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Abstract 

Stress-induced reinstatement of cocaine seeking requires corticotropin 

releasing factor (CRF) actions in the ventral tegmental area (VTA). However 

the mechanisms through which CRF regulates VTA function to promote 

cocaine use are not fully understood. Here we examined the role of GABAergic 

neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in 

the reinstatement of extinguished cocaine seeking by a stressor, 

uncontrollable intermittent footshock, or bilateral intra-VTA administration of 

CRF. Rats underwent repeated daily cocaine self-administration 

(1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for 

reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 

40 s; range 10–70 s) or intra-VTA CRF delivery (500 ng/side) following intra-

VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B 

antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 

20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at 

either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) 

prevented reinstatement by both footshock and intra-VTA CRF at a 

concentration that failed to attenuate food-reinforced lever pressing (45 mg 

sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These 

data suggest that GABA-B receptor-dependent CRF actions in the VTA 

mediate stress-induced cocaine seeking and that GABA-B receptor 

antagonists may have utility for the management of stress-induced relapse in 
cocaine addicts. 

Keywords: Stress; Relapse; Reinstatement; GABA-B receptors; Ventral 

tegmental area; Cocaine 

1. Introduction 

Understanding the mechanisms that contribute to relapse to 

drug use in cocaine addicts is critical for the development of new and 
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more effective treatment approaches for managing addiction. In rats, 

relapse can be studied using reinstatement models in which the ability 

of a stimulus to re-establish or reinstate cocaine seeking behavior in 

rats or mice following extinction is used as an indicator of its likelihood 

to promote relapse to use in human addicts (Mantsch et al., 2015). 

Many of the same stimuli that contribute to drug use in humans 

(stress, drug-associated cues, drug re-exposure), reinstate cocaine 

seeking following self-administration (SA) and extinction in rats. 

Among the triggers for relapse, stress is particularly problematic 

due to its unpredictable and often uncontrollable nature. Reports from 

cocaine users that relapse is frequently related to the onset of stressful 

life events are supported by laboratory findings demonstrating that 

personalized scripts that relay stress-related imagery can precipitate 

craving in cocaine-dependent individuals (Sinha et al., 1999). In rats, 

it has been reported that a number of stressors can reinstate 

extinguished cocaine seeking following intravenous self-administration 

(see Mantsch et al., 2015 for review). However, most studies 

investigating stress-induced relapse in rats have used electric 

footshock delivered through the grid floor of the operant conditioning 

chambers as the reinstating stressor. Notably, we have previously 

reported that, like stress imagery in human addicts (Fox et al., 2005), 

the ability of footshock to reinstate cocaine seeking in rats increases 

according to the amount of prior drug intake (Mantsch et al., 2008). 

Several studies have demonstrated that stress-induced 

reinstatement of cocaine seeking requires corticotropin-releasing factor 

(CRF) actions in the ventral tegmental area (VTA; Wang et al., 2005, 

Wang et al., 2007, Blacktop et al., 2011, Chen et al., 

2014 and Vranjkovic et al., 2014) and that intra-VTA CRF 

administration is sufficient to reinstate cocaine seeking following SA 

and extinction in rats (Wang et al., 2005 and Blacktop et al., 2011). 

However, the downstream processes in the VTA through which CRF 

promotes drug use are unclear. Mechanistic studies have focused on 

CRF regulation of glutamatergic neurotransmission in the VTA (Wise 

and Morales, 2010). In the VTA, CRF has been reported to increase 

glutamate release as measured by both in vivo microdialysis ( Wang 

et al., 2005) and spontaneous EPSCs in slice preparations ( Hahn 

et al., 2009 and Williams et al., 2014), as well as post-synaptic 

excitability through increases in AMPA:NMDA receptor ratios ( Ungless 
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et al., 2003 and Hahn et al., 2009). Moreover, intra-VTA perfusion 

with kynurenic acid, which has a pharmacological profile that includes 

AMPA and NMDA receptor antagonism, prevents reinstatement in 

response to either footshock or intra-VTA CRF (Wang et al., 2005). 

However, the actions of stress and CRF in the VTA are complex 

and appear to also include, under some circumstances, inhibition of 

neuronal activity (Ungless et al., 2004, Wanat et al., 2013 and Twining 

et al., 2015) or terminal neurotransmitter release (Williams et al., 

2014). The VTA receives dense GABAergic inputs from a number of 

regions, including the nucleus accumbens (Yim and Mogenson, 1980, 

Xia et al., 2011 and Bocklisch et al., 2013) and bed nucleus of the stria 

terminalis (Kudo et al., 2012), both of which have been implicated in 

stress-induced cocaine seeking in rats (Erb and Stewart, 1999, 

McFarland et al., 2004 and Vranjkovic et al., 2014). Additionally, the 

VTA contains GABAergic interneurons that regulate efferent neuronal 

projections from the region (Steffensen et al., 1998 and Cruz et al., 

2004) and dense GABAergic innervation from the rostromedial 

tegmental nucleus (i.e., tail of the VTA; Jhou et al., 2009, Matsui and 

Williams, 2011 and Barrot et al., 2012). It has also been reported that 

CRF promotes GABAergic neurotransmission within the VTA. For 

example, CRF application to the VTA in ex vivo slice preparations 

promotes GABA-B regulation of G protein-coupled inwardly-rectifying 

potassium (GIRK) channels on dopamine cells ( Beckstead et al., 

2009). Despite these findings, the effects of GABA receptor 

antagonism in the VTA on stress-induced reinstatement have not been 

reported. 

In the present study we investigate the potential contribution of 

GABAA and GABAB receptors in the VTA to the reinstatement of 

extinguished cocaine seeking in response to footshock or delivery of 

CRF into the VTA following self-administration. Rats with a history of 

daily self-administration that results in robust shock and intra-VTA 

CRF-induced reinstatement following extinction (14 × 6 h/day; 

1 mg/kg/inf) received intra-VTA injections of the GABAA receptor 

antagonist, bicuculline, or the GABAB receptor antagonist, 2-

hydroxysaclofen, prior to reinstatement testing. Notably, in contrast to 

previous work targeting VTA GABA receptors which used a cocktail of 

receptor agonists (baclofen/muscimol; McFarland et al., 2004), the 

present study uses receptor selective antagonists, thereby permitting 
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1) assessment of the contribution of GABAA vs. GABAB receptors and 

2) the regulation of cocaine seeking through GABAergic signaling that 

is engaged by CRF and/or during stress. 

2. Methods 

2.1. Subjects 

Adult male Sprague–Dawley rats (Harlan Laboratories, St. Louis, 

MO) were housed individually under a 12 h/12 h reversed light/dark 

cycle (lights on at 7:00 PM) in a temperature and humidity controlled 

AAALAC-accredited animal facility. All procedures were approved by 

the Marquette University IACUC and carried out in accordance with the 

NIH Guide for the Care and Use of Laboratory Animals. 

2.2. Catheter and cannula implantation 

For the reinstatement studies, rats were implanted with chronic 

indwelling jugular catheters under ketamine HCl (100 mg/kg, ip) and 

xylazine (2 mg/kg, ip) anesthesia and with bilateral 2.1-cm 23 gauge 

guide cannulae aimed at the VTA for intracranial injections as 

previously described (Blacktop et al., 2011 and Vranjkovic et al., 

2014). The tips of the guide cannulae were aimed 0.5 mm above the 

target injection site (the posterior VTA) using the following coordinates 

determined from Paxinos and Watson (2007): 12° angle away from 

midline; A/P − 5.6 mm from bregma; M/L ± 2.2 mm from midline; 

and D/V − 6.7 mm from the skull surface. Placements for cannula 

targeting the VTA for rats from each of the experiments are depicted 

in Fig. 1. 

 
Fig. 1. Intracranial injection sites. Panels represent atlas diagrams (coronal 
sections −5.6, −5.8 and −6.1 mm relative to Bregma; Paxinos and Watson, 2007) 
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depicting injection sites from rats included in experiments in which effects of VTA 

injections of 1 ng/side (closed circles), 10 ng/side (open circles), or 20 ng/side (open 
triangles) bicuculline on CRF- and shock-induced cocaine seeking were tested (left); 
rats included in experiments in which effects of VTA injections of 0.2 μg/side (closed 

circles) or 2 μg/side (open squares) 2-hydroxysaclofen on CRF- and shock-induced 
cocaine seeking were tested and rats with injections outside of the VTA used as 
anatomical controls (center; closed triangles); and rats included in the experiments 
testing for effects on food-reinforced lever pressing (right; closed circles). 

2.3. Drugs 

Cocaine HCl was provided by the National Institute on Drug 

Abuse through the Drug Supply Program. CRF was purchased from 

Sigma–Aldrich and was administered at a concentration of 500 ng/side 

(Blacktop et al., 2011) dissolved in artificial cerebral spinal fluid (aCSF; 

0.25 μl/side). The GABAA receptor antagonist (−)-bicuculline 

methiodide was purchased from Tocris Bioscience and was 

administered at doses of 1, 10 and 20 ng/side (0.002 and 0.02 and 

0.04 nmol/side) dissolved in aCSF (0.25 μl/side). The doses used were 

selected based on prior reports assessing VTA effects (Sandner et al., 

1996, Trojniar and Klejbor, 1999, Laviolette and van der Kooy, 2001, 

Grubb et al., 2002, Echo et al., 2002 and Lavezzi et al., 2015). The 

occurrence of seizures prevented testing for effects of higher doses. 

The GABAB receptor antagonist 2-hydroxysaclofen was also purchased 

from Tocris Bioscience and was administered at doses of 0.2 and 

2 μg/side (0.75 and 7.5 nmol/side) dissolved in aCSF (0.25 μl/side). 

The doses used were also selected based on prior reports assessing 

VTA effects (Xi and Stein, 1999, Echo et al., 2002, Ackerman et al., 

2003 and Miner et al., 2010). 

2.4. Cocaine self-administration/extinction 

After recovery from surgery, rats were trained to self-administer 

cocaine (1.0 mg/kg/inf, iv) by pressing a lever under a fixed ratio 1 

schedule during daily 2-h sessions, within which the active (i.e., front) 

lever was extended into the chamber and the corresponding stimulus 

light was illuminated. Pressing the lever resulted in an iv infusion of 

cocaine solution (200 μl over 5 s) followed by a 25-s time-out period 

during which the stimulus light was extinguished but the lever 

remained extended. Responding on a second, inactive (i.e., back) 

lever was recorded but had no programmed consequences. Response 

requirements were gradually increased until rats displayed stable 

http://dx.doi.org/10.1016/j.neuropharm.2015.11.013
http://epublications.marquette.edu/
http://topics.sciencedirect.com/topics/page/Ventral_tegmental_area
http://topics.sciencedirect.com/topics/page/Bicuculline
http://topics.sciencedirect.com/topics/page/Corticotropin-releasing_hormone
http://topics.sciencedirect.com/topics/page/Cocaine
http://topics.sciencedirect.com/topics/page/Cocaine
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib8
http://topics.sciencedirect.com/topics/page/Gamma-Aminobutyric_acid
http://topics.sciencedirect.com/topics/page/Receptor_antagonist
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib62
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib62
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib71
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib39
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib29
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib25
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib38
http://topics.sciencedirect.com/topics/page/Receptor_antagonist
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib87
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib25
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib1
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib1
http://www.sciencedirect.com/science/article/pii/S0028390815301775#bib49


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuropharmacology, Vol 102 (March 2016): pg. 197-206. DOI. This article is © Elsevier and permission has been granted 
for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

7 

 

responding (within 10% of the mean over 3 consecutive sessions) 

under an FR4 schedule at which time they were allowed to self-

administer cocaine six hours daily for 14 consecutive days. We have 

previously found that robust reinstatement of cocaine seeking in 

response to either footshock or intra-VTA CRF is only observed when 

rats are tested after self-administration under these “long-access” 

conditions (Mantsch et al., 2008 and Blacktop et al., 2011). After the 

14-day self-administration test period rats underwent extinction during 

ten consecutive 2-h sessions within which the cocaine solution was 

replaced by saline. As was the case during self-administration, the 

drug lever stimulus light was illuminated during the extinction session 

except during the post-infusion “time-out” period. Once rats displayed 

less than 20 responses/session over two consecutive sessions under 

extinction conditions, reinstatement testing was initiated. 

2.5. Reinstatement testing 

After extinction, rats were tested for the effects of intra-VTA 

pretreatment with either bicuculline (GABAA antagonist) or 2-

hydroxysaclofen (GABAB antagonist) on reinstatement in response to 

electric footshock or bilateral intra-VTA CRF injections. Separate 

groups of rats were tested for the effects of 1 ng, 10 or 20 ng/side 

bicuculline or 0.2 or 2 μg/side 2-hydroxysaclofen. Each rat was tested 

for reinstatement in response to shock and intra-VTA CRF following 

intra-VTA vehicle and drug pretreatment (four reinstatement tests 

total). The two-hour reinstatement sessions were otherwise identical 

to the extinction sessions (i.e., the drug lever stimulus light was 

illuminated except during the post-infusion “time-out” period). 

Consecutive reinstatement sessions were always separated by 

additional extinction training and rats were required to display less 

than 20 cocaine lever responses during an intervening extinction 

session in order to be tested again for reinstatement. The sequence of 

reinstatement testing (shock and CRF) was counterbalanced across 

rats such that some rats were tested for effects on shock-induced 

reinstatement first, while others were tested for CRF-induced 

reinstatement first. All microinfusions were delivered in a volume of 

0.25 μl/side over a 1-min period with an additional 1-min period to 

allow for drug diffusion, ten minutes prior to the reinstatement 

session. In addition to testing for the effects of GABA receptor 
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antagonists on shock- and CRF-induced cocaine seeking, the effects of 

intra-VTA administration of bicuculline and 2-hydroxysaclofen in the 

absence of shock or CRF were assessed in separate groups of rats. 

2.6. Shock-induced reinstatement of cocaine seeking 

To determine the contribution of VTA GABAA and GABAB 

receptors to stress-induced cocaine seeking, rats were tested for the 

ability of electric footshock, delivered though the stainless steel grid 

floors of the self-administration chambers, to reinstate cocaine seeking 

following pretreatment with bilateral antagonist drug injections into 

the VTA ten minutes prior to shock. During the 15-min footshock 

period, the houselight was illuminated and the levers were retracted 

and stimulus lights extinguished. Shocks (0.5 mA, 0.5” duration) were 

delivered an average of every 40 s (range 10–70 s). Immediately 

following the shock period, the houselight was extinguished and the 

active and inactive levers were extended into the chamber and the 

active lever stimulus light was illuminated (conditions identical to both 

self-administration and extinction). We have reported that these 

parameters produce robust footshock-induced reinstatement under the 

self-administration conditions used (Mantsch et al., 2008). Each rat 

was tested twice for shock-induced reinstatement in counter-balanced 

sequence: once following intra-VTA drug delivery and once following 

intra-VTA vehicle administration. 

2.7. CRF-induced reinstatement of cocaine seeking 

Rats were also tested for reinstatement in response to bilateral 

intra-VTA injections of CRF. Ten minutes after VTA administration of 

bicuculline, 2-hydroxysaclofen or vehicle, rats received bilateral 

injections with CRF (500 ng/side delivered a volume of 0.25 μl/side 

over a 1-min period ten minutes prior to reinstatement testing). Each 

rat was tested twice for CRF-induced reinstatement in counter-

balanced sequence: once following intra-VTA drug delivery and once 

following intra-VTA vehicle administration. We have previously 

reported that this CRF concentration produces robust reinstatement 

under the self-administration conditions used (Blacktop et al., 2011). 

Moreover, CRF delivery via cannula placed into regions adjacent to the 

VTA failed to reinstate cocaine seeking (n = 5; extinction responses/2-
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h session: 11.2 ± 1.59; CRF-induced responses/2-h session: 

8.8 ± 1.39). 

2.8. Testing for effects on food-reinforced lever 

pressing 

In order to confirm that the effects of intra-VTA injections on 

reinstatement were not attributable to non-specific motor impairment, 

separate groups of rats were tested for effects on sucrose pellet-

reinforced lever pressing. These rats were maintained at 90% of their 

free-feeding body weights and trained to self-administer 45 mg 

sucrose-sweetened food pellets (BioServ) by pressing a response lever 

under a FR4 schedule of reinforcement during 30-min sessions. Once 

stable response patterns were observed (responding within 10% of the 

mean over 3 sessions), rats were tested for the effects of intra-VTA 

delivery of 2-hydroxysaclofen, as described above, on responding. 

2.9. Histological confirmation of injection sites 

The accuracy of cannula implantation was confirmed 

postmortem in each rat after cardiac perfusion with 60-ml NaCl 

followed by 60-ml 2.5% buffered neutral formalin under sodium 

barbital anesthesia (55 mg/kg). Brains were removed and stored in 

2.5% buffered formalin for at least one day. 200-μm sections were cut 

using a vibrotome, slide-mounted, and stained with cresyl violet for 

placement confirmation using a light microscope. Rats with injection 

sites outside of the VTA were excluded from the primary analysis and 

combined into a separate “missed placement” group for assessment of 

anatomical specificity of drug effects on shock-induced cocaine 

seeking. 

2.10. Statistical analyses 

The effects of each drug/dose combination on CRF and shock-

induced reinstatement were analyzed separately using 2-way repeated 

measure ANOVA with reinstatement (responding during the 

reinstatement session vs. the preceding extinction session) and intra-

VTA drug treatment (drug vs. vehicle) as factors. A similar analysis 

was used to assess effects on food-reinforced responding (2-way 
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repeated measures with reinforced lever pressing and drug treatment 

as factors). Analysis of drug effects alone consisted of comparison with 

the prior extinction session using paired t-tests. Statistical analyses 

were conducted using SPSS statistics software. For all analyses, 

statistical significance was defined as p < 0.05. 

3. Results 

3.1. Placements 

The sites of injections for rats tested for the effects of intra-VTA 

drug injections and for anatomical control rats are depicted in Fig. 1. 

3.2. SA and extinction 

Cocaine self-administration and extinction in rats used for each 

experiment are shown in Table 1 and were comparable across groups. 

Moreover, the numbers of sessions required for acquisition of cocaine 

self-administration, total cocaine intake across all self-administration 

sessions and the numbers of sessions needed to reach the extinction 

criteria did not differ across groups (data not shown). 

Table 1. Cocaine self-administration and extinction in each group of rats that 

underwent reinstatement testing. Data represent infusions/6-h session 

(±S.E.) on days 1 and 14 of self-administration and responses/2-h session 

(±S.E.) during the final extinction session prior to starting reinstatement 

testing in separate groups of rats tested for effects of intra-VTA bicuculline (1, 

10, or 20 ng/side) or 2-hydroxysaclofen (0.2 or 2 μg/side) on shock and CRF-

induced reinstatement. 

Intra-VTA pretreatment 

group 

Infusions/6-h session (±S.E.) 

 

Responses/2-h session 

(±S.E.) 

SA Day 1 SA Day 14 Last Ext Day 

Bicuculline (1 ng/side) 83.75 (±8.66) 92.75 (±14.07) 10.38 (±1.24) 

Bicuculline (10 ng/side) 79.00 (±7.57) 96.00 (±11.48) 14.57 (±3.46) 

Bicuculline (20 ng/side) 61.38 (±7.80) 83.00 (±17.21) 12.50 (±1.76) 

2-hydroxysaclofen 

(0.2 μg/side) 

70.80 (±3.81) 86.4 (±5.56) 10.20 (±1.56) 

2-hydroxysaclofen (2 μg/side) 72.22 (±3.27) 82.44 (±4.23) 6.22 (±1.54) 
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3.3. Intra-VTA injections of 2-hydroxysaclofen or 

bicuculline do not reinstate cocaine seeking 

Neither intra-VTA 2-hydroxysaclofen nor intra-VTA bicuculline 

injections induced cocaine-seeking behavior. Cocaine seeking following 

intra-VTA injections of bicuculline (10 or 20 ng/side; n = 4/dose) or 2-

hydroxysaclofen (0.2 or 2 μg/side; n = 5/dose) is shown in Fig. 2. 

Separate 2-way ANOVAs failed to show overall increases in responding 

(i.e., reinstatement) relative to extinction, effects of intra-VTA drug 

dose or reinstatement × dose interactions. 

 
Fig. 2. Intra-VTA injections of bicuculline or 2-hydroxysaclofen do not induce cocaine 

seeking. Data represent responding (lever presses/2-h session ±S.E.) recorded during 
reinstatement testing following intra-VTA injections of vehicle and bicuculline (BIC; 10 
or 20 ng/side;A) or 2-hydroxysaclofen (2-HS; 0.2 or 2 μg/side; B) and responding 
during the corresponding previous extinction (Ext) sessions. 

3.4. Effects of intra-VTA bicuculline injections on shock- 

and intra-VTA CRF-induced reinstatement 

Antagonism of GABAA receptors in the VTA failed to alter stress- 

or intra-VTA CRF-induced cocaine seeking. The effects of intra-VTA 

injections of three bicuculline concentrations (1 ng/side, 10 ng/side, 

and 20 ng/side) on shock-induced cocaine seeking were tested and are 

shown in Fig. 3. Consistent with other reports (e.g., Echo et al., 2002) 

we were unable to administer higher concentrations due to the 

emergence of seizures. Separate 2-way repeated measures 

(reinstatement × drug treatment) ANOVAs were conducted for each 

bicuculline dose. In all cases, shock-induced reinstatement was not 
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altered by intra-VTA bicuculline. At each bicuculline concentration, 

significant shock-induced reinstatement was observed (1 ng/side: 

F1,5 = 9.967, P < 0.05, n = 6; 10 ng/side: F1,4 = 42.631 P < 0.01, 

n = 5; 20 ng/side: F1,3 = 33.178 P = 0.01, n = 4). However significant 

effects of VTA bicuculline administration or significant 

bicuculline × reinstatement interactions were not found. 

 
Fig. 3. Effects of intra-VTA bicuculline injections on stress-induced reinstatement. 
Data represent responding (lever presses/2-h session ±S.E.) recorded during 
reinstatement testing following electric footshock (0.5 mA, 0.5″ shocks delivered an 
average of every 40 s over a 15-min period) in rats pretreated with intra-VTA 
injections of vehicle or 1 ng/side (A), 10 ng/side (B), or 20 ng/side (C) concentrations 
of the GABAA receptor antagonist, bicuculline (BIC), and responding during the 

previous extinction (Ext) session. Shock reinstated cocaine seeking regardless of 
whether rats were pretreated with vehicle or intra-VTA bicuculline (*P < 0.05 overall 
shock reinstatement effect vs. Ext but no effect of BIC or shock × BIC interaction). 

The effects of intra-VTA injections of the three bicuculline 

concentrations (1 ng/side, 10 ng/side, and 20 ng/side) on cocaine 

seeking in response to bilateral intra-VTA CRF injections (500 ng/side) 

are shown in Fig. 4. Separate 2-way repeated measures 

(reinstatement × drug treatment) ANOVAs were conducted for each 

bicuculline concentration. As was the case with shock, CRF-induced 

reinstatement was not altered by intra-VTA bicuculline. At each 

bicuculline concentration, significant CRF-induced reinstatement was 

observed (1 ng/side: F1,5 = 35.698, P = 0.001, n = 6; 10 ng/side: 

F1,4 = 15.896, P < 0.05, n = 5; 20 ng/side: F1,3 = 271.75, P < 0.001, 

n = 4). However significant effects of bicuculline administration or 

significant bicuculline × reinstatement interactions were not found. 
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Fig. 4. Effects of intra-VTA bicuculline injections on CRF-induced reinstatement. Data 
represent responding (lever presses/2-h session ±S.E.) recorded during reinstatement 

testing following bilateral intra-VTA administration of CRF (500 ng/side) in rats 
pretreated with intra-VTA injections of vehicle or 1 ng/side (A), 10 ng/side (B), or 

20 ng/side (C) concentrations of the GABAA receptor antagonist, bicuculline (BIC), and 
responding during the previous extinction (Ext) session. Intra-VTA CRF reinstated 
cocaine seeking regardless of whether rats were pretreated with vehicle or intra-VTA 
bicuculline (*P < 0.05 overall CRF reinstatement effect vs. Ext but no effect of BIC or 
CRF × BIC interaction). 

3.5. Effects of intra-VTA 2-hydroxysaclofen injections 

on shock- and intra-VTA CRF-induced reinstatement 

In contrast to bicuculline, bilateral injections of the GABAB 

receptor antagonist, 2-hydroxysaclofen, into the VTA prevented 

reinstatement in response to either shock delivery or intra-VTA CRF. 

The effects of intra-VTA injections of the two 2-hydroxysaclofen 

concentrations tested (0.2 μg/side and 2 μg/side) on shock-induced 

cocaine seeking are shown in Fig. 5. Separate 2-way repeated 

measures (reinstatement × drug treatment) ANOVAs were conducted 

for each 2-hydroxysaclofen concentration. In both cases significant 

overall shock-induced reinstatement (0.2 μg/side: F1,4 = 153.84, 

P < 0.001, n = 5; 2 μg/side: F1,7 = 14.322, P < 0.01, n = 8) and 

significant interactions between 2-hydroxysaclofen and shock-induced 

reinstatement (0.2 μg/side: F1,4 = 91.274, P = 0.001, n = 5; 

2 μg/side: F1,7 = 6.666, P < 0.05) were observed. Post-hoc testing 

showed that there was significant shock-induced reinstatement in rats 

pretreated with intra-VTA vehicle (P < 0.05) but not with either 2-

hydroxysaclofen dose. Moreover, reinstatement following intra-VTA 2-

hydroxysaclofen was significantly lower than following vehicle (0.2 

μg/side, P < 0.05; 2 μg/side, P = 0.05). 
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Fig. 5. Effects of intra-VTA 2-hydroxysaclofen injections on shock-induced 
reinstatement. Data represent responding (lever presses/2-h session ±S.E.) recorded 
during reinstatement testing following electric footshock (0.5 mA, 0.5″ shocks 

delivered an average of every 40 s over a 15-min period) in rats pretreated with intra-
VTA injections of vehicle or 0.2 μg/side (A) or 2 μg/side (B) of the GABAB receptor 

antagonist, 2-hydroxysaclofen (2-HS) and responding during the previous extinction 
(Ext) session. Shock reinstated cocaine seeking following vehicle (0 μg/side) 
pretreatment (*P < 0.05 vs. Ext) but not following injections of 0.2 or 2 μg/side 2-
hydroxysaclofen into the VTA. Moreover, lever pressing during the reinstatement 
session following shock delivery was significantly lower in rats that received intra-VTA 

injections of 0.2 or 2 μg/side 2-hydroxysaclofen relative to rats pretreated with vehicle 
(#P < 0.05 vs. 0 μg/side). By contrast, in rats with misplaced cannula that received 2-
hydroxysaclofen injections into brain regions adjacent to the VTA, 2-hydroxysaclofen 
(2 μg/side) failed to affects shock-induced reinstatement of cocaine seeking (C). 

To confirm anatomical localization of 2-hydroxysaclofen effects 

to the VTA, we also examined shock-reinstatement in a separate group 

of rats that received 2 μg/side 2-hydroxysaclofen injections via guide 

cannula implanted into regions adjacent to the VTA (n = 5; Fig. 5C). 

2-hydroxysaclofen had no effect on shock-induced reinstatement in 

these rats. A 2-way ANOVA showed a significant overall reinstatement 

effect (F1,4 = 109.606, P < 0.001) but no effect of 2-hydroxysaclofen 

and no reinstatement × 2-hydroxysaclofen interaction. 

The effects of intra-VTA injections of the two 2-hydroxysaclofen 

concentrations (0.2 μg/side and 2 μg/side) on cocaine seeking in 

response to intra-VTA CRF are shown in Fig. 6. As was the case with 

shock, significant overall intra-VTA CRF-induced reinstatement 

(500 ng/side: F1,4 = , P < 0.001, n = 5; 2 μg/side: F1,7 = , P < 0.01, 

n = 8) and significant interactions between 2-hydroxysaclofen and 

CRF-induced reinstatement (0.2 μg/side: F1,4 = P = 0.001, n = 5; 

2 μg/side: F1,7 = , P < 0.05) were observed. Post-hoc testing showed 

that there was significant CRF-induced reinstatement in rats pretreated 

with intra-VTA vehicle (P < 0.05) but not but not with either 2-

hydroxysaclofen dose. Additionally, reinstatement following intra-VTA 
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2-hydroxysaclofen was significantly lower than that observed following 

vehicle pretreatment (0.2 μg/side, P < 0.05; 2 μg/side, P = 0.05). 

 
Fig. 6. Effects of intra-VTA 2-hydroxysaclofen injections on CRF-induced 
reinstatement of extinguished cocaine seeking. Data represent responding (lever 
presses/2-h session ±S.E.) following bilateral intra-VTA administration of CRF 
(500 ng/side) in rats pretreated with intra-VTA injections of vehicle or the 0.2 μg/side 
(A) or 2 μg/side (B) concentration of the GABAB receptor antagonist, 2-
hydroxysaclofen (2-HS) and responding during the previous extinction (Ext) session. 

Intra-VTA CRF reinstated cocaine seeking following vehicle (0 μg/side) pretreatment 
(*P < 0.05 vs. Ext) but not following pretreatment with 0.2 or 2 μg/side 2-
hydroxysaclofen. Moreover, lever pressing during the reinstatement session following 
CRF administration was significantly lower in rats pretreated with 0.2 or 2 μg/side 2-
hydroxysaclofen relative to rats pretreated with vehicle (#P < 0.05 vs. 0 μg/side). 

3.6. Effects of intra-VTA bicuculline or 2-

hydroxysaclofen injections on food-reinforced 

responding 

To determine if non-specific behavioral suppression contributed 

to effects on cocaine seeking, separate groups of rats were tested for 

effects of intra-VTA drug (10 or 20 ng/side bicuculline or 0.2 or 

2 μg/side 2-hydroxysaclofen) or vehicle administration on lever-

pressing reinforced by sucrose-sweetened food pellets during a 30-min 

session (Table 2; n = 4–6/group). Two-way testing (baseline vs. test 

session preceded by VTA injection; within subjects) × drug (drug vs. 

vehicle; between subjects) ANOVAs failed to show effects of injection 

of any of the drugs into the VTA on food-reinforced responding (no 

significant effects of testing or drug or testing × drug interactions were 

observed. 
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Table 2. Effects of intra-VTA bicuculline or 2-HS injections on food-reinforced lever 

pressing. Data represent the numbers of sucrose-sweetened food pellet-reinforced 
lever presses during the 30-min session following bilateral intra-VTA injections of 
vehicle (n = 6), 10 ng/side bicuculline (n = 4), 20 ng/side bicuculline (n = 4), 0.2 μg 

2-hydroxysaclofen (n = 4), or 2 μg 2-hydroxysaclofen (n = 4) or during the preceding 
baseline session (Bas). Food-reinforced responding was not significantly altered by any 
of the VTA treatments. 

Intra-VTA 
treatment 

Vehicle 

 

Bicuculline 
(10 ng/side) 

 

Bicuculline 
(20 ng/side) 

 

2-HS 
(0.2 μg/side

) 

 

2-HS 
(2 μg/side) 

 

Bas Veh Bas Bic Bas Bic Bas 2-HS Bas 2-HS 

Responses/30 
min 

304.4 
(±17.5
) 

307.3 
(±17.9
) 

330.5 
(±28.7
) 

340.0 
(±17.9
) 

327.2 
(±28.7
) 

340.0 
(±27.6
) 

307.5 
(±15.1
) 

303.0 
(±13.7
) 

293.0 
(±25.4
4) 

286.0 
(±34.8
9) 

4. Discussion 

Our results demonstrate that intra-VTA injections of the GABAB 

receptor antagonist, 2-hydroxysaclofen, prevent reinstatement in 

response to either footshock stress or intra-VTA delivery of the 

stressor-responsive neuropeptide, CRF. These effects were observed at 

2-hydroxysaclofen doses that did not alter lever pressing reinforced by 

sucrose-sweetened food pellets and did not affect cocaine seeking in 

the absence of stress or CRF. By contrast, intra-VTA injections of the 

GABAA receptor antagonist, bicuculline across a range of doses, had no 

effects on shock- or CRF-induced reinstatement. Thus, the results 

suggest that 1) GABA release into the VTA and GABAB receptor 

activation are necessary for stress-induced cocaine seeking and 2) in 

the VTA, GABAB receptor activation is required for local CRF effects 

that underlie stress-induced cocaine seeking. 

The ventral tegmental area (VTA) is a key site at which inputs 

from a number of stress-responsive brain regions converge to regulate 

motivated behavior and reward and promote relapse to drug use in 

addicts. Understanding the mechanisms in the VTA through which 

stressors trigger cocaine use should facilitate the development of new 

and more effective treatment strategies. We and others have 

previously reported that CRF actions in the VTA are required for stress-

induced reinstatement following cocaine self-administration and that 

CRF delivery into the VTA is sufficient induce cocaine seeking (Wang 

et al., 2005, Wang et al., 2007, Blacktop et al., 2011 and Vranjkovic 

et al., 2014). These actions have been reported to involve both CRF-

R1 (Blacktop et al., 2011 and Chen et al., 2014) and CRF-R2 (Wang 
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et al., 2005 and Wang et al., 2007) receptors as well an interaction 

with the CRF binding protein (Wang et al., 2007). As is the case with 

many neuropeptides, the cellular effects of CRF in the VTA appear to 

involve a complex coordination of cellular function through a wide 

array of actions at presynaptic, postsynaptic and extrasynaptic sites. 

Much of the research examining CRF actions in the VTA has 

focused on its enhancement of excitatory neurotransmission (Wise and 

Morales, 2010). CRF directly excites dopamine and non-dopamine 

neurons in the VTA (Korotkova et al., 2006 and Wanat et al., 2008) 

and indirectly facilitates excitatory synaptic transmission in the VTA 

through post-synaptic trafficking of NMDA and AMPA receptors 

(Ungless et al., 2003 and Hahn et al., 2009) and promotion of 

glutamate release (Wang et al., 2005 and Hahn et al., 2009). Stress-

induced reinstatement following cocaine (Wang et al., 2005) or heroin 

SA (Wang et al., 2012) is associated with increased VTA glutamate 

levels, while intra-VTA delivery of kynurenic acid, an ionotropic 

glutamate receptor antagonist, prevents stress-induced reinstatement 

and corresponding increases in VTA dopamine levels (Wang et al., 

2005 and Wang et al., 2012). 

Less attention has been given to the role of VTA GABAergic 

neurotransmission in stress-induced drug seeking. Delivery of a 

combination of the GABAA receptor agonist, muscimol, and the GABAB 

receptor agonist, baclofen, into the VTA attenuates cocaine seeking in 

response to a number of stimuli, including a cocaine priming injection 

(McFarland and Kalivas, 2001), a cocaine-paired conditioned stimulus 

(Di Ciano and Everitt, 2004), and footshock stress (McFarland et al., 

2004). However, while these studies implicate the VTA in cocaine 

seeking, they provide limited mechanistic information regarding the 

precise role of GABA as they do not differentiate between the 

contributions of GABAA versus GABAB receptors and since, in contrast 

to agonist-based approaches, they do not differentiate between 

GABAergic mechanisms that are active during stress and those that 

are not. 

The actions of GABA in the VTA are complex. The VTA receives 

GABAergic inputs from a number of brain regions, including the 

nucleus accumbens (Yim and Mogenson, 1980 and Bocklisch et al., 

2013), periaqueductal gray (Omelchenko and Sesack, 2010), bed 
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nuclei of the stria terminalis (Kudo et al., 2012), lateral septum (Luo 

et al., 2011), laterodorsal tegmentum (Omelchenko and Sesack, 

2005), ventral pallidum (Mahler et al., 2014), and rostromedial 

tegmental area (Jhou et al., 2009, Matsui and Williams, 

2011 and Barrot et al., 2012). Moreover, VTA cell populations include 

GABAergic interneurons (Steffensen et al., 1998 and Cruz et al., 2004) 

and GABAergic projection neurons (Van Bockstaele and Pickel, 

1995 and Carr and Sesack, 2000) that may provide collateral GABA 

mediated regulation within the region (Omelchenko and Sesack, 

2009). Both GABAA and GABAB receptors are expressed on 

dopaminergic and non-dopaminergic cells in the VTA (Churchill et al., 

1992, Wirtshafter and Sheppard, 2001, Okada et al., 

2004 and Ciccarelli et al., 2012) where they can regulate excitability, 

signaling and neurotransmitter release (see Creed et al., 2014 for 

review). 

Stress-induced cocaine seeking is associated with altered 

GABAergic synaptic transmission in the VTA (Graziane et al., 2013). 

However, the mechanism through which GABAergic signaling 

contributes to cocaine seeking and its relationship to CRF has not been 

previously reported. It has been suggested that CRF-releasing 

terminals in the VTA, at least those that innervate dopamine neurons, 

are predominantly glutamatergic, based on synaptic morphology 

(Tagliaferro and Morales, 2008). However, as is the case with most 

neuropeptides, regional diffusion of CRF to sites that regulate 

GABAergic transmission is likely. CRF has been reported to promote 

inhibitory transmission in a number of other brain regions including the 

central amygdala (Nie et al., 2004, Bajo et al., 2008 and Roberto 

et al., 2010), dorsal raphe nucleus (Waselus et al., 2005 and Kirby 

et al., 2008) and bed nucleus of the stria terminalis (Kash and Winder, 

2006). In the VTA, CRF promotes GABA release via presynaptic 

receptor actions (Williams et al., 2014) as well as excitation of intrinsic 

GABA interneurons (Korotkova et al., 2006) and, through a 

postsynaptic CRFR1/GABAB receptor interaction, promotes GABA-

induced GIRK-mediated inhibitory postsynaptic currents (Beckstead 

et al., 2009). Thus, the blockade of stress-induced cocaine seeking by 

2-hydroxysaclofen could be attributable to 1) preventing the activation 

of GABAB receptors by GABA released in response to CRF and/or 2) 

disruption of a post-synaptic interactions between CRF and GABAB 

receptors. 
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The exact mechanism through which CRF interacts with GABAB 

receptors in the VTA to promote cocaine seeking is unclear but likely 

involves one of several possibilities. First, GABAB receptor activation 

could inhibit VTA GABAergic interneurons, thereby disinhibiting 

dopamine neurons that project to terminal field regions involved in 

stress-induced drug seeking such as the prelimbic cortex (Capriles 

et al., 2003 and McFarland et al., 2004) and nucleus accumbens 

(Shaham and Stewart, 1996 and Xi et al., 2004). It has been reported 

that, in contrast to VTA dopamine neurons, which are relatively 

insensitive to inhibition by the GABAB receptor agonist, baclofen, VTA 

GABA neurons are much more susceptible to baclofen inhibition (Bonci 

and Malenka, 1999 and Cruz et al., 2004; but see Margolis et al., 

2012), due in part to increased coupling of GABAB receptors to GIRK 

channels (Cruz et al., 2004). In fact, long-term potentiation at 

inhibitory synapses between descending D1 receptor-expressing 

nucleus accumbens GABAergic medium spiny neurons and VTA 

GABAergic interneurons, and the resulting downstream disinhibition of 

VTA dopamine neurons, have been shown to contribute to cocaine-

induced increases in dopamine neuronal excitability (Bocklisch et al., 

2013), while GABA-mediated interneuron suppression and the 

resulting of disinhibition of dopamine neurons have been proposed to 

underlie context-induced reinstatement of cocaine seeking (Luo et al., 

2011). Thus, to the extent that CRF selectively regulates GABAergic 

synapses on local interneurons via GABAB receptors, CRF inhibition of 

local interneuron populations and disinhibition of dopaminergic 

neurons could account for its effects on cocaine seeking. While 

intriguing, this possibility is inconsistent with the finding that VTA 

GABAB receptor antagonism does not decrease but rather increases the 

nucleus accumbens dopamine response to stress (Doherty and 

Gratton, 2007) and tends to be inconsistent with our own finding that 

VTA GABAA receptor antagonism using bicuculline, which should 

reproduce any effects of 2-hydroxysaclofen-mediated inhibition of VTA 

GABAergic interneurons, does not reinstate cocaine seeking. 

Alternatively, shock, via CRF, could promote GABA actions to 

decrease or alter the pattern of firing of VTA dopamine neurons, 

thereby promoting cocaine seeking. Indeed, Tan et al. (2012) have 

reported that footshock excites VTA GABA interneurons while also 

inhibiting of a large majority of dopamine neurons, consistent with 

reports that, while footshock activates a subpopulation of dopamine 
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neurons (Brischoux et al., 2009), most VTA neurons show a shock-

induced reduction in firing (Ungless et al., 2004). These findings are 

paralleled by reports that aversive stimuli often produce time-locked 

decreases in nucleus accumbens dopamine release, as measured using 

voltammetry (Badrinarayan et al., 2012, Roitman et al., 

2008 and Oleson et al., 2012). While the possibility that stressors can 

promote cocaine seeking via reductions in the activity of mesolimbic 

dopamine neurons is inconsistent with the assumption that stress-

induced drug seeking is mediated by elevated dopamine in the nucleus 

accumbens (Shaham and Stewart, 1996 and Xi et al., 2004; but see 

McFarland et al., 2004), we have recently reported that an aversive 

stimulus (intra-oral quinine delivery) that reduces dopamine levels in 

nucleus accumbens shell can reinstate cocaine seeking following self-

administration in rats (Twining et al., 2015). Moreover, both quinine-

induced cocaine seeking and quinine-induced reductions in nucleus 

accumbens dopamine levels are dependent on VTA CRF receptor 

activation (Twining et al., 2015). 

Another possibility is that the effects 2-hydroxysaclofen on 

cocaine seeking are attributable to antagonism of presynaptic GABAB 

receptors on the terminals of afferent projections into the VTA. It is 

well established that presynaptic GABAB receptors are important 

regulators of vesicular neurotransmitter release (see e.g., Takahashi 

et al., 1998, Sakaba and Neher, 2003 and Padgett and Slesinger, 

2010) and, in the VTA, GABAB receptors have been reported to 

regulate both GABA (Chen et al., 2015) and glutamate (Padgett et al., 

2012) release. Cocaine seeking and dopamine neurons in the VTA are 

negatively regulated by GABAergic efferents from several brain 

regions, including the ventral pallidum (Mahler et al., 2014) and the 

rostromedial tegmental area (Huff and LaLumiere, 2015). Thus, it is 

possible that GABAB antagonism disinhibits these afferents, thereby 

promoting GABA release and GABAA receptor-mediated inhibition of 

dopaminergic neurons and cocaine seeking. As would be the case with 

interneuron inhibition, our finding that intra-VTA bicuculline does not 

increase cocaine seeking would suggest that, to the extent that this 

mechanism applies, GABAergic inputs are not providing baseline tonic 

inhibition of dopamine neurons in the VTA. 

Alternatively, CRF-induced GABA release may exert 

heterosynaptic effects via GABAB receptors to regulate glutamatergic 
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transmission (Manzoni and Williams, 1999). Riegel and colleagues 

(Williams et al., 2014) have reported that CRF, via CRF-R2 receptor-

mediated effects on GABA release, can promote GABAB receptor 

activation on glutamatergic terminals, thereby attenuating glutamate 

release and offsetting CRF-R1 receptor mediated increases in 

excitatory regulation of VTA dopamine neurons. It has been 

hypothesized that, following cocaine self-administration, this CRF-R2 

receptor-driven inhibitory effect of GABA on excitatory transmission 

diminishes, resulting in a shift from inhibitory to excitatory regulation 

of dopamine neurons by CRF. While this represents an interesting 

mechanism through which CRF can regulate VTA dopamine neurons, 

according to this model, CRF effects on glutamatergic transmission in 

the VTA are no longer GABAB receptor-dependent after cocaine self-

administration. Moreover, it is not clear how GABAB receptor 

attenuation of excitatory neurotransmission would result in 

reinstatement. Notably, an important distinction between that study 

and ours is the use of yohimbine in combination with non-extinguished 

response-contingent cocaine-associated cues as reinstating stimuli 

which may involve unique neurocircuitry and/or activate VTA inputs in 

addition to those that are stimulated by stress alone. Nonetheless, this 

proposed mechanism does not seem to account for our current 

findings. 

When considering the possible contribution of VTA GABA to 

cocaine seeking it is also important to recognize that the regulation of 

neuronal firing patterns in the VTA by GABA is complex and does not 

necessarily result exclusively in inhibition of efferent pathways. 

Transient GABA-mediated inhibition may coordinate or synchronize 

regional network activity and/or prime neurons for excitation and burst 

firing. Indeed, it has been reported that GABAergic transmission in the 

VTA is critical for nicotine-induced excitation of dopamine neurons and 

associated behavioral responses (Tolu et al., 2013). 

Neither administration of bicuculline nor 2-hydroxysaclofen into 

the VTA alone was sufficient to induce cocaine seeking. Although 

reinstatement by intra-VTA bicuculline or 2-hydroxysaclofen has not, 

to our knowledge, been previously reported, these results were 

somewhat surprising to us, particularly in the case of bicuculline, which 

has been found to elevate nucleus accumbens dopamine levels 

(Ikemoto et al., 1997), increase locomotor activity (Grubb et al., 
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2002 and Lavezzi et al., 2015), and produce conditioned place 

preference (Laviolette and van der Kooy, 2001) when injected into the 

VTA and has been reported to be self-administered directly into the 

VTA in mice (David et al., 1997). As elevated dopamine in the nucleus 

accumbens (Cornish and Kalivas, 2000) and intra-accumbens delivery 

of dopamine receptor agonists (Bachtell et al., 2005 and Schmidt 

et al., 2006) have been reported to be sufficient for reinstatement of 

cocaine seeking, we predicted that intra-VTA GABA receptor 

antagonism would induce cocaine seeking, especially considering that 

GABA receptor agonist injections into the VTA suppress dopamine 

release (Yoshida et al., 1994), drug self-administration (Xi and Stein, 

1999, Brebner et al., 2000 and Backes and Hemby, 2008), and 

reinstatement (McFarland and Kalivas, 2001, Di Ciano and Everitt, 

2004 and McFarland et al., 2004). When considering the failure of 

GABA antagonists to induced cocaine seeking, the complexity of 

GABAergic regulation of the VTA and the understanding that distinct 

mechanisms contribute to reinforcement/reward vs. 

motivation/seeking should be taken into account. While it is possible 

that the antagonist doses used were insufficient to effectively target 

GABA receptors, we consider this unlikely, as the same 2-

hydroxysaclofen doses attenuated reinstatement and we were unable 

to test higher intra-VTA bicuculline doses due to the emergence of 

seizure activity, as has been previously described (Echo et al., 2002). 

To confirm that any GABA receptor antagonist effects on 

reinstatement were not attributable to non-specific behavioral 

disruption, separate groups of rats were tested for effects of intra-VTA 

antagonist injections on food-reinforced lever pressing. Neither 

bicuculline nor 2-hydroxysaclofen altered food-reinforced responding, 

suggesting that motor impairment likely did not contribute to 2-

hydroxysaclofen-induced reductions in shock- and CRF-induced 

reinstatement. Considering that optogenetic stimulation of VTA GABA 

neurons impairs natural reward consumption (van Zessen et al., 

2012), it is somewhat surprising that effects on food-reinforced 

responding were not observed. However, consistent with our findings, 

others have reported that GABAA and GABAB receptor antagonism in 

the VTA has minimal effects on feeding behavior (Echo et al., 2002, 

Ackerman et al., 2003 and Miner et al., 2010). When interpreting 

these findings, it is important to note that the rates of responding 

during the food-reinforced sessions (approximately 30 
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responses/minute) were much higher than those during the 

reinstatement sessions. For this reason, less-pronounced disruption of 

motor performance that could have contributed to the observed effects 

on cocaine seeking or increases in responding attributable to 

enhancement of food reward may not have been detectable under 

these conditions. 

5. Conclusion 

To summarize, our results suggest that stress-induced 

reinstatement of extinguished cocaine seeking requires VTA GABAB 

receptor activation, likely via a CRF-regulated mechanism. While the 

precise process through which CRF interacts with GABAB receptors 

remains to be determined, these findings provide novel insight into 

mechanisms that contribute to stress-induced relapse and therefore 

may guide the development of new therapeutic approaches aimed at 

relapse prevention. 
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