparison, the same rats were tested for shock-induced reinstatement following 

injection of vehicle into each region. As a control to ensure that reductions in 

reinstatement were attributable to disconnection, a second groups of rats (n = 7) received 

a unilateral injection of ICI 118,551 into the vBNST in one hemisphere and a unilateral 

injection of antalarmin into the VTA in the same hemisphere before testing for shock-

induced reinstatement. These rats were also tested for the effects of ipsilateral vehicle 

injections. For this experiment, the hemispheres into which cannulae were implanted 

were randomized across rats in each group such that in the contralateral treatment group, 

half of the rats received ICI 118,551 injections into the left vBNST and antalarmin 

injections into the right VTA, whereas the other half received ICI 118,551 injections into 

the right vBNST and antalarmin injections into the left VTA. Likewise, half of the rats in 

the ipsilateral treatment group received drug injections into sites in the right hemisphere, 

whereas the remaining rats received injections into sites in the left hemisphere. To 
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examine the potential contribution of nonspecific behavioral suppression to the effects on 

reinstatement, an addition group of rats (n = 6) was tested for the effects of contralateral 

drug and vehicle injections on food-reinforced lever pressing. 

 
Experiment 6: role of vBNST CRF-R1 receptors in cocaine seeking induced by 
vBNST β-2 AR activation 
 

It has been reported that CRF-R1 antagonist injections directly into the vBNST 

can also block stress-induced cocaine seeking (Erb et al 2001, Erb & Stewart 1999). To 

determine whether β-2 ARs in the vBNST regulate efferent pathways to the VTA to 

produce cocaine seeking via a mechanism that also involves local CRF actions, we tested 

for the ability of intra-BNST pretreatment with antalarmin to block reinstatement in 

response to local delivery of the beta2 AR agonist clenbuterol. Reinstatement in response 

to bilateral intra-BNST delivery of clenbuterol (36 pmol/10 ng per side) was examined 

following bilateral intra-BNST pretreatment with antalarmin (1.32 nmol/500 ng/side) or 

vehicle (10 min pretreatment) in counterbalanced sequence in six rats. To test the 

hypothesis that CRF-R1 receptor activation in the vBNST is downstream from β-2 AR 

activation in the sequence of events that mediate stress-induced cocaine seeking, a 

separate group of six rats was tested for reinstatement in response to bilateral intra-

vBNST CRF (63 pmol/300 ng/side; Erb and Stewart, 1999) following bilateral intra-

vBNST pretreatment with the selective β-2 AR antagonist, ICI-118,551 (1 nmol/277 ng 

per side) or vehicle (10 min pretreatment). 

Statistical analyses 

Statistical analyses were conducted using Predictive Analytics SoftWare statistics 

software (SPSS). Statistical significance was determined using ANOVA followed, when 
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appropriate, by further analyses of main effects using ANOVA and/or post hoc testing 

using Bonferroni-corrected t tests. 

 
Results 

 
Cocaine SA and extinction in rats used for the various reinstatement experiments are 

shown in Table 3.1 and did not differ across experiments.  

 

 

 
In general, each group of rats displayed escalation, as previously demonstrated 

under these conditions, and showed reduced cocaine seeking across extinction testing, 

which consisted of an average of 8.24 (±0.28) sessions before extinction criteria were 

met. The injection sites for rats used for each experiment are depicted in Figure 3.1. A 

Table 1: Cocaine SA and extinction.  Data represent cocaine SA (infusions/6-h 
session ± S.E) on days 1 and 14 of SA testing and cocaine lever responding 
(responses/2-h session ± S.E.) on the first day of extinction training (First Ext) 
and the last day of extinction training prior to reinstatement testing (Last Ext) in 
rats from each of the reinstatement experiments  

	  



	   95	  

total of 11 rats were excluded from analyses due to cannula misplacement. In all cases, 

drug effects were not observed with inaccurate injection.  

 

 
 
 
Experiment 1: effects of intra-BNST β AR antagonists on stress-induced 
reinstatement 
 

 
The effect of bilateral intra-vBNST injection of the β-1 AR antagonist betaxolol 

(1 nmol/307 ng per side) on shock-induced reinstatement was examined in seven rats and 

is shown in Figure 3.2A. Two-way repeated measures (reinstatement × betaxolol) 

Figure3.1: Intracranial injection sites. Representative atlas diagrams (Paxinos 
and Watson, 2006) of injection sites within the vBNST and the VTA. A, Rats 
from Experiments 1, 2 and 5; vBNST hits are depicted as circles and misses as 
triangles. B, Food control rats for Experiment 1; hits are depicted as squares and 
misses as triangles. C, Rats from Experiment 3; VTA hits are depicted as circles 
and misses as triangles. D, Rats used for the Experiment 4; contralateral hits are 
depicted as circles, ipsilateral hits are depicted as squares and food-controls are 
depicted as triangles. 
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ANOVA showed a significant overall reinstatement effect (F(1,6) = 65.437; p < 0.001) but 

no main effect of betaxolol pretreatment or interaction between betaxolol treatment and 

reinstatement. Shock produced robust reinstatement regardless of whether rats were 

pretreated with betaxolol or vehicle. The effects of bilateral intra-vBNST injection of the 

β-2 AR antagonist ICI-118,551 (1 nmol/277 ng per side) pretreatment on shock-induced 

reinstatement were also examined in seven rats and are shown in Figure 3.2B. Two-way 

repeated-measures ANOVA showed a significant reinstatement effect (F(1,6) = 

52.475; p < 0.001) and a significant main effect of ICI-118,551 pretreatment (F(1,6) = 

10.224; p < 0.05), as well as a significant reinstatement × ICI-118,551 pretreatment 

interaction (F(1,6) = 20.213; p < 0.01). Shock reinstated cocaine seeking in vehicle but not 

ICI-118,551 pretreated rats (p < 0.01 vs extinction; Ext) and reinstatement was reduced in 

ICI-118,551 pretreated versus vehicle pretreated rats (p < 0.01). To assess potential motor 

impairment resulting from intra-vBNST ICI-118,551 delivery that may have 

nonspecifically interfered with reinstatement responding, a separate group of six rats was 

tested for effects of intra-vBNST ICI-118,551 on sucrose pellet-reinforced responding. 

ICI-118,551 pretreatment failed to alter lever pressing under these conditions (Fig. 3.2C). 

In three of the rats that were tested, guide cannulae were misplaced such that they 

received injections into areas that comprise the dorsal BNST. Notably, in these rats, 

shock-induced reinstatement was observed in both vehicle-pretreated (Ext: 8.67 ± 1.76 

responses vs shock: 32.33 ± 2.03) and ICI-118,551-pretreated (Ext: 12.67 ± 1.76 

responses vs shock: 28.33 ± 4.81) rats. Effects of shock were specific to the previously 

active lever as shock failed to increase responding on a previously inactive lever in 

vehicle-pretreated rats (Ext: 1.37 ± 0.51 responses vs shock: 1.02 ± 0.44). Neither 
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betaxolol nor ICI-118,551 affected inactive lever responding during reinstatement testing 

(vehicle: 1.02 ± 0.44 responses; betaxolol: 1.00 ± 0.33; ICI-118,551: 0.75 ± 0.31). 

 

 

 
Experiment 2: reinstatement by intra-vBNST injection of β-AR agonists 

 

Following SA and extinction, bilateral intra-vBNST delivery of clenbuterol (36 

pmol/10 ng per side) but not dobutamine (1 nmol/ 301 ng per side), reinstated cocaine 

seeking (Fig. 3.3). A paired t test showed that, compared with vehicle, pretreatment with 

clenbuterol significantly increased previously active lever pressing (t(9) = 11.156; p < 

0.001). Neither dobutamine (0.88 ± 0.22 responses) nor clenbuterol (0.83 ± 0.55 

responses) increased responding on a previously inactive lever relative to vehicle 

Figure3.2: Footshock-induced reinstatement of cocaine seeking is blocked 
by intra-vBNST injection of the β-2 AR antagonist, ICI-118,551, but not the 
β-1 AR antagonist, betaxolol. Data represent the effects of bilateral intra-
vBNST injections of betaxolol (1 nmol/307 ng per side; A; n = 7) or ICI-118,551 
(1 nmol/277 ng per side; B; n = 7) or vehicle on reinstatement (responses/2 h 
session ± SE) by electric footshock. Significant reinstatement was observed 
following intra-vBNST pretreatment with vehicle or betaxolol (*p < 0.05 vs 
Ext), but not ICI-118,551. Likewise, responding following ICI-118,551, but not 
betaxolol, was significantly reduced compared with vehicle pretreatment (

#
p < 

0.05 vs vehicle). By contrast, intra-vBNST ICI-118,551 failed to altered food-
reinforced lever pressing (C; n = 6). 
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pretreatment (0.63 ± 0.18) responses. Guide cannulae were misplaced in three rats such 

that they received injections into sites within the dorsal BNST. In contrast to rats that 

received intra-vBNST injections, neither clenbuterol (Ext: 8.67 ± 1.99 vs clenbuterol: 

5.33 ± 5.95) nor dobutamine (Ext: 10.00 ± 2.07 vs dobutamine: 9.33 ± 7.60) produced 

reinstatement in these rats. 

 

 
Experiment 3: effect of VTA CRF receptor antagonism on stress-induced 

reinstatement 
 
 
As previously reported (Blacktop et al., 2011), bilateral injection of the CRF-R1 receptor 

selective antagonist, antalarmin (1.32 nmol/500 ng per side) into the VTA prevented 

reinstatement. The effect of bilateral intra-VTA antalarmin pretreatment on shock-

induced reinstatement was examined in six rats as shown in Figure 3.4. Two-way 

Figure3.3: Reinstatement of extinguished cocaine seeking by 
bilateral injection of the β-2 AR selective agonist, clenbuterol, but 
not the β-1 AR selective agonist, dobutamine, into the vBNST. Data 
represent responding on the cocaine lever (responses/2 h session ± SE; 
active) or a previously inactive lever. Intra-vBNST clenbuterol (36 
pmol/10 ng per side; n = 10), but not dobutamine (1 nmol/301 ng per 
side; n = 7) reinstated extinguished cocaine seeking (*p < 0.05 vs 
vehicle). Neither dobutamine nor clenbuterol increased “inactive” lever 
responding 
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repeated-measures ANOVA showed a significant reinstatement effect (F(1,5) = 

12.971; p < 0.05) and a significant main effect of antalarmin pretreatment (F(1,5) = 

9.175; p < 0.05), as well as a significant reinstatement × antalarmin pretreatment 

interaction (F(1,5) = 8.461; p < 0.05). As previously reported, shock reinstated cocaine 

seeking in vehicle but not antalarmin pretreated rats (p < 0.05 vs Ext) and reinstatement 

was reduced in antalarmin pretreated versus vehicle-pretreated rats (p < 0.05). As we 

have already demonstrated that intra-VTA antalarmin delivery does not alter food-

reinforced lever pressing (Blacktop et al., 2011), we did not test for these effects in this 

study. In two of the rats that were tested, guide cannulae were misplaced such that they 

received injections outside of the VTA. Notably, in these rats, shock-induced 

reinstatement was observed in both vehicle-pretreated (Ext: 13 and 12 responses vs 

shock: 35 and 29 responses) and antalarmin-pretreated (Ext: 5 and 12 responses vs shock: 

39 and 41 responses) rats.  

 

Figure3.4: Bilateral injection of the 
CRF receptor antagonist, 
antalarmin, into the VTA prevents 
shock-induced reinstatement of 
cocaine seeking. Data represent the 
effects of bilateral intra-vBNST 
delivery of antalarmin (1.32 nmol/500 
ng per side; Fig. 2A; n = 6) or vehicle 
on reinstatement (responses/2 h session 
± SE) following electric footshock. 
Significant reinstatement was observed 
after intra-vBNST pretreatment with 
vehicle (*p < 0.05 vs Ext) but not 
antalarmin. Likewise, responding 
following antalarmin was significantly 
reduced compared with vehicle 
pretreatment (

#
p < 0.05). 
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Effects of shock were specific to the previously active lever as shock failed to 

increase responding on a previously inactive lever in vehicle-pretreated rats (Ext: 1.12 ± 

0.29 responses vs shock: 0.89 ± 0.65). Antalarmin did not affect inactive lever 

responding during reinstatement testing (vehicle: 0.89 ± 0.65 responses; antalarmin: 0.81 

± 0.52). 

 
Experiment 4: identification of CRF-positive neurons in the vBNST that project to 

the VTA 
 

To determine whether CRF-positive neurons within the vBNST project to the 

VTA, we injected CTb unilaterally into the VTA and looked for the presence of 

CTb/CRF double-labeled perikarya in the vBNST in four rats. Representative 

photomicrographs from one rat are shown in Figure 5. CTb-immunoreactive (CTb-ir) 

perikarya were observed in the vBNST ipsilateral, to the VTA injection site (average of 

45 CTb-ir perikarya/ipsilateral vBNST). By contrast, and consistent with a previous 

report (Dong & Swanson 2006)CTb immunoreactivity in the vBNST contralateral to the 

VTA injection site was minimal (average of four immunoreactive cells/contralateral 

vBNST). CRF-like-immunoreactive (CRF-ir) perikarya and fibers were observed in the 

vBNST (Fig. 3.5). Under higher-magnification, three cell types were observed in the 

vBNST: CTb-ir/CRF-immunonegative, CTB-ir/CRF-ir, and CTb-immunonegative/CRF-

ir cells. Notably, most CRF-positive cells in the ipsilateral vBNST were also CTb-

immunoreactive (∼80%). By contrast, dual-labeled CRF- and CTb-positive cells were not 

observed in the contralateral vBNST. 
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Figure3.5: CRF neurons within the vBNST project to the VTA. A, Line drawing 
(adapted from Paxinos and Watson, 2006) of a coronal section containing the area of 
the VTA targeted for CTb microinjections and depicted in B. B, Representative 
photomicrograph depicting the VTA in brightfield, and CTb immunofluorescence in 
red. C, Line drawing of a coronal section containing the vBNST used for 
immunostaining of CRF and CTb. D–G, Representative photomicrographs depicting 
immunostaining for CRF (green) and CTb (red) in the BNST ipsilateral to the VTA 
injection site. Rectangle in D indicates area shown at higher-magnification in E. E, 
White arrowheads indicate CRF-ir/CTb-ir (VTA-projecting) neurons; white arrows 
indicate CTb-ir/CRF-immunonegative neurons; black arrowhead indicates a CRF-
ir/CTb-immunonegative cell. Rectangles in E represent areas shown at higher-
magnification in indicated panels. F, CRF-ir/CTb-ir neurons in vBNST. G, CRF-
positive/CTb-immunonegative cell in BnST. Scale bars: B, D, 500 µm; E, 100 µm; F, 
G, 33 µm. ac, Anterior commissure; Aq, cerebral aqueduct; f, fornix; fr, fasciculus 
retroflexus; Fu, bed nucleus of the stria terminalis, fusiform part; PAG, 
periaqueductal gray; PBP, parabrachial pigmented nucleus of the VTA; SN, 
substantia nigra; STLV, bed nucleus of the stria terminalis, lateral division, ventral 
part; STMV, bed nucleus of the stria terminalis, medial division, ventral part. 
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Experiment 5: effects of vBNST and VTA disconnection on stress-induced cocaine 
seeking 

 
 

To determine the role of a β-2 AR regulated pathway originating in the vBNST 

that releases CRF into the VTA in stress-induced cocaine seeking, we used a 

disconnection approach in which we delivered ICI-118,551 (1 nmol/277 ng) into the 

vBNST of one hemisphere and antalarmin (1.32 nmol/500 ng) into the contralateral VTA 

(n = 6 rats). To confirm that any effect on reinstatement was attributable to pathway 

disconnection, a second group of rats (n = 5) received ICI-118,551 into the vBNST of 

one hemisphere and antalarmin into the ipsilateral VTA. Contralateral but not ipsilateral 

antagonist delivery prevented shock-induced reinstatement (Fig. 3.6A), suggesting that, 

during stress, β-2 AR in the vBNST regulate one or more pathways that release CRF into 

the VTA to induce cocaine seeking. A three-way ANOVA showed a significant 

interaction between reinstatement test condition (shock vs extinction; repeated measure), 

antagonist pretreatment (ICI-118,551/antalarmin vs vehicle/vehicle treatment; repeated 

measure), and injection site (contralateral vs ipsilateral; between-subjects; F(1,9) = 

7.169; p < 0.05). Further analysis revealed a significant interaction between antagonist 

treatment and shock-induced reinstatement only in rats that received contralateral 

antagonist injections (F(1,5) = 25.851; p < 0.01).Post hoc testing showed that significant 

shock-induced reinstatement was observed following vBNST/VTA vehicle 

(contralaterally or ipsilaterally) and following ipsilateral intra-vBNST ICI-118,551 and 

intra-VTA antalarmin pretreatments (p< 0.05 for each comparison) but not following 

contralateral antagonist delivery. Furthermore, shock-induced reinstatement was 

significantly reduced following contralateral antagonist injections relative to either 
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vehicle pretreatment or ipsilateral antagonist delivery (p < 0.05 for each comparison). To 

assess potential motor impairment resulting from the disconnection approach that may 

have nonspecifically interfered with reinstatement responding, a separate group of six rats 

were tested for effects on sucrose pellet-reinforced responding. Contralateral intra-

vBNST ICI-118,551 and intra-VTA antalarmin delivery failed to alter lever pressing 

under these conditions (Fig. 3.6B).  

 

 

 

Figure	   3.6:	   Disconnection	   of	   a	   β-‐2	   AR-‐regulated	   vBNST-‐to-‐VTA	   CRF-‐
releasing	   pathway	   prevents	   stress-‐induced	   cocaine	   seeking.	   To	  
determine	   the	   role	   of	   a	  β-‐2	  AR	   regulated	   pathway	  originating	   in	   the	  
vBNST	   that	   releases	  CRF	  into	  the	  VTA	  in	  stress-‐induced	  cocaine	  seeking,	  
we	  used	  a	  disconnection	  approach	   in	  which	  we	  delivered	  ICI-‐118,551	   into	  
the	  vBNST	  of	  one	  hemisphere	  and	  antalarmin	  into	  the	  contralateral	  VTA	  (n	  
=	  6	  rats)	  and	  tested	  for	  shock-‐induced	  cocaine	  seeking.	  To	  confirm	  that	  any	  
effect	   on	   reinstatement	   was	   attributable	   to	   pathway	   disconnection,	   a	  
second	   group	   of	   rats	   (n	   =	   5)	   received	   an	   ICI-‐118,551	   injection	   into	   the	  
vBNST	  of	   one	  hemisphere	   and	   an	   antalarmin	   injection	   into	   the	   ipsilateral	  
VTA.	   Significant	   shock-‐induced	   reinstatement	   was	   observed	   following	  
vBNST/VTA	   vehicle	   (contralaterally	   or	   ipsilaterally)	   and	   following	  
ipsilateral	  intra-‐vBNST	  ICI-‐118,551/intra-‐VTA	  antalarmin	  pretreatment	  (*p	  
<	   0.05	   vs	   Ext)	   but	   not	   following	   contralateral	   antagonist	   delivery	   (A).	  
Furthermore,	   shock-‐induced	   reinstatement	   was	   significantly	   reduced	  
following	   contralateral	   antagonist	   injections	   relative	   to	   either	   vehicle	  
pretreatment	   or	   ipsilateral	   antagonist	   delivery	   (#p	   <	   0.05	   for	   each	  
comparison).	   By	   contrast,	   contralateral	   antagonist	   injections	   failed	   to	  
altered	  food-‐reinforced	  lever	  pressing	  (B;	  n	  =	  6).
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Effects of shock were specific to the previously active lever as shock failed to 

increase responding on a previously inactive lever in vehicle/vehicle-pretreated rats (Ext: 

0.88 ± 0.35 responses vs shock: 1.11 ± 0.27). Neither ipsilateral nor contralateral 

manipulations affected inactive lever responding during reinstatement testing 

(vehicle/vehicle: 1.11 ± 0.27 responses; ipsilateral: 0.97 ± 0.66; contralateral: 0.93 ± 

0.66). 

Experiment 6: role of vBNST CRF-R1 receptors in cocaine seeking induced by 
vBNST β-2 AR activation 
 

 
Because it has been reported that CRF receptors in the BNST are also required for 

stress-induced cocaine seeking (Erb and Stewart, 1999; Erb et al., 2001), and because 

BNST β ARs have been proposed to modulate efferent projections to the VTA via 

regulation of local CRF actions (Silberman et al., 2013), we hypothesized that 

reinstatement induced by vBNST β-2 AR activation requires local CRF receptor 

activation. To test this hypothesis we delivered antalarmin (1.32 nmol/500 ng per side) 

bilaterally into the vBNST before bilateral vBNST injection of clenbuterol (36 pmol/10 

ng per side). As shown in Figure 3.7, intra-vBNST antalarmin delivery prevented intra-

vBNST clenbuterol-induced cocaine seeking (n = 7). Two-way repeated-measures 

ANOVA showed a significant reinstatement effect (F(1,6) = 25.910; p < 0.01) and a 

significant main effect of antalarmin pretreatment (F(1,6) = 29.883; p < 0.01), as well as a 

significant reinstatement × antalarmin pretreatment interaction (F(1,6) = 35.968; p < 0.01). 

Clenbuterol reinstated cocaine seeking in vehicle but not antalarmin-pretreated rats (p < 

0.01 vs Ext) and reinstatement was reduced in antalarmin- versus vehicle-pretreated rats 
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(p < 0.01). By contrast, bilateral intra-vBNST pretreatment with the β-2 AR antagonist, 

ICI-118,551 (1 nmol/277 ng per side) failed to attenuate reinstatement in response to 

intra-vBNST CRF delivery (63 pmol/300 ng per side).  

 

 

Two-way repeated-measures ANOVA showed an overall effect of CRF (F(1,5) = 46.925) 

but no overall effect of ICI-118,551 pretreatment or no CRF × ICI-118,551 interaction. 

Altogether, these findings indicate that CRF receptor activation is likely downstream 

from β-2 AR activation in the sequence of events responsible for stress-induced 

reinstatement. Effects of intra-BNST clenbuterol (2.14 ± 0.67 responses vs 1.38 ± 0.73 

Figure3.7: Reinstatement of cocaine seeking by intra-vBNST clenbuterol 
injection requires activation of vBNST CRF-R1 receptors. Data represent the 
effects of A: bilateral intra-vBNST pretreatment with antalarmin (1.32 nmol/500 ng 
per side) or vehicle on reinstatement (responses/2 h session ± SE) in response to 
bilateral intra-vBNST clenbuterol injection (36 pmol/10 ng per side), or B: bilateral 
intra-vBNST pretreatment with ICI-118,551 (1 nmol/277 ng per side) or vehicle on 
reinstatement in response to bilateral intra-vBNST CRF injection (63 pmol/300 ng 
per side). Significant clenbuterol-induced reinstatement was observed in vehicle 
but not antalarmin pretreated rats (*p < 0.05 vs Ext). Responding following 
antalarmin was significantly reduced compared with vehicle pretreatment (

#
p < 

0.05). By contrast, significant CRF-induced reinstatement was observed in both 
vehicle and ICI-118,551 pretreated rats (*p < 0.05 vs Ext) and did not significantly 
differ between the two pretreatment conditions. 
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responses during extinction) and CRF (0.66 ± 0.42 vs 0.00 ± 0.00 responses during 

extinction) on previously inactive lever responding were not observed. Likewise, neither 

intra-BNST antalarmin (antalarmin/clenbuterol: 1.16 ± 0.16 responses) nor intra-BNST 

ICI-118,551 (ICI/CRF: 2.5 ± 1.93 responses) significantly altered inactive lever pressing 

during reinstatement.  

Discussion 

 
Our results extend earlier findings that the reinstatement of cocaine seeking by a 

stressor, electric footshock, requires CRF actions in the VTA (Wang et al., 

2005; Blacktop et al., 2011) and vBNST β AR activation (Leri et al., 2002) by showing 

that vBNST β-2 AR activation is both necessary and sufficient for stress-induced 

reinstatement. Moreover, using a disconnection approach in which we block β-2 ARs in 

the vBNST of one hemisphere and VTA CRF-R1 receptors in the contralateral 

hemisphere, we demonstrate that vBNST β-2 ARs regulate a CRF-releasing pathway to 

the VTA that is necessary for stress-induced cocaine seeking. As VTA CTb delivery 

labels CRF-positive cells in the ipsilateral vBNST, it is likely that this pathway consists 

(at least partly) of vBNST CRF neurons that project directly to the VTA. Consistent with 

reports that CRF actions in the BNST are required for stressor-induced cocaine seeking 

(Erb and Stewart, 1999; Erb et al., 2001), we demonstrate that vBNST CRF-R1 activation 

is necessary for reinstatement induced by local delivery of the β-2 AR agonist, 

clenbuterol, suggesting that β-2 AR-mediated activation of this BNST-to-VTA pathway 

also requires local CRF receptor activation. 

Findings from laboratory studies in human cocaine addicts (Jobes et al., 2011) and 

preclinical experiments in rodents (Erb et al., 2000; Mantsch et al., 2010) point to a role 
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for noradrenergic signaling in the stress-induced relapse to cocaine use. Specifically, our 

studies in mice suggest that β-2 ARs are critical for stress-induced cocaine seeking 

(Vranjkovic et al., 2012). As a target for ascending noradrenergic projections(Ricardo & 

Koh 1978, Weller & Smith 1982, Woulfe et al 1990) and a key site for integration of 

stress and reward networks (Flavin & Winder 2013, Stamatakis et al 2014), the BNST is 

a likely location at which stress-induced increases in norepinephrine regulate drug use. 

Although shock-induced increases in norepinephrine have not been reported, a variety of 

distinct stressors, including immobilization(Pacak et al 1995), visceral pain(Deyama et al 

2009), and exposure to a shock-conditioned stimulus(Onaka & Yagi 1998) ,fox odor 

(Fendt et al 2005), or an aversive tastant (Park et al 2012), have been demonstrated to 

increase noradrenergic neurotransmission in the BNST. In particular, the vBNST receives 

very dense noradrenergic innervation (Egli et al 2005, Georges & Aston-Jones 2001, 

Woulfe et al 1990). Moreover, delivery of a mixture of β-1 and β-2 AR antagonists into 

the vBNST has been reported to prevent shock-induced reinstatement in rats (Leri et al., 

2002). Our data extend these findings by demonstrating that β-2 but not β-1 AR 

activation in the vBNST is necessary for shock-induced cocaine seeking and that intra-

vBNST injection of a β-2 AR- but not a β-1 AR-selective agonist is sufficient to reinstate. 

Beta-2 ARs are expressed throughout the BNST (Cecchi et al., 2007). Whereas in 

the dorsal BNST β AR activation can have either excitatory or inhibitor effects on 

synaptic transmission, β AR effects in the vBNST are predominantly inhibitory (Egli et 

al., 2005) and include inhibition of neurons that project directly to the VTA (Dumont and 

Williams, 2004). In the dorsal BNST, β-AR regulation of neuronal activity requires CRF-

R1 activation (Nobis et al., 2011). Although the involvement of CRF in norepinephrine-
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dependent effects in the vBNST has not been established, our finding that local 

antalarmin pretreatment blocks reinstatement by intra-vBNST clenbuterol delivery 

supports a role for local CRF actions in the regulation of cocaine seeking by 

norepinephrine and β-2 AR activation. Consistent with this possibility, previous studies 

demonstrated that (1) noradrenergic terminals synapse on the dendrites of CRF-positive 

neurons in the vBNST(Phelix et al 1994)  (2) β-2 AR-mediated reinstatement requires 

CRF-R1 activation(McReynolds et al 2014), and (3) the β-2 AR antagonist, ICI-118,551, 

blocks stress-induced increases of BNST CRF mRNA (McReynolds et al., 2014). 

Overall, the findings are consistent with reports that cocaine seeking induced by central 

norepinephrine delivery is blocked by CRF receptor antagonism, whereas suppression of 

noradrenergic function using the α-2 AR agonist, clonidine, does not affect reinstatement 

in response to central CRF delivery(Brown et al 2009). 

Notably, the magnitude of cocaine seeking in response to intra-vBNST 

clenbuterol was lower than that observed following either shock or CRF. This could be 

attributed to (1) secondary effects of BNST β-2 AR activation that are not engaged by 

shock or CRF and offset responding, (2) unique attributes of clenbuterol itself (e.g., 

pharmacokinetics, ligand-specific receptor desensitization), or (3) the requirement for 

additional stress-responsive mediators to fully engage the processes that lead to cocaine 

seeking. 

Our findings suggest that the vBNST influences cocaine seeking via regulation of 

the VTA. Consistent with this possibility, stress-induced reinstatement in mice is 

associated with activation of VTA-projecting BNST neurons (Briand et al., 2010) and a 

role for a vBNST-VTA pathway in the expression of cocaine seeking has been reported 



	   110	  

(Sartor & Aston-Jones 2012). In light of these findings, it is surprising that vBNST β-

ARs have been found to exert inhibitory effects on neurons that project to the VTA, 

likely via stimulation of local GABA release (Dumont and Williams, 2004). Both 

GABAergic and glutamatergic projections from the BNST to the VTA have been 

identified (Georges & Aston-Jones 2001, Georges & Aston-Jones 2002, Jennings et al 

2013, Kudo et al 2012, Sartor & Aston-Jones 2012). Moreover, CRF-positive terminals 

within the VTA coexpress either the glutamatergic neuronal marker, vesicular glutamate 

transporter 2, or the GABAergic neuronal marker, glutamic acid decarboxylase, and 

make contacts that have morphological characteristics of either excitatory or inhibitory 

synapses, suggesting that CRF can be coreleased into the VTA along with either GABA 

or glutamate (Tagliaferro & Morales 2008) .Further investigation is needed to (1) confirm 

the neurochemical phenotype of VTA-projecting vBNST CRF-positive neurons, (2) 

clarify the mechanism through which β-2 ARs regulate these neurons and determine how 

this regulation might change following cocaine exposure, and (3) examine the likelihood 

that β-2 AR in the vBNST may also regulate CRF and/or CRF actions in the VTA via 

parallel multisynaptic pathways. Consistent with the last possibility, BNST efferents can 

influence the VTA through multisynaptic pathways that include regions, such as the 

lateral habenula and rostromedial tegmental area(Dong & Swanson 2006, Kaufling et al 

2009, Lammel et al 2012). 

It has been found that (1) shock elevates VTA CRF levels (Wang et al., 2005), (2) 

intra-VTA CRF delivery is sufficient to induce cocaine seeking (Wang et al., 

2005; Blacktop et al., 2011), and (3) VTA CRF receptor activation is required for stress-

induced reinstatement (Wang et al., 2005; Blacktop et al., 2011) in rats. Our 
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demonstration that intra-VTA antalarmin delivery prevents shock-induced reinstatement 

is consistent with these reports. As the antalarmin dose used may also block CRF-R2 

receptors, our findings are not definitive regarding which CRF receptor subtype is 

involved. However, we have reported that, in rats tested under identical conditions, intra-

VTA delivery of a CRF-R2-selective antagonist does not prevent shock-induced 

reinstatement, whereas intra-VTA injection of a CRF-R1 but not a CRF-R2-selective 

agonist is sufficient to induce cocaine seeking (Blacktop et al., 2011). 

CRF actions in the VTA are complex and involve both excitatory and inhibitory 

effects that vary depending on the receptor and site(Beckstead et al 2009, Hahn et al 

2009, Riegel & Williams 2008, Ungless et al 2003, Wanat et al 2013, Wanat et al 2008). 

Likely VTA targets for CRF include mesocortical DA cells, which are activated during 

stress(Deutch et al 1991). Elevated medial prefrontal cortex DA, via activation of DA 

receptors, is necessary for stress-induced reinstatement (Capriles et al., 2003; McFarland 

et al., 2004). We demonstrate that the mechanisms through which vBNST β-2 ARs 

regulate this CRF projection to the VTA requires local CRF actions, likely at CRF-R1. 

This finding is consistent with reports that (1) depolarization of BNST neurons by the 

nonselective β-AR agonist, isoproterenol, is CRF-dependent (Nobis et al., 2011), (2) CRF 

in the BNST depolarizes neurons that project to the VTA (Silberman et al., 2013), and (3) 

stress-induced increases in CRF mRNA in the BNST in mice are β-2 AR-dependent 

(McReynolds et al., 2014). Moreover it is consistent with reports that intra-BNST 

antalarmin delivery prevents stress-induced cocaine seeking (Erb and Stewart, 1999; Erb 

et al., 2001). Although the requirement for vBNST CRF is evident, the source of this 

CRF has not been identified and could include intrinsic cell populations within the BNST 
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and/or CRF-releasing projections originating in other regions (e.g., the central amygdala). 

A clearer mechanistic understanding awaits determination of BNST β-2 AR receptor 

localization as it relates to that of CRF and CRF-R1. 

Although it is likely that the mechanisms through which stress promotes relapse 

are not identical across drug classes, both CRF-R1 receptor activation(Bruijnzeel et al 

2009, Deutch et al 1991, Le et al 2000, Shaham et al 1997) and central noradrenergic 

signaling(Erb et al 2000, Le et al 2005, Shaham et al 2000, Yamada & Bruijnzeel 2011) 

are necessary for stress-induced reinstatement of heroin-, nicotine-, and alcohol-seeking 

in rats. Moreover, in the case of heroin, stress-induced drug seeking requires CRF (Wang 

et al 2006) and noradrenergic (Wang et al 2001)signaling within the BNST. Notably, 

similar processes in the BNST may be engaged during withdrawal from ethanol 

(Francesconi et al 2009, Huang et al 2010, Silberman et al 2013)and opioids(Delfs et al 

2000, Fuentealba et al 2000), suggesting that this pathway to the VTA, or parallel 

pathways originating in other BNST subregions may also contribute to withdrawal-

related drug seeking.  

To summarize, we report that, during stress, norepinephrine released into the 

vBNST activates β-2 ARs, which via a CRF-dependent process, activate neurons that 

release CRF into the VTA, thereby leading to cocaine seeking. Identification of the 

processes responsible for stress-induced cocaine seeking should guide the development of 

new treatment approaches aimed at managing relapse, particularly in individuals whose 

use is stress-related. 
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Chapter IV 
 
Enhanced CRFR1 receptor-dependent regulation of a ventral tegmental area 

to prelimbic cortex projection establishes susceptibility to stress-induced cocaine 
seeking 
 

ABSTRACT 
The ability of stress to trigger cocaine seeking in humans and rodents is variable 

and is determined, in part, by the amount and pattern of prior drug use.  This study 

examined the role of a corticotropin releasing factor- (CRF-) regulated dopaminergic 

projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-

induced cocaine seeking and its recruitment under self-administration conditions that 

establish relapse vulnerability.  Rats with a history of daily long-access (LgA; 14 x 6 

hrs/day) but not short-access (ShA; 14 x 2 hrs/day) self-administration showed robust 

shock-induced cocaine seeking.  This was associated with a heightened shock-induced 

prelimbic cortex Fos response and activation of VTA neurons that project to the 

prelimbic cortex, as defined by Fos co-labeling with the retrograde tracer, cholera toxin 

B.  Both shock-induced reinstatement and the prelimbic cortex Fos response were 

prevented by bilateral intra-VTA injections of the CRFR1 receptor antagonist, 

antalarmin.  Pharmacological disconnection of the CRF-regulated dopaminergic 

projection to the prelimbic cortex by injection of antalarmin into the VTA in one 

hemisphere and the D1R antagonist SCH23390 into the prelimbic cortex of the 

contralateral hemisphere prevented shock-induced cocaine seeking, while antagonist 

administration within the same hemisphere or disconnection of the VTA projection to 

infralimbic cortex was without effect.  LgA, but not ShA, cocaine self-administration 

resulted in increased CRFR1 mRNA levels in the VTA as measured using in situ 
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hybridization.  Altogether, these findings suggest that excessive cocaine use establishes 

susceptibility to stress-induced relapse by recruiting CRF regulation of a key stressor-

responsive mesocortical dopaminergic pathway.  

INTRODUCTION 

Relapse to drug use remains a barrier to the effective treatment of cocaine addiction. 

While a number of stimuli can elicit relapse, stress is a particularly problematic relapse 

trigger due to its unpredictable and often unavoidable nature.  Stress-induced relapse is 

studied in rats using the self-administration (SA)/reinstatement approach in which the 

ability of a stressor, most commonly electric footshock, to re-establish extinguished 

cocaine-directed lever pressing is assessed (Mantsch et al., 2015).  Studies using this 

approach have begun to define the neurocircuitry and mechanisms that contribute to 

stress-related relapse and have demonstrated involvement of dopamine D1 receptor 

activation in the prelimbic cortex (Capriles et al 2003; McFarland et al 2004) and 

corticotropin releasing factor (CRF) activation of CRFR1 receptors in the ventral 

tegmental area (VTA; Blacktop et al 2011).  Based on these findings, a role for a CRF-

regulated dopamine projection from the VTA to the prelimbic cortex in stress-induced 

cocaine seeking has been proposed but has not been directly demonstrated. 

The mesocortical dopamine system has long been known to be highly responsive 

to stress (Thierry et al., 1976; Reinhard Jr et al 1982; Deutch et al 1985; Speciale et al 

1986).  Moreover, VTA dopamine cells that project to the prelimbic cortex are activated 

by stressors, as measured ex vivo using Fos immunoreactivity or slice electrophysiology 

in neurons labeled by retrograde tracers injected into the prelimbic cortex (Deutch et al 

1991; Lammel et al 2011).  Although studies examining the regulation of mesocortical 
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dopamine by VTA CRF have produced mixed results (see e.g., Kalivas et al., 1987), 

reports that icv CRF increases dopaminergic neurotransmission in the prefrontal cortex 

(Dunn and Berridge, 1987; Lavicky and Dunn, 1993) and that CRF promotes excitation 

of VTA dopamine neurons via both pre- and post-synaptic mechanisms (Ungless et al 

2003; Korotkova et al 2006; Riegel and Williams 2008; Wanat et al 2008, Beckstead et al 

2009; Hahn et al 2009, Williams et al 2014) suggest that stress-induced CRF release into 

the VTA may underlie increases in mesocorticolimbic dopamine release.  Consistent with 

this possibility, Refojo et al (2011) reported that selective deletion of CRFR1 receptors in 

VTA dopamine neurons significantly reduced stress-induced increases in dopamine in the 

prefrontal cortex in mice. 

Evidence that CRF regulation of mesocortical dopamine is responsible for stress-

induced cocaine seeking is indirect.  Stress-induced reinstatement is associated with 

elevated extracellular CRF in the VTA (Wang et al., 2005) and extracellular dopamine in 

the prelimbic cortex (McFarland et al 2004) and VTA (likely reflecting somatodendritic 

release; Wang et al, 2005).  Moreover, CRF receptor antagonism in the VTA prevents 

both stress-induced cocaine seeking (Wang et al, 2005; Blacktop et al 2011) and 

increases in VTA dopamine (Wang et al, 2005), while stress-induced cocaine seeking is 

prevented by D1 receptor antagonism in the prelimbic cortex (Capriles et al 2003; 

McFarland et al 2004).  In this study we more directly test the hypothesis that stress-

induced reinstatement requires CRF regulation of a dopaminergic pathway from the VTA 

to the prelimbic cortex. 

We have found that stress-induced cocaine seeking depends on the prior history of 

cocaine use.  Under our experimental protocol, footshock induces reinstatement in rats 
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with a history of long-access (LgA; 14 x 6 hrs/day) but not short-access (ShA; 14 x 2 

hrs/day) cocaine SA (Mantsch et al 2008).  Moreover, cocaine seeking in response to 

intra-VTA CRF delivery is also only observed following SA under LgA conditions 

(Blacktop et al., 2011), suggesting that cocaine use promotes stress-induced cocaine 

seeking by recruiting CRF regulation of the mesocortical pathway.  Although a role for 

VTA CRF-R2 receptors in stress-induced cocaine seeking has been reported (Wang et al 

2005), we and others have demonstrated a role for CRFR1 receptors (Blacktop et al 2011; 

Chen et al 2014).  Therefore, in the present study we also test the hypothesis that stress 

regulation of the mesocortical dopamine pathway is recruited following LgA SA as a 

result of increased VTA CRFR1 receptor expression. 

MATERIALS AND METHODS 
Subjects 

Adult male Sprague Dawley rats (Harlan Laboratories) ~ 90-d old at the time of 

delivery (325g) were housed individually in a temperature- and humidity-controlled, 

Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility under a 12 h/12h dark/light cycle (lights off at 700h) and had access to food and 

water at all times, except during food training periods during which they were maintained 

at 90% of their free-feeding body weight. All procedures were performed in accordance 

with NIH Guide for the Care and Use of Laboratory Animals.    

Drugs 
Cocaine HCl was acquired from the National Institute on Drug Abuse through its 

Drug Supply Program. The selective dopamine D1 receptor antagonist SCH-23390 and 

the CRFR1 receptor antagonist antalarmin were purchased from Sigma-Aldrich. All 

drugs were dissolved in bacteriostatic saline. Intracranial drug doses were selected based 
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on previously published results (Blacktop et al 2011; Capriles et al 2003; Vranjkovic et al 

2014). 

Self-Administration and Extinction 
All rats in the study underwent cocaine or saline self-administration followed by 

extinction training.  Rats self-administered cocaine/saline through indwelling jugular 

catheters implanted under ketamine HCl (100mg/kg i.p.) and xylazine (2mg/kg, i.p.) 

anesthesia, as described previously (Blacktop et al., 2011; Vranjkovic et al., 2014).  

Following a 5-day post-surgery recovery period, rats were trained to self-administer 

cocaine (0.5 mg/kg/inf, i.v.) by pressing a lever under a FR1 schedule of reinforcement in 

computer-interfaced operant conditioning chambers (Med Associates) during daily 2-h 

sessions. During these sessions, the active lever was extended into the chamber and the 

corresponding light was illuminated. Pressing this lever resulted in activation of a pump, 

which infused cocaine (200µl over 5 sec) followed by a 5-sec time-out phase during 

which the stimulus light was extinguished, but the lever remained extended. Responding 

during the time-out phase did not activate the pump. Responding on a second (inactive) 

lever was also recorded but had no consequences. Once stable self-administration under 

the FR1 schedule was observed (>15 infusions for three consecutive days), the criterion 

for self-administration was gradually increased until rats displayed stable responding 

under a FR4 schedule (within 10% of the 3-session mean) at which time they entered into 

self-administration testing.  Depending on the experiment and experimental group, the 

conditions under which self-administered cocaine during the 14-day testing phase varied.  

Some rats continued to have access to cocaine (0.5 mg/kg/inf) during 2-h daily sessions 

(short-access; ShA rats).  Some rats were provided daily access to cocaine (0.5 

mg/kg/inf) during 6-h sessions (long-access; LgA rats).  Saline control rats were provided 
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daily access to saline during 2-h sessions (Sal rats).  Following completion of the 14-day 

self-administration phase, rats underwent extinction training.  During the 2-h extinction 

training sessions, the cocaine solution was replaced with saline (saline control rats 

continued to have access to saline).  The experimental conditions were otherwise 

identical to those during self-administration.  Depending on the experiment, extinction 

training either continued for ten days (Experiments 1, 2, 3, and 5) or until a response 

based criterion was reached (<15 active lever responses two consecutive sessions; 

Experiment 4).   Following extinction training, rats were tested for shock-induced 

reinstatement of cocaine seeking and/or were killed and their brains processed for 

immunohistochemistry or in situ hybridization.   

Shock-Induced Reinstatement 
With the exception of rats in Experiment #5, all rats were tested for shock-

induced reinstatement of extinguished lever pressing.  The 2-hr reinstatement sessions 

were identical to the extinction sessions except that they were preceded by the delivery of 

intermittent mild non-noxious footshock, in some cases following intracranial drug 

injections.  Shocks (0.5mA, 0.5sec duration) were delivered on average every 40 seconds 

(range 10- 70 sec) throughout the grid floors of the self-administration chambers over a 

15 min period that immediately preceded the 2hr reinstatement test session (Blacktop et 

al., 2011; Vranjkovic et al., 2014). During the shock period, the levers were retracted and 

the stimulus lights were not illuminated; the levers were extended into the chamber and 

the lights turned on immediately following the shock period. Reinstatement was defined 

as an increase in active lever responding relative to the prior extinction session.  

Statistical Analyses 
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Statistical analyses were conducted using Predictive Analytics SoftWare statistics 

software (SPSS, Inc.). Statistical significance was determined using ANOVA followed, 

when appropriate, by further analyses of main effects using ANOVA and/or post-hoc 

testing using Bonferroni-corrected t-tests. 

Experiment #1: Relationship between prefrontal cortical Fos immunoreactivity and 
shock-induced reinstatement of cocaine seeking. 

We have previously shown that robust shock-induced reinstatement of 

extinguished cocaine seeking is observed following daily long-access (LgA; 6 hrs) but 

not short-access (ShA; 2 hrs) cocaine self-administration (Mantsch et al., 2008).  To 

examine the relationship between shock-induced cocaine seeking and activation of the 

prelimbic and infralimbic regions of the prefrontal cortex, separate groups of rats 

underwent 14 days of self-administration testing under ShA (14 x 0.5 mg/kg/inf cocaine; 

2 hrs/day) or LgA (14 x 0.5 mg/kg/inf cocaine; 6 hrs/day) conditions or were provided 

access to saline for two hours daily (14 x saline; 2 hrs/day; Sal).  Following self-

administration, rats received extinction training (2 hrs daily, as described above).  As it 

has been reported that many cocaine-induced neurobiological alterations that contribute 

to drug seeking depend on the time period that has elapsed following self-administration 

(Grimm et al., 2001; Conrad et al., 2009; Ma et al., 2014), for these experiments we 

chose not to use extinction criteria for reinstatement testing/Fos determination.  Rather, 

all rats underwent extinction training for ten consecutive days.  Following extinction, all 

rats were tested for reinstatement in response to shock (ShA rats, n=8; LgA rats, n=7; Sal 

rats, n=10) or under shock-free conditions (ShA rats, n=10; LgA rats, n=10; Sal rats, 

n=10) and, immediately after the 2-h reinstatement session, were anesthetized with 

sodium pentobarbital (55 mg/kg, i.p.) and perfused transcardially with 0.9% NaCl, 
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followed by 60 ml of cold (4°C) 4% paraformaldehyde in 0.1 M phosphate buffer, pH 

7.0. Brains were removed and post-fixed in paraformaldehyde over-night at 4°C. Brains 

were then washed twice in 0.1M sodium phosphate buffers for 12 hrs. Afterwards, brains 

were cryoprotected in 30% sucrose in 0.1 M phosphate buffer for 3 days at 4°C. Brains 

were frozen and serial coronal sections (25 µm) containing the prelimbic and infralimbic 

cortices (+3.24 to 2.54) were cut at 200 µm intervals on a freezing microtome and placed 

in cryoprotectant. Sections were stored at -20°C until immunohistochemistru procedures 

were conducted.  Immunohistochemical analysis of Fos expression was performed on 

free-floating sections by using an avidin-biotin peroxidase protocol (Hoffman et al., 

2008). Fos immunolocalization was visualized using the primary polyclonal rabbit anti-

Fos antibody (sc-52, Santa Cruz Biotechnology; 1:10,000). Free-floating sections were 

washed 3 times for 5 min in 0.5M KPBS and then incubated in 2% hydrogen peroxide in 

0.5MKPBS containing 0.4% triton for 15 min to block endogenous peroxidase activity. 

Sections were washed three more times and then incubated in 3% natural donkey serum 

for one hour. Afterwards the sections were incubated in the primary antibody containing 

0.4% triton X-100 for 24 hours in 4°C. Next, sections were washed again, and then 

incubated for one hour in biotinalyed horse anti-rabbit IgG secondary antibody (PI-

1000;Vector Laboratories; 1:600). Sections were washed once again and then incubated 

for one hour in ABC solution (PK-4000; Vectastain Elite ABC kit; Vector Laboratories). 

After another series of washes, sections were incubated 3 times for 5min each in 0.175 M 

sodium acetate (7.0 pH). Sections were treated with a nickel-enhanced diaminobenzide 

method (black-nuclear reaction) (SK-4100 DAB; Vector Laboratories) and the sections 

were again incubated in 0.175 M sodium acetate and then washed in KPBS. Tissue was 
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then mounted on super-frost slides and dehydrated the next day. Fos immunoreactivity 

was quantified using Image J software.  The total numbers of Fos-positive cells within 

each cortical region (i.e., the sum across regions all sections) were determined and 

compared across groups. 

Experiment #2: Role of VTA CRFR1 receptors in shock-induced cocaine seeking 
and cortical subregion activation 

Rats were implanted with jugular catheters bilateral cannula (11-mm, 22-gauge) 

aimed at the caudal VTA (5.6 mm posterior to bregma; 2.2 mm lateral to midline; 6.9 

ventral to skull surface at a 12° angle; Paxinos and Watson, 2006) and underwent cocaine 

self-administration under LgA conditions and extinction prior to testing for reinstatement 

in response to shock or under shock-free conditions.  Prior to the 2-hour reinstatement 

session, rats received bilateral intra-VTA injections with the CRFR1 receptor antagonist, 

antalarmin (1.32 nmol/500 ng/side; n=9) or vehicle (n=8).  We (Blacktop et al., 2011; 

Vranjkovic et al., 2014) and others (e.g., Lowery-Gionta et al., 2012) have used this 

antalarmin dose to investigate CRF-R1 receptor-dependent contributions to behavior.  

Microinfusions were delivered in a volume of 0.25 µl/side over a 1-min period followed 

by an additional 1-min period to allow for drug diffusion, ten minutes prior to the 15-min 

shock or shock-free period.  Immediately after the 2-hr session, rats were processed (as 

described for Exp #1) for immunohistochemical analysis of Fos expression in the 

prelimbic and infralimbic cortices.   The accuracy of cannula implantation into the VTA 

was confirmed post-mortem following staining of sections containing VTA with cresyl 

violet for examination using a light microscope. Rats with injection sites outside of the 

targeted regions were excluded from data analysis. 

Experiment #3: Relationship between Fos immunoreactivity in VTA neurons that 
project to the prelimbic cortex and shock-induced reinstatement of cocaine seeking. 
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To determine if activation of VTA neurons that project to the prelimbic cortex is 

associated with shock-induced reinstatement of extinguished cocaine seeking, rats 

underwent LgA self-administration for 14 days and received bilateral injections with the 

retrograde tracer cholera toxin b subunit (CTb) into the prelimbic cortex.  Rats were 

anesthetized with ketamine and xylazine and placed in a stereotaxic frame. Heat-

sterilized Hamilton syringes were used to pressure inject 0.2µl biotinylated CTb (10%; 

List Biological Laboratories; #104; Campbell, CA) unilaterally into the prelimbic cortex 

over a 10-min period ( at a 6 degree angle anterior to Bregma 3.2 mm; lateral 0.4 mm; 

ventral 3.2 mm; Paxinos and Watson, 2006). Syringes were left in place for 20 min after 

injections and slowly removed from the brain over a 10-min period.  Following 

injections, rats were allowed to recover for seven days prior to undergoing daily 

extinction training until the extinction criterion was reached (<15 responses for 3 

consecutive sessions) at which point they were tested for cocaine seeking in response to 

shock (n=6) or under shock-free conditions (n=5).  Immediately following the 2-h 

reinstatement session, rats were processed (as described above) for CTb/Fos labeling of 

VTA neurons using dual immunohistochemistry.  Fos was visualized using a nickel-

enhanced DAB reaction as described above. CTb was visualized by similar methods 

except for the addition of an avidin-biotin blocking step (SP-2100) prior to incubation 

with the CTb primary antibody (List Biology #703; 1:8000).  After the 24-hour 

incubation period, sections were washed and incubated in horse anti-goat secondary 

antibody (PI-9500; Vector Laboratories; 1:1,000). Sections were washed again and 

incubated for one hour in ABC solution. Sections were then washed and treated with 

sodium acetate and were treated using the DAB method (brown cytoplasmic staining) for 
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visualization of CTb. Sections were washed and then mounted on super-frost slides and 

dehydrated the next day. Photomicrographs were acquired using a Retiga 2000R digital 

camera (QImaging) on a Nikon 80i microscope using NIS Elements software (Nikon 

Instruments).  Fos-, CTb- and dual Fos/CTb- immunoreactive cells were identified and 

counted using Image J software.  Using a similar approach, it has been previously 

reported that restraint stress selectively increases Fos expression in VTA neurons that 

project to the prelimbic cortex in rats (Deutch et al., 1991).   

Experiment #4: Effect of pharmacological disconnection of the CRF-regulated 
dopaminergic pathway from the VTA to the prelimbic cortex on shock-induced 

cocaine seeking. 
A disconnection approach was used to determine whether a CRFR1 receptor-activated 

dopaminergic projection from the VTA to the prelimbic cortex is required for stress-

induced cocaine seeking.  At the time of catheterization, separate groups of rats were 

implanted with two cannulae each aimed unilaterally at the VTA (at a 12 degree angle 

posterior to Bregma -5.6 mm; lateral 2.2 mm; ventral -6.9 mm; Paxinos and Watson, 

2006) or the prelimbic cortex (at a 6 degree angle anterior to Bregma 3.2 mm; lateral 0.4 

mm; ventral 3.2 mm; Paxinos and Watson, 2006) in either the contralateral or ipsilateral 

hemisphere(s) of the brain.  The effect of pathway disconnection was examined by 

injection of the CRF-R1 receptor antagonist antalarmin (1.32 nmol/500 ng) into the VTA 

in one hemisphere and the dopamine D1 receptor antagonist SCH23390 (1.38mM/200 

ng) into the prelimbic cortex of the other prior to testing for shock-induced reinstatement 

(n=5).  For comparison, the same rats were tested for shock-induced reinstatement 

following injection of vehicle into each region.  As a control to ensure that reductions in 

reinstatement were attributable to disconnection, a second groups of rats (n=4) received a 

unilateral injection of antalarmin into the VTA in one hemisphere and a unilateral 
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injection of SCH23390 into the prelimbic cortex in the same hemisphere prior to testing 

for shock-induced reinstatement.  These rats were also tested for the effects of ipsilateral 

vehicle injections.  For this experiment, the hemispheres into which cannulae were 

implanted were randomized across rats in each group such that in the contralateral 

treatment group, half of the rats received antalarmin injections into the left VTA and 

SCH23390 injections into the right prelimbic cortex, while the other half received 

antalarmin injections into the right VTA and SCH23390 injections into the left prelimbic 

cortex.  Likewise, half of the rats in the ipsilateral treatment group received drug 

injections into sites in the right hemisphere, while the remaining rats received injections 

into sites in the left hemisphere.  A third group of rats (n=4) were implanted with 

cannulae for disconnection of CRFR1-regulated VTA dopaminergic inputs into the 

infralimbic cortex.  As with the prelimbic cortex disconnection experiment, these rats 

received an antalarmin injection into the VTA of one hemisphere and a SCH23390 

injection into the infralimbic cortex of the other.  The accuracy of cannula implantation 

was confirmed post-mortem in each rat after cardiac perfusion with 60-ml 0.15% NaCl 

followed by 60-ml 2.5% buffered neutral formalin under sodium pentobarbital anesthesia 

(55 mg/kg). Brains were removed and stored in 2.5% buffered formalin prior to 

vibratome sectioning (40 µm), slide mounting, and staining with cresyl violet for 

examination using a light microscope. Rats with injection sites outside of the targeted 

regions were excluded from data analysis. 

Experiment #5: Effects of cocaine self-administration under conditions that promote 
shock-induced cocaine seeking on CRFR1 mRNA in the VTA 

We previously reported that intra-VTA CRF injections reinstate cocaine seeking in rats 

with a history of LgA, but not ShA self-administration (Blacktop et al., 2011).  To 
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determine if LgA self-administration recruits CRFR1-dependent regulation of VTA 

dopamine neurons that project to the prelimbic cortex to increase susceptibility to shock-

induced cocaine seeking, we used in situ hybridization to examine differences in the 

expression of CRFR1 mRNA within the VTA resulting from self-administration under 

ShA (n=8), LgA (n=8) and saline control (n=8) conditions.  All rats were tested under 

their respective conditions and underwent ten days of extinction. 24 hrs after the final 

extinction session brains were extract following rapid decapitation in the absence of 

anesthesia and were placed in methyl-2-butane for one minute at a temperature between -

25 and -35°C, and placed in a -80°C freezer until sectioning. The tissue was sectioned on 

a cyrostat to 14 µm thickness and placed onto superfrost plus slides and stored in a -80 °C 

freezer until in situ hybridization analysis was conducted.  A 1138 bp fragment of the rat 

CRF-R1 cDNA (NCBI NM_030999, nucleotides 99-1236) was isolated by PCR from rat 

cortex cDNA and subcloned into pCRII-TOPO (Invitrogen) to create pCRII-TOPO-

rCRHR1-1. For antisense riboprobe synthesis, the pCRII-TOPO-rCRHR1-1 plasmid was 

linearized with BamHI and transcribed with T7 RNA polymerase (Promega). The 

riboprobe was double labeled with 35S-CTP and 35S-UTP (Perkin-Elmer; 1250 Ci/mmol) 

and free nucleotides were removed using a Micro Bio-Spin column (Bio-Rad). In situ 

hybridization was performed as previously described with minimal modifications (Speert 

et al, 2002, Westphal et al 2010). Briefly, slides were post-fixed for 1 h in 4% phosphate-

buffered paraformaldehyde and washed three times in 2X SSC.  Sections were incubated 

in 0.1M triethanolamine containing 0.25% acetic anhydride for 10 minutes with stirring, 

rinsed in dH2O, dehydrated and air-dried.  Slides were then hybridized overnight at 55C 

with the 35S-labeled CRHFR1 riboprobe (2x106 cpm/slide) in 50% formamide 
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hybridization cocktail (Ameresco) containing 10 mM DTT. After hybridization, excess 

unhybridized probe was removed by 2X SSC washes and by incubating slides in RNase 

A (37 C, 1 h). Slides were then washed in decreasing salt solutions (2x, 1x, and 0.5x 

SSC) before a final high-stringency wash in 0.1x SSC (65 C, 1 h). Slides were then 

dehydrated in ethanol, air-dried, and apposed to Kodak BioMax MR autoradiography 

film (Carestream) for 7 days.  Four to five slides (1 slide/series with 4 sections/slide) 

from each rat were included and were processed simultaneously to allow direct 

comparisons in the same regions and minimize variation. Autoradiography films were 

scanned and analyzed using densitometry in ImageJ (Version 1.48g5). Signal pixels 

within the area of interest were defined as having a gray value of 3.5 standard deviations 

above the mean gray value of the background region.  Both the number of pixels (area) 

and average gray values (mean optic density/OD) above background were determined 

and multiplied to generate an integrated densitometric measurement (integrated OD).   

CRFR1 signal from multiple sections (spanning bregma -5.2 to -6.4) was analyzed and 

averaged to generate one single integrated OD per region per rat/per rat. Based on prior 

functional/anatomical distinctions (Oades et al., 1987), the VTA was subdivided into 

rostral (-5.2 to -5.6 mm bregma) and caudal regions (-5.6 to -6.2 bregma).  The caudal 

VTA did not include the VTA tail (rostromedial tegmental area; -6.6 to -6.9 mm bregma  

(Jhoun et al., 2009; Matsui and Williams, 2011; Barrot et al., 2012).   

 
RESULTS 

 
 

Cocaine self-administration and extinction 
Self-administration (infusions on days 1 and 14 of self-administration testing and total 
mg/kg cocaine intake across all sessions) and extinction data (responses during the final 
2-h session prior) for each experiment are shown in Table 1. 



	   127	  

Table 1 

 
 
Experiment #1: Relationship between prefrontal cortical Fos immunoreactivity and 

shock-induced reinstatement of cocaine seeking 
 
 

Rats underwent daily cocaine self-administration for 14 days under ShA (2 

hrs/day; total intake ~359.4 mg/kg) or LgA (6 hrs/day; total intake ~1045 mg/kg) or were 

provided access to saline for self-administration, prior to undergoing ten days of 

extinction after which they were tested for cocaine seeking under shock-free conditions 

or following shock exposure and their brains were processed for cortical Fos analysis.  

Shock-induced cocaine seeking is shown in Figure 1A.  Similar to previous reports 

(Mantsch et al., 2008), robust shock-induced reinstatement was observed in rats 

Exp. Group  SA (infusions/session ± S.E.) Total Intake 
(mg/kg) 

Last Ext 

(resp/session ± S.E.) SA Day 1 SA Day 14 

Exp. 1  

 

Saline/No Shock  

Saline/Shock  

ShA Coc/No Shock 

ShA Coc/Shock 

LgA Coc/No Shock 

LgA Coc/Shock 

14.2 ± 3.5 

9.9 ± 1.2 

27.9 ± 1.5 

27.7 ± 1.3 

79.3 ± 3.9 

75.1 ± 3.5 

4.3 ± 0.9 

3.8 ± 6.7 

18.4 ± 4.7 

22.7 ± 4.7 

82.8 ± 9.2 

83.7 ± 7.7 

--- 

--- 

354.9 ± 19.8 

363.8 ± 31.4 

1062.3 ± 83.1 

1027.0 ± 77.2 

6. ± 1.58 

5.3 ± 1.2 

9.4 ± 2.8 

5.1 ± 1.4 

11.7 ± 2.3 

11.5 ± 3.0 

Exp. 2  Vehicle/No Shock 

Vehicle/Shock 

Antalarmin/No Shock 

Antalarmin/Shock 

83.6 ± 4.3 

76.0 ± 9.1 

78.0 ± 9.0 

90.0 ± 5.0 

91.6 ± 6.3 

94.0 ± 4.9 

105.0 ± 11.2 

94.0 ± 4.9 

1007.0 ± 48.0 

1092.3 ± 107.5 

1076.3 ± 109.4 

1126.6 ± 115.1 

8.0 ± 1.8 

8.0 ± 1.8 

6.8 ± 2.4 

8.0 ± 2.8 

Exp. 3  Shock 

No Shock 

58.4 ± 8.2 

71.8 ± 9.0 

80.4 ± 9.4 

88.0 ± 10.6 

887.2 ± 98.7 

1086.6 ± 60.0 

2.8 ± 1.8 

9.3 ± 2.4 

Exp. 4  Prelimbic/contralateral 

Prelimbic/ipsilateral 

Infralimbic/contralateral 

62.6 ± 4.6 

68.0 ± 5.9 

68.5  ± 3.1 

74.8 ± 5.3 

92.3  ± 3.5 

77.8 ± 3.7 

907.6 ± 77.8 

1063.75 ± 94.2 

959.8 ± 67.5 

5.8 ± 2.2 

8.3 ± 1.9 

7.3 ± 3.3 

Exp. 5  Saline 

ShA Coc 

LgA Coc 

3.6 ± 1.8 

28.7 ± 2.6 

79.3 ± 5.9 

3.3 ± 0.8 

21.2  ± 4.0 

77.6 ± 10.8 

--- 

348.2 ± 52.5 

994.1 ± 69.5 

3.2 ± 0.9 

26.7 ± 7.7 

20.2 ± 6.6 

!
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following LgA cocaine self-administration but not following ShA self-administration and 

shock did not increase lever-pressing in control rats provided access to saline.  A 3-way 

ANOVA reinstatement testing (extinction vs. reinstatement test; repeated measure) x 

self-administration (ShA, LgA, vs. Sal) x shock condition (shock vs. no shock) ANOVA 

showed a significant interaction among all three variables (F2,38= 12.67; p<0.001).  Post-

hoc testing showed that shock-induced cocaine seeking, as defined by increased lever 

pressing relative to the prior extinction session and compared to non-shock controls, was 

only observed following long-access/high-intake self-administration (p<0.01 for each 

comparison).  Moreover, cocaine seeking following shock was significantly higher 

following LgA self-administration than it was after ShA self-administration or in saline 

controls (p<0.01 for each comparison).  

The numbers of Fos-positive cells in the prelimbic and infralimbic cortex 

following behavioral testing under shock and shock-free conditions were recorded in 

each group and are shown in Figures 1C (prelimbic cortex) and 1D (infralimbic cortex).  

Figure 1E represents a schematic identifying the regions in which Fos immunoreactivity 

was analyzed (Paxinos and Watson, 2013).  Representative immuno-labeled sections 

including the cortical regions of interest from each condition/group are shown in Figures 

1E-1L.  A 2-way shock x SA condition ANOVA showed a significant overall effect of 

shock (F1,45=51.08; p<0.001) and self-administration condition on the number of Fos-

positive cells in the prelimbic cortex (F2,45=8.310; P=0.001) and a significant shock x 

self-administration condition interaction (F2,46=12.828; p<0.001).  Post-hoc testing 

showed that shock increased the number of Fos-positive cells in rats tested under each 

condition (p<0.05 vs. No Shock).  This increase was significantly greater in rats tested 
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under longer-access/high-intake conditions (p<0.001 vs. Sal and ShA).  Shock also 

modestly but significantly increased the number of Fos immunoreactive cells in the 

infralimbic cortex (2-way ANOVA; overall effect of shock; F1,45=28.08; p<0.001).  

However, no overall effect of SA condition or SA condition x shock interaction was 

observed. 

 

 
 
 
Figure 1: Stress-induced cocaine seeking is associated with a heightened Fos 
response in the prelimbic cortex.  Data in Figures 1A and 1B represent lever pressing 
during extinction (Ext) and reinstatement testing either following either shock delivery or 
in the absence of shock in rats with a history of self-administration under short-access 
(ShA; 0.5 mg/kg/infusion cocaine; 14 x 2 hrs/daily), long-access (LgA; 0.5 
mg/kg/infusion cocaine; 14 x 6 hrs/daily), or saline control (Sal; 14 x 2 hrs/daily) 
conditions.  Shock only increased lever pressing during reinstatement testing following 
LgA SA (*p<0.01 vs. prior Ext, responding in No Shock controls, and reinstatement in 
Sal/ShA rats).  Data in Figures 1C and 1D represent the corresponding Fos responses in 
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the prelimbic cortex and infralimbic cortex.  Shock produced overall increases in the 
number of Fos-positive cells in each region (#p<0.05; overall effect of Shock) and, in the 
prelimbic cortex, this response was heightened following LgA self-administration 
(*p<0.01 vs. No Shock controls and Sal/ShA rats).  A schematic and image illustrating 
the analyzed regions (1E and 1F) and representative images depicting Fos 
immunoreactivity in the prelimbic cortex in each group comprise Figures 1G-L. 
 
 

 
 
 
Figure 2: CRFR1 receptor antagonism in the VTA prevents shock-induced cocaine 
seeking and the corresponding Fos response in the prelimbic cortex.  Bilateral intra-
VTA injection sites for the CRFR1 receptor antagonist, antalarmin, are shown in 2A.  
Shock reinstated cocaine-seeking in vehicle control rats (*p<0.01 vs. prior Ext and No 
Shock controls) and intra-VTA antalarmin prevented shock induced cocaine seeking 
following LgA self-administration (2B; #p<0.01 vs. intra-VTA Veh controls) and the 
corresponding Fos response in the prelimbic cortex (2C; *p<0.01, Fos increase vs. No 
Shock controls in Veh rats; #p<0.01, Fos reduction intra-VTA antalarmin vs. veh 
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pretreatment) without affecting Fos in the infralimbic cortex (2D).  Representative 
images showing the Fos responses in the prelimbic cortex following intra-VTA vehicle or 
antalarmin injections are shown in Figures 2E and 2F. 
   
 

Experiment #2: Role of VTA CRFR1 receptors in shock-induced cocaine seeking 
and cortical subregion activation 

 
Bilateral intra-VTA injections of the CRFR1 receptor antagonist, antalarmin, prevented 

shock-induced cocaine seeking rats following LgA cocaine self-administration and 

extinction and eliminated the corresponding increase in the number Fos immunoreactive 

neurons in the prelimbic cortex.  Antalarmin/vehicle injection sites in the posterior VTA 

are shown in Figure 2A.  Figure 2B shows the effects of intra-VTA antalarmin on shock-

induced cocaine seeking.  A 3-way reinstatement (extinction vs. reinstatement test; 

repeated measure) x shock condition (shock vs. no shock) x antalarmin pretreatment 

(VTA antalarmin vs. veh) ANOVA showed a significant interaction among all three 

variables (F1,12=10.79; p<0.01).  Post-hoc testing revealed that shock-induced cocaine 

seeking was observed following intra-VTA vehicle injections (p>0.01 vs. the prior 

extinction session or shock-free controls) but not after intra-VTA antalarmin delivery.  

Moreover, cocaine seeking in rats that received intra-VTA antalarmin injections prior to 

shock delivery was significantly lower than in intra-VTA vehicle controls (p<0.01).  

Figure 2C shows the effects of intra-VTA antalarmin on the Fos response to 

shock in the prelimbic cortex.  A 2-way antalarmin x shock-induced reinstatement 

ANOVA showed significant overall effects of shock (F1,17=77.86; p<0.001) and intra-

VTA antalarmin (F1,17=61.36; p<0.001) on the number of Fos-positive cells in the 

prelimbic cortex and a significant shock x antalarmin interaction (F1,17=73.47; p<0.001).  

Shock increased the number of Fos-immunoreactive cells in the prelimbic cortex in 
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vehicle- but not antalarmin-pretreated rats (p<0.01 vs. no shock controls) and the number 

of Fos-positive cells in prelimbic cortex following antalarmin was significantly lower 

than in rats pretreated with vehicle (p<0.01).  By contrast, neither shock nor intra-VTA 

antalarmin altered Fos-positive cell numbers in the infralimbic cortex (Figure 2D).  

Immuno-labeled sections including the prelimbic cortex from representative rats that 

received VTA vehicle or antalarmin are shown in Figures 2E and 2F. 

Figure 3: Shock-induced cocaine seeking induces Fos expression in VTA neurons 
that project to the prelimbic cortex.  To determine if shock-induced cocaine seeking is 
associated with activation of VTA neurons that project to the prelimbic cortex, cholera 
toxin b subunit (CTb) was injected bilaterally into the prelimbic cortex and Fos 
expression in CTb-labeled cells in the VTA was quantified.  Cocaine seeking was 
increased when rats received shock (*p<0.01 vs. prior Ext and No Shock controls; Fig 
3A).  There was no difference in CTb labeling between rats that underwent shock-
induced reinstatement and non-shock controls, but the total number of cells expressing 
Fos was increased by shock (Fig 3B; *p<0.05 vs. No Shock Controls).  Moreover, the 
percentage of CTb-labeled cells expressing Fos was increased in rats tested for shock-
induced reinstatement relative to controls (Fig 3C; *p<0.05 vs. No Shock Controls).   The 
CTb injection site and CTb, Fos and CTb/Fos-labeled cells in the VTA in brain 
representative sections from each group are shown in Figure 3D-F. 
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Experiment #3: Relationship between Fos immunoreactivity in VTA neurons 
that project to the prelimbic cortex and shock-induced reinstatement of cocaine 
seeking 

 
  
To determine if shock-induced cocaine seeking was associated with activation of 

VTA neurons that project to the prelimbic cortex, rats were injected bilaterally with the 

retrograde tracer, CTb, into the prelimbic cortex and Fos expression in CTb-labeled cells 

in the VTA was assessed following testing for shock-induced reinstatement or under 

shock-free conditions.  As expected, footshock reinstated extinguished cocaine seeking 

(Fig 3A).  A 2-way shock condition (shock vs. no shock) x reinstatement condition 

(extinction vs. test session) ANOVA revealed a significant shock condition x 

reinstatement testing interaction (F1,11=20.24; p=0.001).  Post-hoc testing showed that 

cocaine seeking was increased after exposure to shock compared to the preceding 

extinction session and non-shocked controls (p<0.01). 

Shock-induced reinstatement was associated with an increase in the total number 

of Fos-positive cells in the VTA (2-tailed t11=2.63; p<0.05), while the number of CTb-

labeled VTA neurons did not differ between shocked and non-shocked rats (Fig 4B).  

Moreover, the percentage of CTb-positive neurons in the VTA that were co-labeled for 

Fos was significantly increased in rats tested for shock-induced reinstatement compared 

to rats tested in the absence of shock (2-tailed t11=2.95; p<0.05), suggesting that shock-

induced cocaine is associated with activation of VTA neurons that project to the 

prelimbic cortex(Fig. 4C).  The CTb injection site and CTb, Fos and CTb/Fos-labeled 

cells in the VTA in brain representative sections from each group are shown in Figure 

4D-F. 
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Figure 4: A CRFR1 receptor-regulated dopaminergic projection to the 
prelimbic cortex is required for stress-induced cocaine seeking.   

 
 
To determine the role of a CRFR1 receptor-regulated dopaminergic projection 

from the VTA to the prelimbic cortex in stress-induced cocaine seeking, we used a 

disconnection approach in which we delivered antalarmin into the VTA of one 

hemisphere and SCH23390 into the contralateral prelimbic cortex (n=5 rats) and tested 

for shock-induced cocaine seeking.  To confirm that any effect on reinstatement was 

attributable to pathway disconnection, a second group of rats (n=4) received an 

antalarmin injection into the VTA of one hemisphere and a SCH23390 injection into the 

ipsilateral prelimbic cortex.  Significant shock-induced reinstatement was observed 

following VTA/prelimbic cortex vehicle (contralaterally or ipsilaterally) and following 

ipsilateral intra-VTA antalarmin/prelimbic SCH23390 pretreatment (*p<0.05 vs. Ext) but 

not following contralateral antagonist delivery (Fig 4A).  Furthermore, shock-induced 

reinstatement was significantly reduced following contralateral antagonist injections 

relative to either vehicle pretreatment or ipsilateral antagonist delivery (#p<0.05 for each 

comparison).  By contrast, disconnection of the VTA pathway to the infralimbic cortex 
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failed to alter cocaine seeking (4B; n=4).  Intra-VTA and cortical injection sites for rats 

used for analysis are shown in Figure 4C. 

 
Experiment #4: Effect of pharmacological disconnection of the CRF-regulated 
dopaminergic pathway from the VTA to the prelimbic cortex on shock-induced 

cocaine seeking. 
 
 

To determine the role of a CRFR1 regulated pathway originating in the VTA that 

releases dopamine into the prelimbic cortex in stress-induced cocaine seeking, we used a 

disconnection approach in which we delivered antalarmin (250 ng) into the VTA of one 

hemisphere and the dopamine D1 receptor antagonist, SCH 23390 (200 ng) into the 

contralateral prelimbic (Figure 4A; n=5 rats).    A 3-way repeated measures reinstatement 

condition (extinction vs. reinstatement test) x shock condition (shock vs. no shock) x 

disconnection (antalarmin/SCH 23390 vs. veh/veh) ANOVA revealed a significant 

interaction among all three variables (F1,4=29.02; p<0.01).  Post-hoc testing showed that 

significant shock-induced cocaine seeking as defined as an increase relative to the prior 

extinction session and responding by shock-free controls, was observed in vehicle control 

rats but not in rats that underwent pharmacological disconnection (p<0.01/comparison).   

Moreover, cocaine seeking following shock was significantly lower in rats that received 

contralateral VTA antalarmin/prelimbic SCH 23390 relative to vehicle/vehicle controls 

(p<0.01).   

To confirm that the effects of contralateral drug delivery on cocaine seeking were 

attributable to pathway disconnection, a second group of rats (Figure 4A; n=4) received 

antalarmin into the VTA of one hemisphere and SCH 23390 into the ipsilateral prelimbic 

cortex.  In contrast to rats that received antagonists into the contralateral regions, 
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administration of antalarmin and SCH23390 to the VTA/prelimbic cortex within the 

ipsilateral hemisphere did not prevent shock-induced cocaine seeking.  A 3-way repeated 

measures reinstatement condition (extinction vs. reinstatement test) x shock condition 

(shock vs. no shock) x ipsilateral drug treatment (antalarmin/SCH 23390 vs. veh/veh) 

ANOVA revealed a significant shock x reinstatement condition interaction (F1,3=56.72; 

p<0.01).  However, no main effect of or interactions involving antagonist administration 

were observed.  Overall shock produced cocaine seeking as defined by significant shock-

induced increases in all groups relative to extinction and non-shock controls (p<0.05 for 

each comparison) 

In contrast to the prelimbic cortex, disconnection of the pathway from the VTA to 

the infralimbic cortex through antalarmin delivery into the VTA in one hemisphere and 

SCH 23390 delivery into the infralimbic cortex of the other hemisphere failed to alter 

shock-induced cocaine seeking (Figure 4B; n=4).  A 3-way repeated measures 

reinstatement condition (extinction vs. reinstatement test) x shock condition (shock vs. no 

shock) x disconnection (antalarmin/SCH 23390 vs. veh/veh) ANOVA revealed a 

significant shock x reinstatement condition interaction (F1,3=82.78; p<0.01).  However, 

no main effect of or interactions involving antagonist administration were observed.  

Overall shock produced cocaine seeking as defined by significant shock-induced 

increases in all groups relative to extinction and non-shock controls (p<0.05 for each 

comparison). 

VTA antalarmin/veh and cortical SCH 23390/veh injection sites are shown in Figure 4C.   
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Figure 5:  Cocaine self-administration under conditions that establish CRF-
dependent shock-induced cocaine seeking and corresponding activation of the 
prelimbic cortex increases CRFR1 mRNA in the caudal VTA.  CRFR1 receptor 
mRNA levels in the VTA were quantified by in situ hybridization using a 35S-labeled 
CRFR1 riboprobe.  Representative images of film exposed to hybridized sections 
containing VTA from rats following self-administration under ShA, LgA, or saline 
control conditions are shown in Figure 5A.  Rostral (-5.2 to -5.6 mm bregma) and caudal 
(-5.6 to -6.2 bregma) VTA were analyzed separately and mean integrated optical 
densities (IODs) in each region are shown in Figure 5B.  No alterations in the rostral 
VTA were observed.  However, CRFR1 mRNA levels were significantly increased in the 
caudal VTA following LgA self-administration (*p<0.05 vs. saline controls).  
 
 
Experiment #5: Effects of cocaine self-administration under conditions that promote 

shock-induced cocaine seeking on CRFR1 mRNA in the VTA 
 
 

To determine if the recruitment of the CRF-regulated pathway from the VTA to 

the prelimbic cortex was the result of increased CRFR1 receptor expression, in situ 
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hybridization was used to quantify VTA CRFR1 mRNA levels following self-

administration and extinction in rats provided access to cocaine under ShA and LgA 

conditions and saline controls (Fig 5).  The VTA is a complex heterogeneous structure 

with anatomically defined subregions that have distinct functionality (Kaufling et al; 

Lammel et al).  The tail of the VTA notwithstanding, a key anatomical demarcation is the 

division of the VTA into rostral (anterior to -5.6 mm bregma) and caudal (posterior to -

5.6 bregma) regions (ref).  Specifically, our work examining shock-induced cocaine 

seeking has focused on CRF effects in the caudal VTA (ref).  Thus, in this experiment, 

CRFR1 receptor mRNA levels were analyzed separately in the rostral (-5.2 mm to -5.6 

mm bregma) and caudal (-5.6 mm to -6.2 mm bregma).  Representative images of films 

exposed to CRFR1 riboprobe hybridized brain sections from each group containing the 

caudal VTA are shown in Figure 5A.  Mean integrated optical rostral and caudal film 

densities (IOD) are shown in Figures 5B and 5C.  Separate one-way ANOVAs were used 

to compare CRFR1 mRNA in rostral and caudal VTA across self-administration 

conditions.  A significant overall effect of access condition was found in the caudal, but 

not rostral, VTA (F2,23=5.53; p<0.05).  Post-hoc testing showed that CRFR1 mRNA was 

increased relative to saline controls following LgA, but not ShA self-administration and 

extinction (p<0.05).   

 
DISCUSSION 

 
 

Although stress has been identified as a key contributor to relapse, the 

relationship between stress and drug-seeking behavior is complex and it has been 

reported that the onset of stress does not always serve as a reliable trigger for cocaine use 
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(Preston and Epstein, 2011; Furnari et al., 2015).  A key determinant of stress-induced 

cocaine seeking appears to be the extent/pattern of prior use.  High-frequency cocaine 

abusers display increased drug craving, anxiety and associated cardiovascular and 

hypothalamic-pituitary-adrenal responses upon exposure to stress imagery when 

compared to lower-frequency abusers (Fox et al., 2005).  Consistent with this 

observation, we have found that reliable stress-induced reinstatement of cocaine seeking 

is observed in rats with a history of cocaine self-administration under conditions of long 

access (LgA)/high cocaine intake but not under conditions of short access (ShA) drug 

availability where intake is lower (Mantsch et al., 2008).   

The glutamatergic projection from the prelimbic cortex to the nucleus accumbens 

core has been shown to be critical for cocaine seeking.  Pharmacological inhibition of this 

pathway using baclofen/muscimol (McFarland et al., 2004) or TTX (Capriles et al., 2003) 

delivery into the prelimbic cortex prevents stress-induced cocaine seeking and associated 

increases in nucleus accumbens core glutamate levels (McFarland et al., 2004).  Here we 

demonstrate that stress-induced reinstatement is associated with a heightened Fos 

response in the prelimbic and the infralimbic cortex.  

The mesocortical dopamine projection, via dopamine D1 receptor activation in 

the prelimbic cortex, is a key regulator of this cortico-accumbens pathway.  Injections of 

the D1 receptor antagonist SCH23390 (Capriles et al 2003) or the non-selective 

dopamine receptor antagonist fluphenazine (McFarland et al., 2004) but not the D2-like 

receptor antagonist raclopride (Capriles et al., 2003) injected into the prelimbic but not 

infralimbic cortex prevent stress-induced cocaine seeking.   D1 receptors in the prelimbic 

cortex are predominantly expressed post-synaptically on pyramidal neurons where they 
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promote excitability (Seamanns et al., 2001; Gonzalez-Islas and Hablitz, 2003; Tseng and 

O’Donnell, 2004; Sun et al., 2006).  Not only do our present findings confirm that D1 

receptors in the prelimbic cortex are required for shock-induced reinstatement, but they 

suggest that stress-induced cocaine seeking is associated with activation of VTA 

dopamine neurons that project to the prelimbic cortex.  These findings are consistent with 

an earlier report by Deutch et al (1991) demonstrating a similar stress-induced response 

in cocaine-naïve rats.  Notably, in that study, shock selectively activated VTA neurons 

that project to the prelimbic cortex without activating VTA neurons that project to the 

nucleus accumbens, consistent with reports that the mesocortical dopamine pathway is 

selectively activated by aversive stimuli (Lammel et al 2012).   

Much evidence points to CRF in the VTA as a key regulator of the mesocortical 

dopamine pathway and stress-induced drug seeking.  Shock-induced reinstatement of 

cocaine seeking is associated with increased CRF levels in the VTA (Wang et al., 2005) 

and intra-VTA CRF injections are sufficient to reinstate (Wang et al., 2005; Blacktop et 

al., 2011).  Moreover, pharmacological antagonism of (Blacktop et al., 2011; Vranjkovic 

et al 2014) or shRNA-mediated knockdown of (Chen et al., 2014) of the CRFR1 receptor 

in the VTA prevents stress-induced cocaine seeking.  Although studies examining the 

regulation of mesocortical dopamine by VTA CRF have produced mixed results (see e.g., 

Kalivas et al., 1987), reports that icv CRF increases dopaminergic neurotransmission in 

the prefrontal cortex (Dunn and Berridge, 1987; Lavicky and Dunn, 1993) and that CRF 

promotes excitation of VTA dopamine neurons via both pre- and post-synaptic 

mechanisms (Ungless et al 2003; Korotkova et al 2006; Riegel and Williams 2008; 

Wanat et al 2008, Beckstead et al 2009; Hahn et al 2009; Williams et al 2014) suggest 



	   141	  

that stress-induced release of CRF into the VTA may underlie increases in 

mesocorticolimbic dopamine release.  Consistent with this possibility, Refojo et al (2011) 

reported that selective deletion of CRFR1 receptors in VTA dopamine neurons 

significantly reduced stress-induced increases in dopamine in the prefrontal cortex in 

mice while Wang et al (2005) have demonstrated that increases in VTA dopamine levels 

associated with shock-induced reinstatement are CRF-dependent. 

Here we report that the increase in Fos in the prelimbic cortex associated with 

shock-induced reinstatement of cocaine is prevented by intra-VTA delivery of the 

CRFR1 receptor antagonist, antalarmin.  Further, we directly tested the role of CRFR1 

regulation the mesolimbic dopamine pathway in stress-induced cocaine seeking using a 

pharmacological disconnection approach.  Bilateral disconnection of the proposed 

pathway by injection of antalarmin into the VTA of one hemisphere and the D1R 

antagonist SCH23390 into the prelimbic cortex of the contralateral hemisphere prevented 

shock-induced reinstatement.  By contrast administration of VTA antalarmin and PL 

SCH23390 in the ipsilateral hemisphere or disconnection of the CRF regulated pathway 

to the infralimbic cortex failed to block shock-induced reinstatement.  These data suggest 

that, during stress, CRF released into the VTA, possibly from neurons that originate in 

the BNST (Rodaros et al 2007; Silberman et al 2013; Vranjkovic et al 2014), activates 

CRFR1 receptors on mesocortical neurons thereby promoting prelimbic dopamine release 

and D1 receptor activation to induce drug seeking behavior. 

Consistent with other reports that CRF actions in the VTA depend on a prior 

history of cocaine exposure (Wang et al, 2005; Beckstead et al 2009; Hahn et al 2009; 

Williams et al 2014), we have found that intra-VTA CRF-induce reinstatements is only 
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observed in rats with a prior history of cocaine SA under daily extended-access/high-

intake conditions.  Thus, the observed heightened sensitivity to stress-induced cocaine 

seeking (Mantsch et al., 2008 and current findings) and the corresponding enhancement 

of stress regulation of the mesocortical pathway to stress can likely be attributed to 

increased CRFR1 receptor responsiveness at the level of the VTA.  In support of this 

possibility, we found that CRFR1 mRNA in the posterior VTA (the site at which CRF 

regulates cocaine seeking) is increased following long-access SA.  Notably, it has 

previously been reported that repeated cocaine administration increases CRF binding in 

the VTA (Goeders et al., 1990) and establishes CRFR1 regulation of excitatory 

transmission (Hahn et al., 2009).  Although we assume that alterations in CRFR1 mRNA 

are localized to dopaminergic neurons, confirmation of this requires further investigation. 

To summarize, the present findings demonstrate that 1) stress-induced cocaine 

seeking requires the activation of a CRFR1-regulated dopaminergic pathway from the 

VTA to the prelimbic cortex and 2) repeated cocaine use under patterns/intake levels 

observed in many cocaine abusers can establish stress-reactivity of this pathway via 

upregulation of CRFR1.  Further understanding the regulation of this pathway and how it 

is recruited with excessive cocaine use (e.g., elevated glucocorticoid levels; Graf et al., 

2011) should provide important insight into the addiction process. 
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General Discussion 
 
 

Addiction is a tremendous health and financial burden on our society. Our current 

understanding of the brain circuitries involved in addiction is far from complete. Drug 

use is a stress-driven behavior partially because of the unpredictable and often 

uncontrollable nature of stress. The work in this dissertation will hopefully aid in the 

development of new and more effective treatment strategies aimed at either preventing 

stress-induced relapse or minimizing the role of stress in the addiction cycle. Research in 

our lab has focused on the idea that chronic cocaine use, as displayed by the long-access 

self-administration paradigm (Ahmed and Koob, 1998), increased the vulnerability to 

relapse during periods of stress (Mantsch et al., 2008) in a manner dependent on an 

escalating pattern of cocaine use, which may be dependent on the interactions of 

glucocorticoids and epinephrine (Mantsch et al., 2008). Findings within this dissertation 

will hopefully aid in the development of better treatment options. To summarize, we have 

found that stress-dependent relapse occurs through a corticotropin releasing factor (CRF) 

pathway from the bed nucleus of the stria terminalis (BNST) to the ventral tegmental area 

(VTA) that activates dopamine (DA) neurons that project into the prelimbic cortex to 

precipitate cocaine use (figure 4.1). In addition, we have found that CRF expression is 

increased within the BNST following a stressor that is dependent on beta-2 adrenergic 

receptor (AR) activation. Furthermore, long-access cocaine use significantly increased 

the expression of CRFR1 within the caudal VTA. This increase in CRFR1 expression 

primes the activity of VTA neurons that specifically project into the prelimbic cortex, and 

therefore causes an increase of prelimbic pyramidal activity through a dopamine receptor 

1 (D1R) mechanism. 
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Beta-noradrenergic receptors within the BNST regulate relapse of cocaine 
seeking during periods of stress 

 
 

Clinical and preclinical research has determined that inhibition of the 

noradrenergic system, through the actions of alpha-2 AR agonists such as clonidine and 

guanfacine, can block stress-induced craving of opiates (Sinha et al., 2007), cocaine 

(Jobes et al., 2011, Mantsch et al., 2010), and nicotine (Fox et al. 2012, McKee at., 2014).  

These studies are based on the assumption that alpha-2 ARs are presynaptic autoreceptor, 

although post-synaptic alpha-2 AR effects that could interfere with cocaine seeking in 

regions such as the prefrontal cortex have been reported.  Based on these studies, we have 

focused our research on determining the contribution of the noradrenergic system to 
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 Neuroanatomical projections involved in stress-induced cocaine seeking figure 4.1: An electric footshock stressor will 
activate a noradrenergic projection from the ventral noradrenergic bundle into the ventral bed nucleus of the stria terminalis. 
Here norepinephrine will activate beta-2AR receptors and release corticotropin releasing factor (CRF). CRF will increase the 
drive on CRF ventral tegmental area (VTA)  projecting neurons. A CRF projection from the vBNST into the VTA will be 
activated, and CRF will be released within the VTA. CRF will activate CRFR1 on VTA dopamine neurons that project into 
the prelimbic cortex. DA within the prelimbic cortex will activate D1R and increase the firing rate of pyramidal neurons that 
project into the core of the nucleus accumbens. This will activate sub-motor circuits to engage in drug seeking behavior. 
(Figure adapted from Mantsch et al., 2015)     
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stress-related relapse to cocaine use. Earlier studies have indicated that a cocktail 

antagonism of both beta-1 and beta-2 ARs within the bed nucleus of the stria terminalis 

(BNST), and the central nucleus of the amygdala (CeA) blocks footshock-induced 

reinstatement of cocaine seeking (Leri et al 2002). Based on these results, our lab has 

tested the sufficiency and necessity of activation of the individual beta-AR receptors for 

stress-induced relapse in both the self-administration and conditioned place preference 

models.  

Our results indicate that the beta-2 AR is both necessary and sufficient in 

mediating forced swim-induced drug seeking in extinguished conditioned place 

preference mice (Mantsch et al 2010, McReynolds et al 2014, Vranjkovic et al 2012). 

Specifically, we showed that the beta-2 AR antagonist ICI 118,551 blocked forced swim-

induced reinstatement (Chapter 2; Mantsch et al 2010, McReynolds et al 2014) while the 

non-selective beta-AR agonist isoproterenol was sufficient to induce drug seeking 

(Vranjkovic et al 2012), and the selective beta-2 AR agonist clenbuterol was also 

sufficient to induce drug-seeking behavior (McReynolds et al 2014, Vranjkovic et al 

2012). In addition, using footshock-induced reinstatement in our rat self-administration 

model, we have shown that stress-induced reinstatement is specific to beta-2 ARs in the 

ventral BNST (vBNST) as intra-vBNST administration of the beta-2 AR antagonist ICI 

118,551 blocked stress-induced drug seeking and intra-vBNST administration of the 

beta-2 AR agonist clenbuterol was sufficient to evoke stress-induced reinstatement 

(Chapter 3; Vranjkovic et al 2014).   

 Interestingly, we were able to block isoproterenol-induced reinstatement with 

both the selective beta-1 AR antagonist betaxolol, and the selective beta-2 AR antagonist 
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ICI 118,551 (Vranjkovic et al 2012). It is also important the signal redundancy in that 

both receptors signal through Gs. This indicates that beta-AR receptors may exert their 

affects on different cell types. This was interesting because antagonism of the beta-1 AR 

failed to block forced swim-induced reinstatement, in the CPP model, and footshock-

induced reinstatement, in the self-administration model, when administered into the 

vBNST. This indicates that either the drugs bind to other receptors, or that there is an 

unknown role for beta-1 ARs in stress-induced reinstatement. Studies have shown that 

stress can increase the expression of both beta-1 and beta-2 ARs within the BNST 

(Cecchi et al 2007), and that chronic cocaine administration can decrease the beta-1 AR-

mediated excitatory post-synaptic potential within the BNST (Nobis et al 2011). Our 

results indicate that beta-2AR receptors are important in contributing to stress-induced 

relapse; however, their localizations within the central nervous system is not clear. 

Unfortunately, beta-AR antibodies have been extremely unreliable in determining the 

cellular localization; however studies employing electrophysiology have determined that 

beta-ARs are located on glutamatergic terminals within the BNST to enhance the 

excitatory drive of these neurons through a CRF-dependent mechanism (Nobis et al 2011; 

Silberman et al 2013). In addition, experiments using HA-tags mutated onto the C-

terminus of the alpha-2 AR have been used to localize the alpha-2 AR (Flavin et al 2014). 

This technique can be used to identify the localization of the beta-1 and beta-2-ARs 

within the synapse.  

It is interesting that both beta-1 ARs and beta-2ARs work through the same 

second messenger system. Both beta-1 and beta-2 ARs are Gs-coupled receptors 

suggesting that downstream activation of cAMP, PKA, or CREB are involved in the 
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reinstatement process during stress. Interestingly, studies have shown that cAMP and 

CREB activation are required for forced swim- but not cocaine-induced reinstatement of 

conditioned place preference (Kreibich and Blendy, 2004). Therefore, it is necessary to 

understand the localization of these receptors within the synapse, and how their 

trafficking, expression, or down-stream mechanisms may change due to chronic drug use 

or during periods of stress. 

Moreover, beta-1 ARs have a higher affinity for norepinephrine than beta-2 ARs, 

but here we show that the effect of stress on reinstatement is dependent upon the beta-2 

AR specifically. This may be attributed to elevated norepinephrine levels during periods 

of stress (Pacak et al 1995), during which it is possible that the high affinity beta-1 AR is 

saturated and therefore is either internalized, or non-functional. This would allow for the 

low affinity beta-2 AR to be activated. In support of this, a similar type of affinity is seen 

with glucocorticoid receptors within the stress circuit as high affinity mineralocorticoid 

receptors are saturated under basal cortisol levels whereas low affinity glucocorticoid 

receptors are activated by cortisol during periods of elevated cortisol levels that are 

typically observed during stress. In addition, beta-2 ARs seem to have both genomic and 

non-genomic effects within the BNST. Electrophysiology studies have indicated that 

beta-ARs enhance excitatory transmission within the BNST (Nobis et al 2011), possibly 

through a CRF-releasing event (Silberman et al., 2013). However, we have shown that a 

forced swim stressor increases crf mRNA within the BNST, and that this increase can be 

blocked with antagonism of the beta-2 AR(McReynolds et al., 2014). This suggests that 

beta-2 ARs serve as a mechanism to reload CRF pools either within local CRF-positive 

neurons in the BNST or CRF-projecting neurons that originate within the BNST, and 



	   148	  

beta-2AR receptors may also stimulate the release of CRF within the BNST. This is 

important because it shows that beta-ARs and CRF have a crucial interaction within the 

BNST.      

Beta-2 ARs act upstream from CRFR1 to mediate stress-induced drug 
seeking 

 
 
Data from our lab and others has suggested that norepinephrine drives 

reinstatement through a beta-AR dependent engagement of the CRF system within the 

BNST (Brown et al 2009, Erb et al 2000, McReynolds et al 2014, Vranjkovic et al 2014). 

In this dissertation we have shown this in mice wherein administration of a beta-2 AR 

antagonist blocked stress-dependent increases of crf mRNA within the BNST, and the 

CRFR1 antagonist antalarmin blocked clenbuterol-induced reinstatement. In addition, 

using the rat self-administration model, we have shown that intra-BNST clenbuterol-

induced reinstatement is blocked by pretreatment with the CRFR1 antagonist antalarmin 

(Chapter 3; Vranjkovic et al 2014). Furthermore, we have shown that intra-BNST CRF 

administration induces drug-seeking behavior, and this effect is not blocked by 

administration of the beta-2 AR antagonist ICI 118,551 (Vranjkovic et al 2014).  

This strongly suggests that beta-2 AR activation releases CRF within the BNST. 

This data is consistent with other studies that have shown that beta-AR activation within 

the BNST produces an enhancement of excitatory synaptic mechanisms (Egli et al., 2005; 

Nobis et al., 2011) that was dependent upon CRFR1 activation (Silberman et al., 2013). It 

is important to note that even though CRF signaling in the BNST is necessary for relapse 

(Chapter 3; Erb et al., 2001; Vranjkovic et al 2014), the source of this CRF is not know as 

it could be released from local CRF neurons (Veinante & Freund-Mercier 1997) or from 
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CRF-ergic afferents from other regions (Rodaros et al., 2007). In addition, our own data 

suggest that beta-2 ARs regulate CRF release within the BNST though a more direct 

examination of this effect is still needed.   

Several different methods can be employed to study whether beta-2 AR activation 

is necessary for direct CRF signaling in stress-induced reinstatement in the different 

reinstatement models. Studies have started employing the human diphtheria toxin (toxic 

to humans, but not mice) receptor to selectively destroy cell bodies in a cre-depndent 

manner (Silberman et al., 2015). For this example, CRF-cre mice would be injected with 

a cre-dependent virus expressing the diphtheria toxin receptor and this virus could be 

specifically injected into either the BNST or CeA to produce the receptor on CRF-

positive cells. Subsequently, mice would be chronically injected with the diphtheria toxin 

to destroy any cells expressing the diphtheria toxin receptor (Silberman et al., 2015). 

Using this, studies could examine whether depletion of CRF by diphtheria toxin could 1) 

induce forced-swim dependent reinstatement of CPP in mice; this study could examine 

whether CRF in cells in either the CeA or the BNST is necessary for stress-induced 

reinstatement. 2) This study could be used to confirm a relationship between beta-2 AR 

and CRFR1 activation in stress-induced reinstatement; injections of the beta-2 AR 

agonist clenbuterol should not be sufficient in reinstating drug-seeking behavior. 3) 

Electrophysiology studies could be conducted to determine whether beta-AR activation 

within the BNST still causes enhancement of glutamatergic transmission within the 

BNST that is dependent on CRFR1 activation. Beta-AR and CRFR1 could be working 

separately to enhance glutamatergic signaling independent from each other. In addition, 

injections of an AAV virus containing shRNA for CRF (Grieder et al 2014) could be 
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used to test whether local or CeA CRF input into the BNST regulates reinstatement. In 

addition, microdialysis studies may be employed to directly measure CRF release within 

the BNST during either a footshock stressor, or through reverse dialyzing the beta-2 AR 

agonist clenbuterol. These studies would be crucial in understanding the direct interaction 

of beta-2AR receptors and CRFR1; and their relationship in stress-induced drug seeking.   

 
Excitatory input onto CRF neurons within the BNST 

 
 

A major challenge in the field of neuroscience research on affective disorders is 

identifying the signaling pathways and neural circuits involved in the complex 

mechanisms that underlie stress-induced reinstatement. Very little studies have been done 

to examine the excitatory afferents that project onto CRF neurons within the BNST. 

Optogenetic and genetically encodable reporter strategies may be used to map excitatory 

afferents that directly synapse onto CRF neurons within the BNST. Anatomical studies 

have suggested that the BNST receives a major glutamatergic input from the infralimbic 

cortex, however it is important to understand the upstream structures that activate CRF 

neurons within the BNST, or more importantly CRF-positive BNST neurons that project 

to downstream structures such the VTA. Currently, the anterior insular cortex, medial 

prefrontal cortex, and the parabrachial nucleus have been suggested to send glutamatergic 

signaling onto CRF-positive cells within BNST (Swanson et al., 1982).  

 
 
Activation of beta-2 AR within the BNST activates a CRF projection into the VTA. 

  
 

 Many studies have indicated that a CRF projection into the VTA mediates stress- 

induced reinstatement, however, no studies have shown a neuronal mechanism or a 
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functional location. A major finding in our lab is that beta-2 ARs within the vBNST 

recruit a CRF-projecting pathway from the vBNST to the VTA, and this pathway, in part, 

mediates stress-induced drug seeking (Chapter 3; Vranjkovic et al., 2014). In addition, 

animals that received an intra-VTA cholera toxin subunit b injection (CTb; retrograde 

tracer), and underwent dual immunofluorescence for CTb and CRF within the vBNST, 

showed that CRF-positive cells within the vBNST project to the VTA (Chapter 3; 

Vranjkovic et al., 2014). This directly suggests that activation of the vBNST result in 

release of CRF within the VTA, which will bind to CRFR1 to promote drug use during 

times of stress. However, data in this dissertation suggests that CRF release within the 

VTA is mediated by a beta-2AR, and CRFR1 interaction within the vBNST.  

 
CRF cells that project into the VTA are either glutamatergic or GABAergic 

 
 
 Our studies suggest that CRF-positive neurons originate from the BNST and 

project into the VTA, though we did not confirm a direct CRF-releasing pathway 

projection. Studies stimulating the BNST through a beta-2 AR mechanism and measuring 

CRF release within the VTA in animals that have a knockdown of CRF, and proper 

controls, within the vBNST need to be conducted to confirm our theory. Furthermore, 

CRF-positive neurons could regulate glutamatergic or GABAergic cells within the 

BNST; therefore, one possibility is that CRF-positive projecting neurons could make a 

relay projection to another area, from which CRF is coreleased with GABA or glutamate 

into the VTA. Furthermore, it is not well known whether the BNST sends a 

predominately glutamatergic or GABAergic input into the VTA during periods of stress. 

Studies have shown that the majority of BNST neurons that project into the VTA are 
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GABAergic (Kudo et al 2012) and it is predicted that they disinhibit VTA dopaminergic 

neurons by synapsing onto VTA GABA neurons as studies have shown that BNST to 

VTA projections formed symmetric terminals that co-expressed vesicular inhibitory 

amino acid transporter (Kudo et al 2012). However, other studies have found that BNST 

glutamatergic and GABAergic projections preferentially innervate non-dopaminergic 

VTA neurons, and that BNST glutamatergic projection activation resulted in aversive and 

anxiogenic behavioral phenotypes, while BNST GABAergic projections produced 

rewarding and anxiolytic behavior (Jennings et al 2013). More studies need to be 

conducted to understand the regulation of the VTA by BNST glutamatergic/GABAergic 

neurons and CRF-projecting neurons, and its involvement in stress-induced 

reinstatement.  

Studies have shown that CRF-positive terminals within the VTA synapse onto 

DA cells that have asymmetric projections, indicating that they are glutamatergic 

(Tagliaferro & Morales 2008). However, this study failed to discuss the CRF terminals 

that do not synapse onto DA cells. It is my strong opinion that a subset of CRF-positive 

terminals originating from the BNST synapse onto either GABAergic interneurons, or 

other GABAergic neurons where they act to disinhibit DA neurons. In addition, it is 

important to note that studies have shown that both presynaptic and postsynaptic CRFR1 

activation can reduce the activity of VTA DA neurons (Wanat et al., 2013; Beckstead et 

al., 2008). This indicates that CRF within the VTA can either enhance or inhibit VTA DA 

firing. Therefore, it is important to understand under what conditions CRF is released 

within the VTA, because CRF undergoes volume transmission, and therefore a single 

CRF release event within the VTA may act to activate and inhibit VTA DA neurons.   All 
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in all, others and we have suggested a beta-2 AR-driven CRF pathway within the BNST 

that activate a CRF projection in to the VTA. This is depicted in figure 4.2. This pathway 

will act to engage VTA DA cells projecting to the prelimbic cortex.    

 

 
 

 
 
 
 
 
 

Significance/Progress Relapse to drug-seeking behavior remains a major therapeutic barrier in the treatment 
of addiction, with relapse rates in the 80-90% range for most illicit drugs1, 2, 33.  While several stimuli can elicit 
drug-craving responses and relapse, stress is most frequently cited1, 2, 33.  NE ligands, particularly the !-AR 
blocker propranolol, and the "2a-AR agonist guanfacine, have been explored as potential prophylactic 
treatments in abstinent cocaine addicts, because of the known roles of NE in stress responses and the 
compounds are generally well tolerated12-14, 17, 34, 35.  While not producing outright improvements in long-term 
abstinence, these studies suggest that they do improve drug-craving symptoms. We propose that a better 
understanding of the specific mechanisms controlled by these receptors to regulate stress-induced relapse will 
spur the development of more effective therapeutics. 
Rodent models point to the extended amygdala as a key site of NE function in stress-induced drug seeking.  
 NE plays a key role in reinstatement of drug seeking36, 37 38. Intracerebroventricular injection of NE 
reinstates cocaine seeking behavior 39, and NE inputs to the BNST are activated during withdrawal from drugs 
of abuse40, 41, leading to increased extracellular levels of NE40-42. Lesioning of the ventral NE bundle to the 
extended amygdala blocks stress induced reinstatement of morphine seeking43.  !1- and !2-AR antagonists 
administered peripherally or directly into the CeA or BNST block stress-induced reinstatement of cocaine 
seeking28, 44, 45 as well as anxiogenesis46.  Conversely, !-AR agonists induce reinstatement of cocaine 
seeking28.  Activation of "2-ARs has repeatedly been shown to block stress induced reinstatement43, 45, 47, 48.  
Further, administration of an "2-AR agonist directly into the BNST blocks foot shock induced reinstatement of 

morphine seeking43.  In addition, systemic administration of the "2A-AR agonist 
guanfacine reduces withdrawal induced anxiety and attenuates reinstatement 
behavior 49.  In addition to withdrawal induced anxiety, "2A-ARs have been linked to 
anxiety disorders 50.   
Actions of !-ARs in extended amygdala point to CRF-dependent and independent 
mechanisms.  NE signaling produces a constellation of actions within the extended 
amygdala8.  As evidence indicates that glutamatergic inputs into the BNST drive 
stress-related behaviors51, 52, in the previous funding cycle we focused on the 
actions of NE and CRF on excitatory transmission in both the BNST and CeA.  In 
the BNST, we found that !-ARs enhance spontaneous excitatory postsynaptic 
currents (sEPSCs) in a CRF-dependent and cocaine-sensitive fashion3, 7, 8, 53.  We 
found that this enhanced excitatory drive can be elicited on BNST neurons that 
project to the VTA, and that the !-AR agonist isoproterenol (iso) depolarizes CRF 
neurons in BNST3, 53, suggesting a model whereby NE elicits the local release of 
CRF from interneurons to increase the activity of VTA-projecting BNST neurons 
(see model fig. 1).  A series of studies indicate that VTA-projecting neurons in the 
BNST play an important role in reinstatement behavior9, 45, 51, 54-56.  In contrast, in 
the CeA, we found that !-ARs also increase excitatory transmission, but that this 
enhancement was not dependent on CRF signaling29.  Our initial 
electrophysiological characterization of CRF neurons in the CeA and BNST 
suggested a greater diversity of phenotypes in the BNST3. Thus one possibility is 
that CRF neurons in the CeA are projection neurons rather than interneurons.  As 
shown in fig. 4 below, at least a portion of CRF neurons in BNST are projection 
neurons. 
Actions of "2-ARs in extended amygdala point to complex regulatory mechanisms. 

"2-AR agonists block stress-induced reinstatement8, 43, 45, 47, 48.  This has 
been assumed to occur largely via activation of autoreceptors to limit NE release.  
However, in other regions such as prefrontal cortex, "2-ARs play a postsynaptic 

role57.  In initial studies we found that "2-ARs suppress BNST activity8, 22, 58, and that these receptors appeared 
to be widely expressed in BNST beyond autoreceptor sites58.  Consistent with this idea, we utilized an ex vivo 
optogenetic-based mapping strategy to identify the PBN as a BNST afferent inhibited by the "2a-AR agonist 
guanfacine18.  This is consistent with previous data using electrical stimulation in the CeA59.  Surprisingly, we 
also determined that in other contexts, "2a-ARs have excitatory actions in the BNST, such as increasing 
responses optogenetically-elicited in a Thy1-COP4 (channelrhodopsin, ChR2-expressing) transgenic line, 
increasing postsynaptic ERK phosphorylation and Fos expression when guanfacine is administered 
systemically (fig. 8-10)18, 60.  These data suggest that "2a-ARs filter excitatory input into the BNST.   
The potential role of the PBN in stress-induced reinstatement.  The guanfacine-sensitive PBN glutamatergic 
input to the BNST is an ascending input61-63 that forms axosomatic synapses primarily onto anterolateral BNST 

Fig. 1.  Model of NE 
recruitment of BNST VTA 
projection neurons We 
propose that NE depolarizes 
CRF neurons in the BNST to 
promote CRF release, which 
then activates presynaptic 
CRFR1 on glutamate 
terminals on VTA-projecting 
BNST neurons (gold)3, 6, 7.  
We propose a series of 
studies in Aim 1 to test and 
extend this model, and to 
begin to test the role of this 
pathway in stress-induced 
cocaine reward behavior. 
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Figure 4.2: Model of NE recruitment of BNST VTA 
projection neurons We propose that NE activation of beta2-
ARs depolarizes CRF neurons in the BNST to promote CRF 
release, which then activates presynaptic CRFR1 on glutamate 
terminals on VTA CRF-projecting BNST neurons  

Beta-2AR!

CRFR1!

CRF!
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Susceptibility to stress-induced drug seeking is dependent on CRFR1 expression 
levels within the caudal VTA 

 
 
Stress-induced reinstatement to a footshock stressor requires a history of extended 

access to cocaine. Different neurobiological mechanisms may contribute to the 

susceptibility to relapse during periods of stress. We have shown that CRFR1 activation 

is both necessary and sufficient for stress-induced drug seeking (Blacktop et al., 2011). In 

this dissertation we have shown that within the caudal VTA, CRFR1 expression is 

increased. In addition, a footshock stressor increases Fos immunoreactivity within the 

VTA compared to no shock controls. Furthermore, shock increased the activity of 

neurons that project to the prelimbic cortex.  Moreover the prelimbic Fos response to 

shock is dependent on CRFR1 activation in the VTA (Chapter 4). These data suggests 

that a footshock stressor recruits a VTA projection, likely dopaminergic, to the prelimbic 

cortex via CRFR1 activation within the VTA as we have shown that a disconnection 

between VTA CRFR1 and prelimbic D1R prevents footshock-induced reinstatement. 

This is interesting because inhibiting dopamine signaling, with either a D1R specific 

antagonist, or a non-specific dopamine antagonist, within the prelimbic cortex prevents 

footshock-induced drug seeking (Capriles et al 2003, McFarland et al 2004). While we 

found that CRFR1 expression is increased within the VTA as a result of long-access 

cocaine self-administration, other mechanisms could be recruited to prime the activity of 

mesocortical neurons.  

Cocaine intake-dependent neuroplastic changes within the VTA can increase the 

susceptibility to relapse of cocaine use during a stressor. While stress has been shown to 

promote CRF release within the VTA that is not dependent on a history of cocaine intake 
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(Wang et al., 2005), no studies have examined whether CRF release is increased within 

the VTA in animals with a history of extended drug use. Our data from chapter 2 

suggests that CRF production is increased within BNST, and that the BNST sends a 

direct projection of CRF to the VTA. Therefore, CRF release within the VTA may be 

augmented as a result of long-access cocaine use. However, the increase in crf mRNA 

observed in chapter 2 may be a reloading effect. Specifically, the beta-2 AR-mediated 

increase in CRF production may restore the pools of CRF in VTA terminals that have 

been released due to prior stressors. In addition, our lab has shown that bilateral delivery 

of CRF directly into the VTA fails to induce drug seeking in rats with a history of short-

access self-administration (2hr/day) but produced robust drug seeking under long-access 

conditions suggesting that some neuroadaptation are needed. We have shown that this 

occurs as an increase of CRFR1 expression, but we cannot rule out other processes 

downstream (such as changes in the cortico-accumbens pathway), or upstream (such as 

actions within the BNST) from the site of CRF actions within the VTA.    

Studies have shown that repeated cocaine administration has been shown to 

increase CRF receptor binding in the VTA (Goeders et al 1990) and also alter CRF 

responsiveness. Repeated cocaine administration has been shown to attenuate CRFR1-

induced enhancement of GIRK channel-mediated inhibitory post-synaptic currents 

(Beckstead et al 2009) and establishes CRFR1-mediated regulation of glutamatergic 

synaptic transmission within the VTA (Hahn et al 2009). In addition, a history of cocaine 

use is required for CRF regulation of DA and glutamate release within the VTA (Wang et 

al., 2005).      
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We observed a gross increase in CRFR1 expression throughout the caudal VTA. 

However, the VTA consists of not only dopaminergic cells, but also GABAergic and 

glutamatergic cells. It would be interesting to see whether the increase in CRFR1 

expression occurs in any specific cell type. Furthermore, it is important to determine 

whether the increase in CRFR1 expression is observed in any specific cell type that 

projects to either the prelimbic cortex, or the nucleus accumbens. While we did not 

explore specific projecting patterns, we did observe an increase that was specific to the 

caudal VTA. This is important because recent research has suggested that the caudal 

medial VTA contains DA neurons that specifically project into the prelimbic cortex 

(Lammel et al 2014, Lammel et al 2012). Recent research has shown that CRF expression 

is increased in the caudal, but not rostral, VTA of nicotine-dependent mice (Grieder et al 

2014). In addition, the RMTg, or the tail of the VTA, has a stress-specific GABAergic 

input onto caudal VTA DA neurons that project into the ventral striatum (Barrot et al 

2012). However, very little research has been done examining the rostral-caudal axis as it 

pertains to cocaine seeking during periods of stress. Studies have suggested that the 

rostral VTA is necessary for cocaine-taking behavior (Lee et al 2007). However, recent 

breakthroughs in rat and mouse genetics will allow us to specifically target VTA DA 

neurons that project to the prelimbic cortex, and therefore determine whether CRFR1 

activation enhances the dopaminergic projection during periods of stress. Finally, other 

factors may mediate the heightened stress-induced cocaine seeking observed following 

LgA self-administration on CRFR1 function, such as downstream signaling pathways.    

 
A VTA CRF-mediated DA projection to the prelimbic cortex is required for stress-

induced drug seeking 
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Studies have shown that dopamine receptor antagonism within the prelimbic 

cortex is necessary for stress-induced reinstatement (Capriles et al., 2003; McFarland et 

al., 2004) and that this may be due to activation of CRFR1 (Refojo et al 2011). However, 

no direct evidence has indicated that stress-induced reinstatement is dependent on 

CRFR1 activation of the mesocortical dopamine pathway or that the stress-induced 

activity within the prelimbic cortex is dependent on CRFR1 activation within the VTA. 

In chapter 4, we show that inhibition of CRFR1 within the VTA and D1 receptor 

inhibition within the prelimbic, but not infralimbic, cortex is sufficient in blocking 

footshock-induced drug seeking through a disconnection approach. While it has been 

known that stressors increase the activity of the prelimbic and the infralimbic cortex 

(Felice et al 2014, Morrow et al 2000) we have shown that a footshock stressor 

significantly augments Fos reactivity within the prelimbic cortex in long-access animals 

compared to saline and short-access animals, and this effect was not observed in the 

infralimbic cortex. Interestingly, the stress-induced increase in Fos activity was blocked 

by administration of an intra-VTA CRFR1 antagonist.  
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This suggests that during periods of stress, CRFR1 activation within the VTA 

recruits a subset of VTA neurons to enhance the activity of prelimbic cortex (Figure 4.4)	  . 

This is similar to an early finding that showed that a restraint stress specifically increased 

Fos activity in DA neurons that project into the prelimbic cortex (Deutch et al 1991). 

Unfortunately, we cannot definitively state that VTA DA neurons are the sole driving 

force for the increase in prelimbic Fos reactivity. VTA GABAergic neurons may be 

driving the stress-dependent effect. In addition, studies have suggested that CRF may also 

decrease the activity of VTA DA neurons that project into the accumbens (Twining et al., 

2015), possibly through an interaction between CRFR1 and GABAB mediated inhibition 

by activating GIRK channels (Blacktop et al., 2015; Beckstead et al., 2009) (figure 4.3).  

 
The role of the prelimbic and infralimbic cortex in relapse 
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Figure 4.3: CRF enhances excitatory neurotransmission within the VTA. CRF 
has been shown to directly excite dopamine neurons in the VTA by either 
direct or indirect mechanism through post-synaptic trafficking of NMDA and 
AMPA receptors. Furthermore, repeated cocaine exposure has been shown to 
enhance AMPA mediated spontaneous miniature EPSC. Furthermore, CRF 
promotes GABA release via a presynaptic CRFR1 activation as well as 
exciting intrinsic GABA interneurons. In addition, through a CRFR1/GABAB 
receptor interaction, CRF promotes IPSC currents in VTA DA cells that we 
think project into the nucleus accumbens, because antagonism of CRFR1 
prevented a stress-induced drop in accumbal DA release.      !
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 Although shock increased Fos in the infralimbic cortex, the Fos response in the 

prelimbic cortex was much more robust and was more pronounced in long-access rats 

that displayed stress-induced reinstatement of cocaine seeking. This is not surprising 

because previous studies have suggested that prelimbic glutamate input into the nucleus 

accumbens core is involved in extinguished drug seeking to drugs, cues, and a footshock 

stressor (Capriles et al 2003, Cornish et al 1999, LaLumiere & Kalivas 2008, McFarland 

et al 2004). The infralimbic cortex sends a glutamatergic projection into the shell of the 

nucleus accumbens that is thought to be involved in extinction learning (LaLumiere et al 

2010, LaLumiere et al 2012). Furthermore, it has been shown that the glutamatergic 

projection from the infralimbic cortex to the shell of the accumbens regulates suppression 

of drug seeking (Peters et al 2009, Peters et al 2008). Specifically, inactivation of the 

infralimbic cortex, or the shell of the nucleus accumbens reinstates drug seeking in the 

absence of drugs, cue, or stressful triggers (Peters et al 2008). This is surprising because 

we show that a footshock stressor increases the activity of the infralimbic cortex, though 

to a lesser degree than the prelimbic cortex.  
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The role of the infralimbic cortex as a stop pathway has been recently challenged 

(Moorman et al 2014). Studies have shown that both the infralimbic and prelimbic cortex 

display rapid, stimulus-evoked activity changes that are closely linked to contextually 

appropriate behaviors. This was shown to be independent of whether the behavior 

involved execution or inhibition (Moorman & Aston-Jones 2015). Other studies have 

shown that activity is increased in the infralimbic cortex following both cue- and context-

induced cocaine, and heroin seeking (Moorman et al 2014). Therefore, our results may 

Core!

VTA!

Prelimbic !

Figure 4.4: D1R activation enhances the likelihood of pyramidal 
neuron activation by increasing the NMDA/AMPA ratio. During 
periods of stress, D1R activation will lead to activation of the 
cortico accumbens pathway which mediates stress-induced 
relapse.   !

!"#"$%
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suggest that within extended access cocaine use, the activity within the infralimbic cortex 

may be changed as well. However, our results from chapter 4 have indicated that D1R-

mediated DA activity within the infralimbic cortex, as it relates to CRFR1-dependent 

activation of VTA DA neurons, is not involved in stress-induced reinstatement since a 

disconnection between VTA CRFR1 and infralimbic D1R did not block stress-induced 

reinstatement.     

 
Conclusion 

  
 

The impact of stress on cocaine relapse is very complex. Not only do we report a 

beta-2 AR-mediated CRF-dependent activation of a CRFergic afferent pathway from the 

bed nucleus of the stria terminalis to the ventral tegmental area is necessary for stress-

induced relapse, we also report that animals with a history of extended access cocaine use 

are susceptible to reinstatement to a stressor by the recruitment of the mesocortical DA 

pathway to the prelimbic cortex. This recruitment may be partially due to an increase in 

CRFR1 expression within in the VTA that is specific to extended cocaine use. Human 

studies have already shown that clonidine can prevent cocaine craving during periods of 

stress in humans (Jobes et al 2011). While other studies have shown that polymorphisms 

in genes that encode the CRF receptors is associated with exacerbated stress responses 

and the propensity to develop drug addiction (Blomeyer et al 2008, Clarke & Schumann 

2009, De Luca et al 2007, Enoch et al 2008, Treutlein et al 2006), we still do not 

understand the microcircuitry of CRF signaling within the VTA. Thus, future directions 

for investigating the mechanisms by which CRF controls stress-related drug use should 

focus on mapping CRF circuitry within the VTA to determine the mechanism by which 
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CRF may activate, or inhibit specific dopaminergic projections. This can be achieved by 

determining the cellular location of CRFR1 and CRFR2 receptors within the VTA in 

animals with a history of extended cocaine access. Currently, novel tools are being 

developed to determine the microcircuitry within the VTA.       
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APPENDIX 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Drug	  	   Action	  	  
Antalarmin	  	   Antagonist	  at	  CRFR1	  
Antisauvagine	   Antagonist	  at	  CRFR2	  
Betaxolol	  	   Antagonist	  at	  Beta-‐1AR	  
BRL	  44408	   Antagonist	  at	  Alpha-‐2AR	  (2α)	  
Clenbuterlol	  	   Agonist	  at	  Beta-‐2AR	  
Clonidine	  	  	   Agonist	  at	  Alpha-‐2AR	  
CP	  154,526	   Antagonist	  at	  CRFR1	  
Dobutamine	  	   Agonist	  at	  Beta-‐2AR	  
Guanfacine	  	   Agonist	  at	  Alpha-‐2A	  (2α)	  
ICI	  118,551	   Antagonist	  at	  Beta-‐2AR	  
Isoproterenol	   Agonist	  at	  Beta-‐1AR	  and	  Beta-‐2AR	  	  
Kynurenic	  Acid	  	   Antagonist	  at	  AMPA,	  NMDA,	  and	  Kianate	  Receptors	  	  
Prazosin	   Antagonist	  at	  Alpha-‐1AR	  	  
Propranolol	  	   Antagonist	  at	  Beta-‐1AR	  and	  Beta-‐2AR	  
SCH	  23390	   Antagonist	  at	  D1R	  	  

Yohimbine	  	  
Antagonist	  at	  Alpha2-‐AR	  

	  (2α,	  alpha1αAR,	  5HT:	  1A,1,B,1D,1F,2B	  and	  D2)	  
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List of abbreviations  
 

Abbreviations Name 
AC Anterior Commissure  

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
AR Adrenergic Receptor  

BNST Bed Nucleus of the Stria Terminalis  
CPP Conditioned place preference 
CRF Corticotropin releasing factor 

CRFR Corticotropin releasing factor receptor 
CTb Cholera Toxin B 
DA Dopamine  

EPSC Excitatory Postsynaptic Current 
GABA Gamma -Aminobutyric Acid 

IL Infralimbic Cortex 
IPSC Inhibitory Postsynaptic Current 
MSN Medium spiny neurons 
Nacc Nucleus Accumbens 
NE Norepinephrine 

NMDA N-methyl-D-aspartate receptor  
PFC Prefrontal Cortex 
PL Prelimbic Cortex 
SA Self-Administration  
VP Ventral Pallidum  

VTA Ventral Tegmental Area 
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