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Abstract

The same, but different: The reaction of tri-tert-butylaniline (TBA) with AgSbFgs in CH,Cl; produces a green-
colored intermediate which undergoes decomposition to form a protonated aniline (TBAH*SbF¢™). Crystals of the
protonated aniline salt (see picture) were analyzed by X-ray diffraction and found to have the same crystal
characteristics as the crystals of the supposed cation radical first identified in 2012.

F1lA*

In a recent publication,® Chen et al. have claimed the isolation of a persistent radical-cation salt derived from
2,4,6-tri-tert-butylaniline (TBA) by its prolonged (=24 h) reaction with equimolar AgSbF¢ in dichloromethane at
ambient temperatures with >80 % yield. They have determined the structure of this radical-cation salt by single-
crystal X-ray crystallography at 123 K (-150 °C) and found that this radical cation exhibits a long CaZN bond
length of 1.496 A. They have also claimed that the aromatic ring in the crystalline radical cation undergoes a
temperature-dependent transformation from a bisallyl to a quinoidal geometry, while the CAZN bond length
remained largely unaffected (see structures below).

Quinoidal Structure Bisallyl Structure
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(373 K/+100 °C) (123 K/-150 °C)

This highly unusual crystallographic observation in TBA* was reconciled by ab initio calculations using an
unrestricted MP2 method. Based on our extensive experience with organic cation radicals,? this finding was
highly troubling because of the lack of involvement of the nitrogen lone pair in stabilizing the cationic aryl group
(i.e. long CalAN bond) and the fact that the electronic reorganization of aromatic ring required such high
temperatures (i.e. +100 °C).

In order to understand this highly unusual finding, we have redetermined the single-crystal X-ray structure of
this supposed TBA salt at different temperatures and now unequivocally show that it is protonated aniline
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and not an aniline radical cation. Below, we carefully outline various experimental and computational missteps
that led these authors? to incorrectly identify this salt.

X-Ray Crystallography

Following closely the procedure of Chen et al.,* a solution of neutral TBA (102 mg, 0.39 mmol) in anhydrous
dichloromethane (60 mL) was treated with AgSbFs (129 mg, 0.38 mmol) in an inert atmosphere at 22 °C, and the
resulting green solution was stirred for 24 h. Afterwards, the green-colored mixture was filtered under an inert
atmosphere, concentrated to a volume of roughly 3 mL and stored in an air-tight flask at —-10 °C in a refrigerator.
After several hours, the solution produced a well-formed crop of single crystals that were analyzed by X-ray
crystallography.

An X-ray-quality crystal laced with light-green liquid (see Figure S1 in the Supporting Information) was cut off
from a larger crystal and the data collection was carried out with Mo radiation at 100 K as well as at 123, 173,
223, and 273 K. The cell dimensions for this crystal as well as the anomalous (negative) thermal expansion
coefficient along the a axis above 123 K were practically identical to those reported in Ref. ! (see Tables S1 and
S2 in the Supporting Information).3

The structure was solved in the same non-centrosymmetric space group Pmn2; as reported in Ref. ! with both
the cation and anion positioned over the crystallographic mirror plane. After anisotropic refinement, the
thermal ellipsoids of the F atoms of the anion and carbon atoms of para-tert-butyl groups demonstrated a large
anisometry that required introducing a suitable disorder model and placing some restrictions on the thermal
ellipsoids.* The positions of hydrogen atoms at the nitrogen were found from a difference Fourier series with
two peaks of approximately 0.5 e A3, where one was positioned on the mirror plane while the other was
located outside the plane. The subsequent full refinement without restrictions (except those from
crystallographic symmetry) on either coordinates or the isotropic temperature parameters of the hydrogens
resulted in almost perfect tetrahedral geometry of the nitrogen atom with reasonable values of NEH bond
lengths and thermal parameters (Uiso) for the hydrogen atoms. The same model was used to refine the structure
at all temperatures except 273 K, where the deteriorating quality of the dataset due to the larger thermal
motion forced the refinement of the NHs* group with fixed standard NEH distances. Importantly, in all structures
obtained at different temperatures, the three hydrogen atoms form H-bonding contacts with F atoms of the
SbF¢™ anion—with one H---F contact above the molecular plane and the other two H---F contacts below it (see
Figure 1).

F1A"[

Figure 1. The X-ray structure of TBAH*SbFs showing HF contacts between the NHs* group and the surrounding
SbFs™ anions. Disordered atoms and the rest of the hydrogen atoms are omitted for clarity.
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Table 1 summarizes selected bond lengths of TBAH*SbFs~, obtained from our experiments, at various
temperatures as well as the bond lengths reported in Ref. 1. In our crystallographic experiments, the bond
lengths in the aromatic ring and CaZIN bond vary only by 2—3 o from 100 K to 273 K and are rather insensitive to
the temperature changes—a result which is in sharp contrast to that reported in Ref. ! (Table 1).

Table 1. A comparison of the selected bond lengths of TBAH* (see structure below) from our experiments and
those reported by Chen et al.? in square brackets at different temperatures.

a

©

d

[a]

Bond | Temperature
(K]
100 K 123 K 173 K 223 K 273K 323K 373K
a 1.473(5) - 1.468(5) 1.474(5) | 1.479(6) 1.480(7) - —111.51(2)]
[1.496(7)] —[bl [1.480(12)] [1.470(16)] (b1 [1.490(15)]
b 1.400(3) —*! 1.403(3) 1.402(3) | 1.399(4) 1.402(4) —111.400(9)] | -
[1.381(4)] —[bl [1.385(7)] [1.390(11)] (bl [1.404(13)]
c 1.390(4) —*! 1.395(4) 1.403(4) | 1.393(4) 1.389(5) - -
[1.423(5)] —[bl [1.415(9)] [1.408(12)] 111.369(11)] | ' [1.281(15)]
d 1.389(4) —*! 1.394(3) 1.389(4) | 1.393(4) 1.394(5) —111.410(9)] | -
[1.387(5)] —[bl [1.388(7)] [1.390(11)] (bl [1.452(13)]

[a] The R1 factors based on the “observed” reflections (with />20) for our X-ray structures varied from 3.02 to
4.52 % upon increasing temperatures. Although the corresponding structures in Ref. * had a similar range

of R factors (from 2.73-5.92 %), they were based on half the number of experimental observations (2924 />20 in
our study vs. 1406 />20 in Ref. * at 123 K) which results in less precise geometries. [b] Not measured.

In order to reconcile these drastic differences between the results of our experiments and those reported in Ref.
1, we make following critical observations.

1. The crystal structures obtained in this study have same cell parameters/cell volume/space
group/temperature-dependent variations in the a axis of the crystal as those reported in Ref. 1. However, our
crystal structure solution showed that it contains disordered SbFs™ anions as well as one of the tert-butyl groups,
while the X-ray structure solution in Ref. ! claimed that the structure was completely ordered. In our extensive
experience with X-ray crystallography, we find it to be highly unlikely that the crystals of a given material with
the same cell dimensions/space group/etc. will form both ordered and disordered crystals.®

2. We deliberately prepared the protonated TBA cation salt TBAH*SbFs", using the procedure outlined in Ref.
L and obtained colorless single crystals at =10 °C from a dichloromethane solution as above. A crystallographic
analysis of a single crystal of the deliberately prepared TBAH*SbF¢™ revealed that it has identical cell
parameters/space group/structure solution/disorder/etc. with those obtained for the pale-green crystals
prepared from the reaction of TBA with AgSbFs (i.e. Figure 1 and Table 1).5

3. We also established the uniformity of the bulk samples of the green crystals and the deliberately prepared
colorless crystals of TBAH*SbF¢™ by their powder diffraction pattern (see Figure S2 in the Supporting
Information), which clearly showed that both the samples consist of largely TBAH*SbF¢".



4. Table 1 clearly shows that in our crystallographic experiments the bond lengths in the aromatic ring do not
show significant alterations as well, as they do not undergo significant changes when the temperature is
increased.

Thus, the crystallographic results presented above clearly suggest that the crystal structure reported by Chen et
al.lis not of the TBA cation radical but of the protonated TBA cation. Next, we examine the various other
experimental/computational factors that have led these authors? to incorrectly characterize this TBA salt.

Electrochemistry and UV/Vis Spectroscopy

Cyclic voltammetry of TBA in dichloromethane in the presence of nBusN*PF¢™ as the supporting electrolyte
showed reversible oxidation waves at different scan rates ranging from 50-500 mV s™* (Figure 2 A). Although
these results support TBA* formation in the electrochemical oxidation of TBA, it should be noted that the
observation of reversible cyclic voltammograms for a given molecule only suggest that its ion-radical
intermediate is stable at the electrochemical time scale (i.e. microseconds to milliseconds).” Thus, the premise
of Chen et al.! concerning the prolonged stability of TBA* based on cyclic voltammetry experiments is the initial
misstep that led to the mistaken identification of the TBA salt.
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Figure 2. A) Cyclic voltammograms of 0.2 mM TBA in dichloromethane containing 0.2 M nBusN*PFs at different
scan rates (indicated) and under an argon atmosphere at 22 °C. B) Absorption spectra of aliquots of the green
reaction mixture (i.e. TBA + AgSbF¢ in CH,Cl;) showing that it decomposes slowly during the course of 24 h.
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In order to monitor the stability of a green-colored solution of TBA cation radical, aliquots of the reaction
mixture of TBA and AgSbFs in anhydrous dichloromethane at 22 °C were collected at several reaction times and
monitored by UV/Vis spectroscopy. The initially formed green-colored species attains a maximum concentration
after about 15 min, and then slowly decomposes over 24 h (Figure 2 B).2 Therefore, the spectroscopic
observations in Figure 2 attest to the instability of TBA cation radical which undergoes decomposition leading to
products such as a labile hydrazine derivative®® and protonated aniline. It is highly likely that the pale green
crystals of TBAH*SbFs™ acquire their color simply due to the adsorption of colored impurities present in the
reaction mixture. Indeed, such a thesis strongly corroborates the observation of a rather weak ESR signal from a
solution of green crystals, as reported in Ref. 1.

Computational Studies

In order to rationalize the mistaken observations of the unusual geometry of TBA* with the long Ca&N bond
length (ca. 1.49 A) and its temperature-dependent conversion from the bisallyl to the quinoidal form, Chen et
al.! turned to computational studies, using unrestricted versions of various density functional theory (DFT)
methods (B3LYP, M06-2X, CAM-B3LYP, and wB97X-D) as well as an ab initio second-order Mgller—Plesset
perturbation theory (MP2) method with double-zeta basis sets. However, their initial attempts showed that
without a counterion TBA* has the expected quinoidal geometry with a short Ca@N bond length (ca. 1.34 A).

Unfortunately, these authors® ignhored this initial computational red flag and forged ahead based on their thesis
that the observed bisallyl geometry of TBA* in its X-ray structure was due to the crystal environment. Indeed,
they obtained the desired bisallyl geometry for the complex [TBA(SbFs),]~ by employing the unrestricted MP2
method (UMP2). However, calculations of open-shell systems with the UMP2 method can be extremely
unreliable if the reference unrestricted Hartree—Fock (UHF) wavefunction suffers from significant spin
contamination.® Spin contamination, an artificial admixture of higher spin states into the wavefunction, can be
quantified by the deviation of the expectation value of the total spin-squared operator §% from its expected

value for the given spin multiplicity, thatis, {S?) =0.75 for a doublet state.? In UMP2 calculations of

[TBA(SbFs),]~ reproduced following Ref. !, we found {52?) =1.36, which renders the results of such calculations

nearly meaningless. Thus, the resulting bisallyl geometry is likely a computational artifact. Indeed, the geometry
optimizations of [TBA(SbFg);]~ using DFT methods always yielded the quinoidal structure, with virtually no spin

contamination, {$?) =0.750-0.751, in accord with the expectation that the DFT methods provide much more

robust description of open-shell systems than UMP2 method.

In order to generate support for the temperature-induced transformation of TBA* from a bisallyl to a quinoidal
isomer, Chen et al.! resorted to single-point UMP2 calculations using the geometries form the X-ray structures at
123 and 373 K, respectively. Their analysis (in Figure 5, Ref. 1) claims that highest occupied molecular orbitals
obtained with UMP2 satisfactorily rationalize the observation of bisallyl and quinoidal geometries.
Notwithstanding the severe spin contamination issues of these UMP2 calculations, the use of X-ray geometries
for these calculations is expected to simply regurgitate the bias imposed on this computational analysis. In fact,
a closer look at these computational results showed that they are also marred with numerous (obvious) slip-ups.
For instance, Figure 5 of Ref. ! presents UHF molecular orbitals, not UMP2 orbitals as claimed; in fact, the UMP2
method can generate only natural orbitals (i.e. eigenfunctions of the one-electron density matrix), but not
canonical molecular orbitals. Moreover, these UHF orbitals are shown for a-electrons only, while the
significantly different orbitals from the B-manifold are not shown (for full details, see the Supporting
Information).



A complete molecular orbital picture generally allows one to predict the structural distortions in cation radicals
by a simple visual inspection of the bonding versus nonbonding regions of the molecular orbitals.!! Indeed,
when the UHF a and B molecular orbitals of the bisallyl structure (from X-ray geometry at 123 K) are considered
together, they actually predict that the structure should adopt a quinoidal geometry (see further details in the
Supporting Information).

Chen et al.! rationalized, based on the natural bond orbital (NBO) analysis, that the unusually elongated CaEN
bond (ca. 1.49 A) in TBA* arises due to electrostatic interactions with SbFs~ anions that weaken nN->mt*
interactions of the N atom with the aromatic ring.!2 However, the results of NBO analysis in Ref. ! are
misleading, as they only make use of the a orbitals which do not provide a complete picture of the electronic
structure.” In fact, in the B manifold, the orbital interactions suggest the opposite effect which would lead to
shortening of CalZN bond in TBA*.

Finally, one of the main causes of the erroneous finding by Chen et al.! may have been stimulated by
theoretical®* and experimental®® reports in support of bisallyl and quinoidal electronic structures for the
benzenoid cation radicals owing to the Jahn—Teller effect.’® It is therefore important to reconsider the
computation analysis of TBA cation radical in the context of Jahn—Teller effect as follows.

A degeneracy of the highest occupied molecular orbitals (HOMOs), for example, in a highly symmetrical benzene
molecule, is essential for the Jahn—Teller effect to take place®® (Figure 3 A). Vertical removal of an electron from
benzene gives rise to a conical intersection between quinoidal and bisallyl electronic states of the resulting
cation radical, which, due to the Jahn—Teller effect, undergoes geometry relaxation to quinoidal or bisallyl
structures (Figure 3 A).
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Figure 3. A comparison of the benzene cation radical, where the Jahn-Teller effect is manifested, and the TBA

cation radical. The two highest occupied molecular orbitals of neutral benzene (A) and TBA (B) calculated at the
HF/6-31G* level (left panel). The potential energy surfaces and spin densities of the corresponding cation
radicals calculated at the B3LYP/6-31G* level (right panel).

The requirement of the degeneracy of the highest occupied molecular orbitals suggests that TBA* is not
amenable to the Jahn-Teller effect (Figure 3 B).Y” Strong coupling of the lone pair on nitrogen atom with one of
the it orbitals of benzene ring in TBA removes the degeneracy between HOMO and HOMO-1, which become
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separated by a 1.1 eV energy gap. As a result, removal of an electron from the TBA HOMO leads to the quinoidal
state, while the bisallyl state represents an excited state (Figure 3 A vs. B). We optimized the equilibrium
geometries of both the ground-state quinoidal and excited-state bisallyl forms of TBA* at the B3LYP/6-31G*
level (Figure 3 B; for full details see the Supporting Information), with a calculated energy difference between
the two states of approximately 28 kcal mol™.2® Because of this large energy gap, the bisallyl state cannot be
reached without electronic excitation. Thus, a simple temperature change is not sufficient to cause an
interconversion between a ground (quinoidal) to an excited (bisallyl) state.

Conclusion

The reaction of tri-tert-butylaniline (TBA) with AgSbFs in CH,Cl, produces a green-colored intermediate which
undergoes decomposition to form a protonated aniline (TBAH*SbFs"). The structure of the resulting

TBAH*SbFs~ was re-determined by X-ray crystallography. It was shown that our structure of TBAH*SbFs™ has same
cell parameters, space group, and negative thermal expansion as the crystals of the supposed cation radical
incorrectly identified by the Chen et al.! Moreover, we have demonstrated that a number of crystallographic and
computational missteps led Chen et al.! to incorrectly identify the protonated aniline as a cation-radical salt.
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