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Abstract 

Purpose. 

An often overlooked prerequisite to cone photoreceptor gene therapy 

development is residual photoreceptor structure that can be rescued. While 

advances in adaptive optics (AO) retinal imaging have recently enabled direct 

visualization of individual cone and rod photoreceptors in the living human 

retina, these techniques largely detect strongly directionally-backscattered 

(waveguided) light from normal intact photoreceptors. This represents a 

major limitation in using existing AO imaging to quantify structure of remnant 

cones in degenerating retina. 

Methods. 

Photoreceptor inner segment structure was assessed with a novel AO 

scanning light ophthalmoscopy (AOSLO) differential phase technique, that we 

termed nonconfocal split-detector, in two healthy subjects and four subjects 

with achromatopsia. Ex vivo preparations of five healthy donor eyes were 

analyzed for comparison of inner segment diameter to that measured in vivo 

with split-detector AOSLO. 
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Results. 

Nonconfocal split-detector AOSLO reveals the photoreceptor inner 

segment with or without the presence of a waveguiding outer segment. The 

diameter of inner segments measured in vivo is in good agreement with 

histology. A substantial number of foveal and parafoveal cone photoreceptors 

with apparently intact inner segments were identified in patients with the 

inherited disease achromatopsia. 

Conclusions. 

The application of nonconfocal split-detector to emerging human gene 

therapy trials will improve the potential of therapeutic success, by identifying 

patients with sufficient retained photoreceptor structure to benefit the most 

from intervention. Additionally, split-detector imaging may be useful for 

studies of other retinal degenerations such as AMD, retinitis pigmentosa, and 

choroideremia where the outer segment is lost before the remainder of the 

photoreceptor cell. 

Keywords: AOSLO, photoreceptor, gene therapy 

Introduction 

Recently, there have been multiple successful applications of 

genetic1–4 and cellular replacement5,6 therapies to animal models of 

inherited blindness. Early human trials have also shown positive 

results,7 demonstrating the promise of gene therapy for a wide range 

of human photoreceptor degenerations. These interventions aim to 

rescue existing dysfunctional photoreceptors using gene therapy, or 

restore vision by transplanting functional photoreceptors or precursor 

cells. A critical knowledge gap in retinal gene therapy efforts surrounds 

the degree of retained photoreceptor structure given a genotype and 

penetrance. Therefore, the lack of an objective method to directly 

assess the residual photoreceptor population in patients with retinal 

degenerations presents a roadblock for predicting the success of such 

therapies, especially in humans.8 

Adaptive optics (AO) retinal imaging enables direct visualization 

of rod and cone structure.9,10 Ophthalmoscopes enhanced with AO can 

provide images with resolution near the limit imposed by the eye's 

pupil diameter and axial length, by correcting for the monochromatic 
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aberrations induced by the cornea and lens.9 The contrast in images of 

the photoreceptor mosaic depends on the imaging modality and the 

optical properties of the photoreceptors and their surroundings. 

Whether imaged with an AO fundus camera, AO optical coherence 

tomography (AO-OCT), or a confocal AO scanning light 

ophthalmoscope (AOSLO), individual healthy photoreceptors appear as 

bright spots. This is explained by the strong directional coupling 

(waveguiding) of light by the photoreceptor inner segment into the 

outer segment,11 the higher refractive index relative to its surrounding 

and the backscattering that takes place at both ends of the 

photoreceptor outer segment.12 Visualization of photoreceptors with 

AO ophthalmoscopy is dependent on intact outer segment morphology, 

and thus, the disambiguation of residual cone structure in patients 

with retinal degenerations remains elusive. 

Here, we propose and demonstrate a nonconfocal variation of a 

scanning microscopy technique, known as split-detection,13–15 to 

visualize the photoreceptor inner segment mosaic using an AOSLO.16 

In this method, a reflective mask with a transparent annulus is placed 

in the image plane where typically a circular pinhole is placed for 

confocal detection.17 This mask reflects the confocal signal to a first 

detector and transmits the multiple-scattered light, which is then 

captured by two incoherent detectors that collect the light in the left 

and right semi-annuli (Fig. 1A). The split-detector (as we will refer to it 

from here on) signal is then calculated as the difference between the 

signals from the nonconfocal detectors, divided by their sum. In this 

arrangement, the waveguided light from the photoreceptor outer 

segment (confocal) and the multiple-scattered light from the inner 

segment (split-detector) can be visualized simultaneously and in 

perfect spatial registration (Figs. 1B, B,1C).1C). We used this imaging 

approach to directly examine residual cone structure in patients with 

achromatopsia (ACHM), revealing a robust but variable remnant cone 

population. Despite substantial disruption of outer retinal structure in 

ACHM clinical images, cone inner segment structure was observed at 

the foveal center in the split-detector images. The ability to directly 

ascertain cone structure in these patients represents an important first 

step toward being able to predict the therapeutic potential for gene 

therapy efforts on an individualized basis. 
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Figure 1 Schematic representations of split-detector implementation and images. 

(A) AOSLO schematic with an annular reflective mirror (inset) to separate the confocal 

from the multiple-scattered light, which is then equally divided (split) between two 

light detectors. The confocal signal is directly recorded in Detector 1, while the split-

detector signal is the result of the subtraction of the intensities recorded in Detector 2 

from Detector 3 divided by their sum at every pixel. (B) Representative split-detector 

image of the photoreceptor inner segment mosaic acquired at 10° of visual angle from 

fixation in a healthy volunteer, showing cones and an inability to resolve individual 

rods. (C) Simultaneously recorded confocal image showing cones with varying 

reflectivity surrounded by rods. Scale bar: 25 μm. (D) Photoreceptor schematic shows 

the likely origin of the light back reflections. 

Methods 

Subjects 

Research procedures followed the tenets of the Declaration of 

Helsinki and informed written consent was obtained from all subjects 

after explanation of the nature and possible consequences of the 

study. The study protocol was approved by the institutional review 

board of the Medical College of Wisconsin. Patients were referred by 

their physicians, or self-referred for advertised studies. 

Axial length measurements were obtained on all subjects (Zeiss 

IOL Master; Carl Zeiss Meditec, Dublin, CA, USA) in order to determine 

the scale (in micrometers per pixel) of each retinal image. Axial length 

was assumed to be constant across all eccentricities imaged in this 

study (0–6 mm, ∼20°), as it typically varies less than 2.0% in this 

range.18,19 All subjects were imaged without spectacles or trial lenses 

in order to avoid additional scaling errors. Prior to all retinal imaging, 

each eye was dilated and cycloplegia was induced through topical 
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application of phenylephrine hydrochloride (2.5%) and tropicamide 

(1%). 

Two visually healthy volunteers and four individuals with 

genetically-confirmed achromatopsia were recruited for imaging. 

Genetic Testing 

All four achromatopsia subjects had previously documented 

mutations in either CNGA3 or CNGB3 (see Supplementary Table S1 for 

a list of mutations) Testing was performed at either The John and 

Marcia Carver Nonprofit Genetic Testing Laboratory (University of 

Iowa, IA, USA) or Casey Eye Institute Molecular Diagnostics 

Laboratory (Oregon Health and Sciences University, OR, USA). 

Optical Coherence Tomography 

In all achromatopsia subjects, spectral-domain optical 

coherence tomography (SD-OCT) line scans were acquired (Bioptigen 

SD-OCT, Bioptigen, Research Triangle Park, NC, USA; or Spectralis 

SD-OCT, Heidelberg Engineering, Heidelberg, Germany). To improve 

signal to noise ratio, multiple line scans (11–22) were registered and 

averaged. Foveal structure was evaluated for ellipsoid zone (EZ) 

integrity as previously described.20 The lateral scale of each image was 

estimated using the patient's axial length data. 

Adaptive Optics Retinal Imaging 

A custom AOSLO was modified for this study16 to capture 

nonconfocal light as demonstrated by Webb et al.21 in a split-detection 

configuration.13–15 The detection path was modified by replacing the 

confocal aperture in the image plane in front of the detector with a 

reflective annular mask. The central disk of the mask was sized to 

reflect the central 2 Airy disk diameters (ADDs) of the focal spot 

toward detector 1 (confocal channel), and to transmit the remaining 

light up to 20 ADDs (Fig. 1). An afocal telescope relayed the plane of 

the mask onto a second conjugate image plane where a flat mirror 

with a vertical straight edge and minimal bevel divided (split) the light 

annulus between two additional light detectors (Fig. 1). The 
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nonconfocal split-detection image intensity was then calculated as the 

difference of the detector signals divided by their sum. A multiplicative 

gain factor and an additive offset are used to stretch the contrast of 

each image for optimal display in computer monitors with 256 gray 

levels, while avoiding saturation. Because the light reaching the split 

detectors is not confocal, the detected signal cannot be interpreted 

through geometrical or physical optics without considering multiple 

scattering. Although a quantitative description of the source of 

contrast for this imaging method is still lacking, the resulting images 

resemble those that are seen in phase-gradient microscopy techniques 

such as differential interference contrast (DIC; Fig. 2). 

 

Figure 2 Side by side comparison of ex vivo30 and in vivo imaging of the human 

photoreceptor inner segment mosaic at 5° temporal from fixation in different eyes. 

Cone inner segments are clearly resolved in (A) ex vivo and (B) in vivo, however, the 

resolution of the histologic images is superior due to the larger numerical aperture of 

the oil immersion microscope objective compared with that of the human eye (1.4 vs. 

0.2). For this reason, only a few rods can be resolved in the AOSLO image (arrows). 

Scale bar: 10 μm. 

The epi-illumination and the use of two detectors with on-axis 

point illumination as presented here is somewhat reciprocal of the 

oblique back-illumination method recently proposed by Ford et al.,22 

with the advantage that both symmetrically opposed detectors are 

recorded simultaneously, thus enabling the visualization of dynamic 

events such as blood flow.23 

The imaging light source was a 790-nm super-luminescent diode 

(SLD; Superlum, Carrigtwohill, Co., Cork, Ireland) and the wavefront 

sensing light source was an 850-nm SLD (Superlum). Incident powers 

for these light sources were 70 and 17 μW respectively, measured at 

the cornea. The combined light exposure was kept 5 times below the 
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maximum permissible exposure set forth by the ANSI Z136.1.24,25 The 

output of the Hamamatsu H7422-50 photomultiplier modules 

(Hamamatsu Corporation, Bridgewater, NJ, USA) that were used as 

light detectors were amplified by a Femto HCA-10M-100K high speed 

current amplifier, inverted using custom electronics and digitized using 

a eA Helios framegrabber (Matrox Electronic Systems Ltd., Dorval, 

Quebec, Canada). 

Image sequences were collected at the center of the fovea and 

from 1° to 20° visual angle lateral (temporal) to fixation using a 1.0° 

and 1.5° square field of view. Image sequences of 150 frames 

(confocal and split-detector) were collected and processed to remove 

the warp due to the sinusoidal motion of the horizontal scanner. Those 

images were then registered, and the 40 images with highest 

normalized cross-correlation relative to a user-selected reference 

frame were averaged to improve signal-to-noise ratio.26 Because the 

image sequences were collected in synchrony and processed in exactly 

the same manner, the resulting averaged images are in perfect 

registration.26 

AOSLO Image Analysis 

Using the Gullstrand 2 schematic eye, the predicted 291 μm per 

degree of visual angle27 was scaled linearly by the subject's axial 

length to determine the scale of AOSLO images. One examiner 

manually marked contiguous mosaics of foveal cones in split-detector 

AOSLO images from healthy subject AD_1225 to estimate the 

minimum cell size resolved with this technique. Rods were similarly 

marked in confocal images from AD_1225 (10° temporal) and 

achromat JC_10069 (parafoveal and 5° temporal) to compare rod size 

estimates with the resolved foveal cone size. Coordinates of marked 

photoreceptors were analyzed with Delaunay triangulation using 

custom MATLAB software (Mathworks, Natick, MA, USA) to determine 

the average nearest neighbor distance, which can be interpreted as an 

estimate of the cell size when considering a contiguous mosaic. For 

calculation of inner segment diameter three observers fit circles of 

varying diameter to best match the size of inner segments in split-

detector images at multiple eccentricities in two healthy volunteers 
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AD_1225 and AD_1207. Each observer fit 10 to 17 separate cones per 

image, resulting in 30 to 51 measured diameters per image. 

For coarse theoretical calculation of minimum angle of resolution 

(MAR) in achromatopsia subjects, cone photoreceptors from the split-

detector images within the central 1° of the anatomical fovea were 

manually marked. The average intercone distance (ICD) over a 36.5 × 

36.5-μm sliding window was calculated with custom MATLAB software 

(Mathworks), then converted to the Nyquist cone sampling in arc 

minutes as described by Rossi et al.28 The Nyquist cone sampling was 

assumed to be the best possible MAR, as found in the previous work in 

healthy subjects.28 

Tissue Collection and Preparation 

Eyes obtained from donors within 3 hours of death were 

preserved by immersion in 4% paraformaldehyde and 0.5% 

glutaraldehyde in 0.1 M PBS after the cornea and lens had been 

removed. Retinas were prepared as unstained whole mounts as 

previously described.29 In brief, the retina was dissected free from the 

pigment epithelium, flattened on a slide, rinsed in water, and cleared 

under a coverslip overnight in dimethyl sulfoxide (DMSO). Excess 

DMSO was blotted, 100% glycerol was applied to the tissue, and a 

coverslip was mounted and sealed with nail polish. A series of similarly 

prepared retinas underwent a slight expansion in tissue area, and 

inner segment diameters were not corrected for these small changes. 

Tissue was viewed with a combination of differential interference 

contrast microscopy and video (NDIC-video). 

Data were obtained from five donors. Peripheral retina was 

analyzed in four donors, aged 27 to 35 years (H2–H530). The fovea 

was analyzed in two donors (35-year-old male, H530; 68-year-old 

male, eye #1831). The foveal centers of these eyes had an intact 

external limiting membrane, optically clear tissue at all levels of focus 

through cones, and similar peak cone density (181,800 cones/mm2 in 

35-year-old male and 170,100 cones/mm2 in 68-year-old male). 
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Ex Vivo Analysis 

Cone inner segment diameters in the periphery (>1 mm) of the 

four young retinas were determined by circle-fitting at a focusing 

depth where cones were optically separate. At eccentricities exceeding 

1 mm, individual cone inner segments are surrounded by a ring of rods 

and are circular in profile. The observer centered a computer-

generated circle on a NDIC-video image of a cone inner segment and 

adjusted its size to match the cone. Thirty cones were measured for 

each location, and means and SDs were computed. The mean 

diameter for the 30 cones obtaining by circle fitting was within 3% of 

the mean of the same cones as measured by outline tracing and was 

obtained in 40% shorter time. 

Cone inner segment diameters in the foveas (<1 mm) of two 

eyes were calculated from component area densities (AA) of inner 

segments measured with point-counting stereology32 divided by the 

local density of cells, to produce an average cross-sectional area and 

equivalent diameter for an individual photoreceptor. The relative area 

of structures in a containing reference area can be estimated by 

counting points in a grid overlying the component and the reference 

area. Thus, AA = Pi /Pref, where Pi is the number of points overlying a 

specific tissue component and Pref is the total number of points in the 

reference area, containing all components. A custom program 

superimposed a square grid on the NDIC-video image of the tissue, 

presented one grid intersection at a time for scoring, and enabled the 

observer to press a key indicating whether the point was over a cone, 

rod, or extrareceptoral space between the inner segments. The grid 

used was a square lattice whose spacing between lines was 

determined empirically to produce relative standard errors of 5% or 

less for AA of cone inner segments, the smallest of the three 

components over this eccentricity range, and errors of 2% to 3% for 

rod inner segments and extrareceptoral space. A grid spacing of 

0.0037 μm provided 100 points in a square window. A single window 

was scored for each location in each of two foveas, including the foveal 

center and at 50-μm intervals to an eccentricity of 400 μm on four 

cardinal meridians. 
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Results 

Split-Detector Imaging Reveals Cone Photoreceptor 

Inner Segment Mosaic 

The photoreceptor mosaic was imaged at multiple retinal 

eccentricities in two subjects without known eye disease. In healthy 

subjects the confocal images (Figs. 3A–D), show bright spots that 

correspond to light waveguided by intact photoreceptors.11 A 

comparison between the confocal and split-detector images reveals a 

1:1 correspondence between the bright spot in the confocal image and 

the mound-like structures in the split-detector image (Fig. 3). The 

split-detector inner segment images (Figs. 1C, C,3E–H)3E–H) strongly 

resemble differential interference contrast imaging of ex vivo retinal 

preparations (Fig. 2). Measurements of cone structure from in vivo 

split-detector images in two healthy subjects showed diameters 

ranging from 3.0 ± 0.4 to 8.2 ± 0.6 μm (mean ± SD) from 1° to 20° 

temporal to fixation. These measurements are consistent with ex vivo 

measurements at comparable retinal eccentricities, ranging from 4.2 

to 8.3 μm (Fig. 4), as well as previous histologic reports in nonhuman 

primates.33 The full range of ex vivo inner segment diameters 

measured between 0° and 41° are shown in Supplementary Table S2. 

Taken together, these findings support the interpretation that it is the 

cone inner segment, and not the outer segment, visualized by split-

detector AOSLO. It is important to note that most rod and some foveal 

cone photoreceptors seen in the confocal images cannot be resolved in 

the corresponding split-detector images, suggesting a resolution limit 

determined either by the contrast mechanism itself or the 

photoreceptor refractive index profile, rather than the quality of the AO 

correction. 
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Figure 3 Confocal and split-detector imaging in a healthy volunteer at 1°, 5°, 10°, 

and 20° temporal to fixation. (A–D) Confocal images. (E–H) Split-detector images. 

The figure illustrates how cone photoreceptors increase in diameter with increasing 

eccentricity from the fovea. The increasing distance between cone inner segments is 

due to increasing density of rod photoreceptors, which are not resolved with split-

detector imaging in most healthy volunteers. Scale bar: 50 μm. 
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Figure 4 Plot of average cone inner segment diameter from the foveal center along 

temporal meridian. Ex vivo measurements are averages of two retinas (<1.4°) or four 

retinas (>3.4°). Squares indicate ex vivo measurements, and gray shading reflects the 

SD across retinas. Within 1.4° of the foveal center, measurements were averaged 

across all four meridians. Also shown are data from two healthy subjects measured in 

vivo with nonconfocal split-detection AOSLO in the temporal direction. The in vivo data 

is shown as triangles with error bars of ±1 SD. 

Determining the Degree of Retained Cone 

Photoreceptor Structure in Achromatopsia 

Four patients with achromatopsia caused by mutations in the A3 

or B3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) 

channels (Supplementary Table S1) were recruited to quantify their 

retained cone structure. Optical coherence tomography cross-sectional 

images shown in Figure 5 reveal variable central EZ disruption in all 

four subjects, as has been reported in many patients with 

achromatopsia.20 Confocal AOSLO images in one of these subjects 

(JC_10069) near fixation and in the parafovea show retained 

waveguiding rods, with little to no reflectivity from cones (Figs. 6A, 

A,6D)6D) precluding identification of cone photoreceptors at these 

locations. The simultaneously recorded split-detector images (Figs. 6B, 

B,6E)6E) resolve both rod and cone inner segments. As shown best in 

the pseudocolor merged images (Figs. 6C, C,6F),6F), there is 1:1 

correspondence between the dark circular structures in the confocal 

image and the mound-like structures in the split-detector image. This 

indicates that there can be substantial retained cone inner segment 

structure in patients with achromatopsia, though the altered 

reflectivity of the residual cones indicates morphologic disruption of 

the outer segments and/or disturbance of the refractive indices of the 

cells. In this patient, the rods are visible in the split-detector channel, 

unlike in healthy subjects, due to the fact that they are enlarged (see 

Supplementary Table S3). 
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Figure 5 Spectral domain optical coherence tomography appearance of the 

subjects included in this study. The top three scans show ellipsoid zone disruption 

(JC_10069, KS_10088, and JC_10028), while the bottom shows a hyporeflective zone 

(JC_10089). Arrows indicate where AO images in corresponding figure panels were 

recorded. All scans show foveal hypoplasia. Scale bar: 200 μm. 

 

 

Figure 6 Confocal and split-detector AOSLO images of the photoreceptor mosaic in 

a patient with achromatopsia at 0.4° and 2° from fixation. (A, D) confocal images; (B, 

E) split-detector images; and (C, F) color-merged images, where the confocal image is 

displayed in orange, and split-detector image is shown in blue. Note the 1:1 
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correspondence between the dark cones in the confocal images and the inner 

segments in the split-detector images, highlighted by the pseudocolor images (C, F). 

Scale bar: 50 μm. 

Predicted Visual Acuity 

In order to estimate the best possible visual acuity recovery 

with gene therapy, assuming the limiting factor is photoreceptor 

spatial sampling, we measured the maximum cone density in four 

subjects with achromatopsia. Images from within 1° of the center of 

the anatomic fovea in all four subjects with achromatopsia are shown 

in Figure 7, demonstrating substantial variability in retained cone 

numbers across individuals. Retained cone photoreceptors were 

counted in these images and spatial sampling estimated based on cone 

spacing as previously described.28 The spacing of retained cone 

photoreceptors at these locations is approximately two times that of 

normal,28 though it varied between the four subjects. Assuming the 

normal connectivity between foveal cones and midget ganglion cells is 

preserved,34 this predicts an increase in minimum angle of resolution 

(MAR) by a factor of two to five compared with normal (Table). These 

results offer a promising perspective on the maximum therapeutic 

benefit in emerging achromatopsia gene therapy trials. 

 

Figure 7 Assessing the foveal photoreceptor mosaic in achromatopsia. Confocal 

(top) and split-detector (bottom) AOSLO images in patient (A, E) JC_10069, (B, F) 

KS_10088, (C, G) JC_10028, and (D, H) JC_10089 illustrate the substantial variability 

of retained cone structure at the fovea between individuals and genotype. The 

confocal images (A–D) at these locations show ambiguous photoreceptor reflectivity, 
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while the split-detector images reveal the foveal cone inner segments. Scale bar: 25 

μm. 

 

Subject ID # 

 

ICD*± SD, μm 

 

MAR†, arcmin 

 

JC_10069 4.73 ± 0.60 0.88 

KS_10088 7.59 ± 1.64 1.29 

JC_10028 7.74 ± 0.95 1.52 

JC_10089 14.20 ± 2.47 2.79 

 

Table Calculation of Visual Sampling Based on Residual Cone 

Photoreceptor Spacing at Locations Shown in Figure 7 

Assuming a best-case scenario where the entire retinal and cortical circuitry is either 

intact in achromatopsia or at least sufficient plasticity remains, the foveal acuity 

should be limited by the cone spacing. Using the calculation proposed by Rossi et al.,29 

and the measured center to center ICD over a 36.5 × 36.5-μm window from split-

detector images, the achromatopsia subjects in this study show potential visual 

sampling that is between 1.6 and 5.3 times worse than the healthy subjects in Rossi's 

study. 
*Cone photoreceptor center to center ICD. 
†Minimum angle of resolution. 

Discussion 

Split-detector imaging provides a robust method to visualize 

cone inner segment structure in a manner that appears to be 

independent of the integrity of the outer segment. Conventional AO 

(confocal, flood-illuminated, and OCT) imaging relies on a waveguided 

reflection from an intact, correctly oriented outer segment to visualize 

cones.11 However, outer segment structure degenerates in a variety of 

retinal diseases, including retinitis pigmentosa,35–37 AMD,38,39 and 

choroideremia.40 Quantification of cone structure in AO retinal images 

had until now been based on detecting visible waveguiding cones, with 

dark areas in the mosaic often interpreted as devoid of 

photoreceptors. Using the split-detector technique in patients with 

achromatopsia, we showed that cone inner segments occupied the 

majority of the dark gaps in the confocal AOSLO photoreceptor 

images. This provides the first direct in vivo evidence of substantial 

remnant cone structure in patients with achromatopsia, and 

demonstrates that analyses based only on confocal/bright field signals 
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will underestimate the degree of residual cone structure. A similar 

“dark cone” appearance has been described in a number of other 

conditions,41–44 suggesting that split-detector AOSLO imaging would 

provide a more direct quantification of cone structure in these patients 

as well. 

Previous studies of achromatopsia have measured the 

reflectivity of the EZ and the thickness of the outer nuclear layer (ONL) 

with OCT20,45,46 to assess the remaining cone photoreceptor population. 

Neither of these analyses can distinguish between contributions of rods 

and cones, due to insufficient transverse image resolution. More 

recently, parafoveal cone structure has been estimated with AOSLO in 

achromatopsia47 and blue-cone monochromacy48 by using rings of rods 

to facilitate counting of presumed nonwaveguiding cones. However, 

this is not possible at the foveola where a there is a contiguous dark 

patch without rods, and in other conditions in which rods also 

degenerate (such as retinitis pigmentosa), the ability to use intact rods 

to infer the presence of a perifoveal cone is limited. Moreover, in other 

retinal degenerations, the RPE can sometimes be resolved49 and often 

contains structures with reflectance profiles similar to small 

photoreceptors. Disambiguating RPE from photoreceptor structure in 

these cases is difficult, if not impossible, using only confocal AOSLO 

imaging. Split-detector imaging should be invaluable in elucidating 

cone structure in these more complex retinal diseases. 

The direct visualization of cone structure in achromatopsia 

afforded through the use of split-detector AOSLO stands to benefit 

emerging gene therapy efforts. Prior to intervention these images 

could be used to predict the anatomic upper limit of visual recovery 

that may change with genotype and age.46 In addition, knowledge of 

the degree of residual foveal cone structure could inform the 

estimation of the relative risk to benefit ratio on an individualized 

basis, and one could actually select patients for inclusion based on the 

amount of remnant cone structure. Beyond achromatopsia, the new 

split-detector AOSLO technique could positively impact the design and 

recruitment for clinical trials for other retinal degenerations involving 

damage to the photoreceptor outer segment. 
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