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Abstract: Phosphorus (P) is a critical, non-renewable nutrient; yet excess discharges can lead to 
eutrophication and deterioration of water quality. Thus, P removal from water must be coupled with P 
recovery to achieve sustainable P management. P-specific proteins provide a novel, promising approach 
to recover P from water. Bacterial phosphate-binding proteins (PBPs) are able to effectively remove 
phosphate, achieving extremely low levels in water (i.e. 0.015 mg-P L−1). A prerequisite of using PBP for 
P recovery, however, is not only removal, but also controlled P release, which has not yet been reported. 
Phosphate release using recombinant PBP-expressing Escherichia coli was explored in this study. 
Escherichia coli was genetically modified to overexpress PBP in the periplasmic space. The impacts of 
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ionic strength, temperature and pH on phosphate release were assessed. PBP-expressed E. coli 
demonstrated consistently superior ability to adsorb more phosphate from liquid and release more 
phosphate under controlled conditions relative to negative controls (unexpressed PBP E. coli and E. coli 
K12). Lower pH (3.8), higher temperature (35ºC) and higher ionic strength (100 mM KCl) facilitated 
increased phosphate release, providing a maximum of 2.1% P recovery within 3 h. This study provides 
proof of concept of the feasibility of using PBP to recover P. 

Keywords: phosphate binding protein (PBP), Escherichia coli (E. coli), adsorption, water, recovery, 
phosphorus 

INTRODUCTION 

Phosphorus (P) is a biocritical element in short supply in nature, the modern 
terrestrial cycling of which is dominated by anthropogenic activity (Filippelli 2008). 
Historically, removal of pollutant P from wastewater has been emphasized since excess 
concentrations can yield extraordinary phytoplankton growth, which can lead to 
eutrophication and subsequent development of hypoxia and acidification of surface water 
(Cai et al.2011; Rittmann et al.2011; Mayer et al.2013). Eutrophication is a major water 
quality problem (Smith et al.2014), and is the cause of at least 400 coastal dead zones 
worldwide (Diaz and Rosenberg 2008; Caballero-Alfonso, Carstensen and Conley 2015). In 
municipal wastewater treatment, enhanced biological phosphorus removal is often 
employed to achieve effluent concentrations as low as ∼0.1 mg-P L−1, which approaches 
the kinetic and thermodynamic limit (Jenkins, Ferguson and Menar 1971; Jenkins and 
Hermanowicz 1991; Cooper, Dee and Yang 1993; Blaney, Cinar and Sengupta 2007). As P 
regulations and guidelines specify progressively lower concentrations for surface waters 
(e.g. below 0.1 mg-P L−1, even as low as 0.005 mg-P L−1) (Mayer et al.2013), it is imperative 
to develop innovative strategies suitable for operation in water and/or wastewater that 
can remove P to these ultralow levels and also facilitate P recovery. Reuse of the recovered 
P benefits from highly selective separation of P (Mayer et al.2016), making selective P 
adsorption an attractive treatment approach. 

Removal of P from water using high-affinity phosphate-specific bacterial proteins 
has recently attracted research interest (Li et al.2009; Choi et al.2013). Bacteria import 
phosphate into their cells using dedicated transport systems. One of these systems, the 
phosphate-specific transporter (Pst) is primarily responsible for uptake when phosphate is 
present at low levels, which demands efficient binding and transport of phosphate to meet 
the cell's metabolic demands (Wanner 1993; Botero, Al-Niemi and McDermott 2000; 
Santos-Beneit et al.2008; Blank 2012). In Escherichia coli, the Pst complex consists of four 
proteins: a dimeric ATP-binding protein (PstB), two transmembrane proteins (PstA and 
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PstC) and a periplasmic phosphate-binding protein (PBP, also known as PstS or PhoS) 
(Santos-Beneit et al.2008; Choi et al.2013). Pursuant to the Venus flytrap model (Mao, Pear 
and McCammon 1982; Brune et al.1998), PBP sequesters inorganic P in a deep cleft, using 
12 strong hydrogen bonds to yield exceptional P specificity (Luecke and Quiocho 1990). 
Previous research indicated that recombinant E. coli expressing PBP in the periplasmic 
space can remove ≥97% of phosphate within 6 h from water with an initial concentration 
of 0.2–0.5 mg-P L−1 (Choi et al.2013). Column tests using PBP immobilized on Sepharose 
beads showed removal of 32P-labeled phosphate to below the detection limit of 9.5 ng-P L−1 
using an influent concentration of 0.015 mg-P L−1 (Kuroda et al.2000). Thus, PBP has 
considerable potential for applications requiring P removal to ultralow concentrations. 
However, beyond efficient removal (Choi et al.2013), P recovery by PBP requires 
controlled desorption of the sorbed phosphate, regarding which limited information exists 
(e.g. Brune et al.1998; Kuroda et al.2000). 

The objective of this study was to demonstrate that PBP could increase P 
adsorption, and that the P could be released under controlled conditions. The focus of this 
work was on establishing system capabilities, rather than optimization for maximum P 
uptake and release. Using common methods for phosphate analysis (e.g. colorimetric or ion 
chromatography), large amounts of purified PBP protein would be needed to quantify P 
recovery during adsorption/desorption experiments. Another option is to use a small 
amount of protein with the 32P isotope (Kuroda et al.2000), quantification of which 
requires specialized analytic equipment. To avoid using P isotopes or using large quantities 
of purified proteins, reversible phosphate release was demonstrated using recombinant 
PBP-expressing E. coli (PBP E. coli) and conditions favorable for controlled phosphate 
release were identified. Genetic modification of E. coli can be applied as a fast and easy 
approach to establish the feasibility of controlled, reversible phosphate sorption using PBP 
proteins. 

MATERIALS AND METHODS 

Construct and verify recombinant Escherichia coli expressing PBP 

We engineered PBP-expressing E. coli following the manufacturer's protocols (PET 
System manual 10th edition, Novagen, Madison, WI, USA). The PBP gene was directly 
synthesized using the PBP sequence from Pseudomonas aeruginosa (GenScript, 
Piscataway, NJ), as its PBP has demonstrated strong phosphate binding (Neznansky 
et al.2014). Plasmid PET 30 a (Novagen) and the target PBP gene were double enzyme 
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digested using NcoI and XhoI (New England BioLabs, Ipswich, MA), followed by gel 
purification (QIAquick Gel Extraction Kit, Qiagen, Valencia, CA, USA). Ligation was 
conducted using a DNA Ligation Kit (Novagen kit #69838). The sequence of the inserted 
gene was confirmed by Sanger Sequencing. The reconstructed plasmid was introduced into 
E. coli One Shot® BL21(DE3) cells (Novagen). A single colony was inoculated into Lysogeny 
broth (LB) containing 50 mg L−1 kanamycin (Sigma-Aldrich, St. Louis, MO, USA), and 
cultures were incubated at 37°C on a shaker at 200 rpm. After culturing for 2 h, 1 mM 
isopropyl-β-D-thiogalactopytanoside (IPTG, Sigma-Aldrich) was added to induce PBP 
expression, and the cells were further cultured for another 12 h. Cells were harvested by 
centrifugation at 5000 g for 10 min at 4°C, and then lysed by water bath sonication. The 
target PBP was obtained by one-step purification using a Ni-NTA agarose column (Qiagen). 
Fractions were pooled and dialyzed followed by 0.22 μm filter sterilization. Proteins were 
analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 
western blotting using standard protocols for molecular weight and purity measurements 
(Sambrook, Fritsch and Maniatis 1989). The primary antibody for western blot was Mouse-
anti-His mAb (GenScript, Piscataway, NJ, USA). 

Unexpressed controls and P analysis 

Two unexpressed controls were used for comparison against the PBP-
overexpressed E. coli: (i) E. coli K12 (endogenous PBP with the gene in the chromosome) 
and (ii) unexpressed recombinant PBP E. coli (PBP gene in both the chromosome and 
related plasmid). The E. coli were independently inoculated into LB medium at 37°C (Choi 
et al.2013). The LB medium for the recombinant E. coli was supplemented with 50 mg L−1 
kanamycin. After 2 h incubation, IPTG was added to one aliquot of the recombinant E. coli 
to induce PBP protein expression (hereafter called PBP E. coli), while the aliquot of 
recombinant E. coli without IPTG addition was used as a negative control (unexpressed 
PBP E. coli). After overnight incubation, bacteria biomass was harvested by centrifuging at 
5000 g for 5 min at 4°C. The biomass was resuspended in 1 mM KCl solution. To minimize 
residual LB media associated with bacteria biomass, three consecutive centrifuge and 
resuspension cycles were conducted using 1 mM KCl. Prior to tests, the biomass from each 
of the three groups of bacteria (PBP E. coli, unexpressed PBP E. coli and E. coli K12) was 
diluted to an optical density at a wavelength of 600 nm (OD 600) of 0.50. 

Unlike previous studies directed at P removal (Choi et al.2013), this study focused 
on the potential for controlled release of phosphate bound by PBP-expressing E. coli. To 
assess P sorption, initial total P content (inclusive of P integrated in cell biomass as well as 
extra P sorbed by the cells) of all cultures was quantified. An aliquot of 5 mL of mixed cell 
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suspension was collected, digested and analyzed using a Hach Kit (Phosphorus TNT plus, 
Hach, CO) with a detection limit of 0.5 mg-P L−1. To quantify P release, phosphate was 
measured for each sample by first collecting 5 mL of cell suspension, and centrifuging it at 
5000 g for 5 min at 4°C. The supernatant was then filtered using 0.45 μm disk filters (GF, 
Acrodisc®, Pall Corporation, NY) to remove the biomass. The phosphate concentration in 
the filtrate was measured using PhosVer® 3 Phosphate Reagent Powder Pillows (Hach) 
with a detection limit of 0.01 mg-P L−1. 

Phosphate release from recombinant Escherichia coli as a function of ionic 
strength, temperature and pH 

The impact of ionic strength was explored by suspending the bacteria in 1, 10 and 
100 mM KCl solutions. The suspensions were mixed on an orbital shaker at room 
temperature (22°C) for 3 h. Choi et al. (2013) reported efficient removal of P using E. coli in 
6-h batch-scale adsorption tests, indicating that cell integrity was maintained throughout 
the 3 h test used in this study. We also confirmed integrity of the cell using the Bradford 
assay, which indicated that the concentration of proteins released from the cells after 3 h 
was below the detection limit of 0.125 mg L−1. 

To facilitate comparison of the P release capabilities of PBP E. coli and unexpressed 
E. coli, concentrations of released P were normalized to that from the unexpressed E. coli. 
In a similar way, we explored the influences of temperature (22°C and 35°C) and pH (3.8, 
6.8 and 8.4) on phosphate release. All tests were conducted in triplicate (biological 
replicates). Percent P recovery was calculated by dividing the concentration of phosphate 
released by the total P content of the cells. We also evaluated phosphate release at different 
pHs as a function of time: 0, 0.5, 2, 3, 6 and 9 h. Kinetic data were fit to zero- and first-order 
reaction rates for comparison using Microsoft Excel. 

Statistical analysis 

Differences in released phosphate concentrations due to changes in ionic strength 
and temperature were assessed using one-way ANOVA conducted using SPSS 11.5 software 
for Windows (SPSS Inc., Chicago, IL, USA). Two-way ANOVA was used to determine the 
effect of the contributing factors (i.e. time and pH) on phosphate release kinetics. Tukey 
post hoc analysis was performed for all ANOVA analyses. A significance level of 0.05 was 
used for all tests. 
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RESULTS AND DISCUSSION 

Confirmation of PBP expression by SDS-PAGE and western blotting analyses 

Expressed PBP isolated from the periplasmic fraction of the PBP Escherichia coli 
was analyzed by SDS-PAGE and western blotting, as shown in Fig. 1 (the raw image is 
shown in Fig. S1, Supporting Information). Both approaches indicated that the molecular 
weight of the purified PBP was ∼35 kDa. This result indicated that PBP was successfully 
expressed as it agrees with previous reports of 35.6 kDa for PBP (Choi et al.2013). 

Figure 1. 

 

(a) SDS-PAGE and (b) western blotting analyses of purified PBP protein. Bovine serum albumin (BSA) 
was used as a PBP-negative control for SDS-PAGE. 

Phosphate release from recombinant Escherichia coli at different ionic strengths 
and temperatures 

To quantify initial sorption (including both absorption for cellular functions and 
additional adsorption provided by PBP), we first measured the total P content at the same 
biomass concentration (OD 600 = 0.50) for the three groups of E. coli. They were 4.54 ± 
0.01, 3.59 ± 0.03 and 5.63 ± 0.10 mg-P L−1 for E. coli K12, unexpressed E. coli and PBP 
E. coli, respectively. Based on these measures of the total P concentrations of the three 
types of cells, the overexpressed PBP E. coli can clearly sorb more phosphate than the 
unexpressed controls (one-way ANOVA, P < 0.05). These results provide a basis for 
comparatively assessing P release as a function of ionic strength, temperature and pH. 
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Figure 2 shows the percentage of released phosphate from the three different 
groups of E. coli using different ionic strength solutions, all normalized to the concentration 
of P released from unexpressed E. coli at 1 mM KCl. The unexpressed E. coli and PBP E. coli 
generally showed increased phosphate release as ionic strength increased. However, E. coli 
K12 released similar phosphate concentrations across the range of ionic strengths tested 
(P > 0.10). At each ionic strength evaluated, PBP E. coli provided greater phosphate release 
than the control groups. For instance, the PBP E. coli released nearly two times more P than 
the unexpressed PBP group. 

Figure 2. 

 

Phosphate release from PBP E. coli, unexpressed E. coli and E. coli K12 suspension within 3 h at different 
ionic strengths (1, 10 and 100 mM KCl). All concentrations were normalized to the P concentration 
released from unexpressed E. coli at 1 mM KCl. Experiments were performed at room temperature 
(22°C), and the pH of all samples was initially 6.8. The initial concentration of all bacterial suspensions 
was OD 600 = 0.50. Bars and error bar represent mean ± one standard deviation of triplicate 
experiments. 

Limited information on the mechanisms of P release from the PBP-P complex is 
currently available, but binding is known to vary as a function of ionic strength (Wang 
et al.1994). Ledvina et al. (1998) observed a 20-fold increase in the dissociation constant, 
Kd, at 0.30 M NaCl compared to no-salt solution, which agrees with our finding that higher 
ionic strength promotes P release. Though the exact mechanism for increased phosphate 
release by higher ionic strength is not yet known, there might be two plausible reasons. 
First, the increase in ionic strength could also increase the hydrolysis rate of protein–
phosphate complexes, as research has shown that higher conductivity may increase 
enzymatic hydrolysis (Butre, Wierenga and Gruppen 2012). Second, the increased ionic 
strength might also raise the permeability of the outer membrane of the cells and facilitate 
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phosphate transport from the periplasmic space to the outside of the membrane for 
phosphate release (Suzuki et al.1999). 

The effect of temperature on the release of phosphate is illustrated in Fig. S2 
(Supporting Information). At room temperature, PBP E. coli released about 3.2 times more 
P than the unexpressed E. coli, while at 35ºC, PBP E. coli released about 3.1 times more P 
than the unexpressed E. coli. For all three types of E. coli tested, the elevated temperature 
improved phosphate release (P < 0.05). Increased P release as a function of increasing 
temperature agrees with the expectation that rates would increase since the kinetic energy 
of molecules increases with temperature. Protein stability may dictate an upper bound for 
temperature increases, but as the denaturation temperature for most proteins is 41°C 
(Stoker 2006), PBP activity is unlikely altered at 35°C. Elevated temperature can increase 
membrane permeability (Osborne and MacKillop 1987; Bischof et al.1995), and the change 
in permeability of the membrane could ostensibly increase phosphate release. For PBP 
E. coli, the elevated temperature may also trigger hydrolysis of the phosphate–PBP 
complex, although further research is needed. 

Phosphate release from recombinant Escherichia coli at different pH levels 

Phosphate release at different pH levels is shown in Fig. 3. The PBP E. coli and 
unexpressed PBP E. coli demonstrated similar trends. The lower pH increased the 
concentration of phosphate released compared to near-neutral conditions for all three 
E. coli (P < 0.05), while no significant difference was identified between the near-neutral 
condition and pH 8.4 (P = 0.27, 0.18 and 0.18 for unexpressed PBP E. coli, PBP E. coli and 
E. coli K12, respectively). For all three E. coli, lower pHs appear to facilitate phosphate 
release while higher pHs (i.e. pH 8.4) have negligible impact. PBP E. coli released more 
phosphate than the two negative controls at each pH level, ∼2.3–3.3-fold and 1.3–2.2-fold 
greater compared to unexpressed PBP E. coli and E. coli K12, respectively, at the pH levels 
tested here. The interaction between P and PBP is dominated by local dipolar interaction 
(Ledvina et al.1998). Thus, pH shifts away from neutral could lead to redistribution of 
charge on the P-PBP complex, thereby affecting dipolar interactions. Accordingly, lower or 
higher pH favors the dissociation of P from the complex, as indicated by our results. 
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Figure 3. 

 

Phosphate concentration released from PBP E. coli, unexpressed E. coli and E. coli K12 suspension 
within 3 h at different pHs. All concentrations were normalized to the P concentration released from 
unexpressed E. coli at pH 6.8. All tests were performed at room temperature 22°C, and 1 mM KCl was 
used for all samples. The initial concentration of all bacterial suspensions was OD 600 = 0.50. Bars and 
error bar represent mean ± one standard deviation of triplicate experiments. 

Kinetics of phosphate release 

Before testing P release kinetics at different pHs, we measured the initial total 
phosphate content in each culture (after diluting each to OD 600 = 0.5), which was 4.9 ± 
0.02, 3.9 ± 0.04 and 4.0 ± 0.2 mg L−1 for PBP E. coli., unexpressed PBP E. coli and E. coli 
K12, respectively. This shows that the genetically modified PBP E. coli removed more 
phosphate from LB medium than the negative controls. 

The results shown in Fig. 3 indicated that there was negligible impact on P release 
using the basic solution. Therefore, the kinetics of phosphate release was evaluated at near-
neutral and acidic conditions. Figure 4a shows the kinetics of phosphate release within 9 h 
at near-neutral conditions (pH 6.8). In terms of P release, the PBP E. coli released more 
phosphate at each time point, yielding a final phosphate concentration of 0.07 ± 0.005 mg 
L−1 after 9 h. However, both unexpressed PBP E. coli and E. coli K12 reached the highest 
phosphate concentrations after 0.5 h. Two-way ANOVA between unexpressed PBP E. coli 
and E. coli K12 indicated no significant effects due to group (P = 0.68), meaning 
unexpressed PBP E. coli and E. coli K12 were essentially the same in terms of phosphate 
release. There was also no significant effect due to joint factors (group × time, P = 0.23); 
however, time did have a significant impact on phosphate release (P < 0.05). The change in 
P concentration over time was well represented using a zero-order reaction for PBP E. coli 
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(R2 = 0.85), yielding a reaction constant of 0.006 mg L−1 h−1. The unexpressed E. coli and 
E. coli K12 produced reaction constants of 0.001 and 0.002 mg L−1 h−1, respectively. 
Clearly, PBP E. coli not only released more P than the controls, but also demonstrated a 
faster P release rate at pH 6.8. 

Figure 4. 

 

The change in phosphate concentration released from PBP E. coli, unexpressed E. coli and E. coli K12 as 
a function of time at (a) pH 6.8 and (b) pH 3.8. All cell suspensions were adjusted to the same bacteria 
concentration of OD 600 = 0.50. Data points and error bars represent mean ± one standard deviation of 
triplicate experiments. 

All three groups of E. coli showed an increasing trend of phosphate release as a 
function of time in acidic conditions (Fig. 4b). All samples released more phosphate 
compared to near-neutral conditions, and PBP E. coli consistently released more phosphate 
than the negative controls. To analyze the difference between unexpressed PBP E. coli and 
E. coli K12, two-way ANOVA analysis was conducted. The analysis showed no significant 
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effects due to groups and time × groups (P values = 0.45, 0.10, respectively), while a 
significant effect was observed due to time (P < 0.05). Pseudo first-order kinetics provided 
a better fit to the data than zero order, providing reaction rate constants of 1.04, 0.48 and 
0.27 h−1 for PBP E. coli, E. coli K12 and unexpressed E. coli (R2 = 0.8, 0.2, 0.4), respectively. 
Thus, PBP E. coli always released statistically greater levels of phosphate at a faster rate 
than the controls. 

Phosphate recovery potential using PBP Escherichia coli 

Implementation of recombinant-plasmid bacteria systems in actual wastewater 
treatment applications introduces challenges such as expulsion of the plasmid in the 
absence of antibiotic pressure (Palomares, Estrada-Moncada and Ramírez 2004; Clark 
2009). However, this study provides proof of concept for the use of PBP for P recovery by 
demonstrating controlled P release. The results clearly indicate the feasibility of using PBP 
for P recovery in that (i) bacterial expression of PBP enables greater phosphate adsorption, 
and (ii) PBP-bound phosphate can be released using environmental stimuli, with lower pH, 
higher ionic strength and higher temperature promoting desorption. The highest observed 
recovery of adsorbed P in this 3 h study was 2.1%. Although the concentrations of P 
released to the water were low, optimized release of the phosphate sorbed by PBP E. coli 
into smaller volume ‘regenerant’ solutions could facilitate subsequent use as a liquid 
fertilizer or solid fertilizer following precipitation of phosphate-rich solids. Successful 
construction of recombinant E. coli in this study not only demonstrated an efficient means 
of producing PBP, but also provides a solid preliminary basis for future work using PBP for 
phosphate removal. Future research is needed to address the many fundamental 
thermodynamic questions that remain, including what are the important cofactors for the 
dissociation reaction, and how do pH and ionic strength impact PBP-P complex 
configuration and binding? Phosphate recovery may be greatly improved through direct 
exposure of PBP to the water matrix, rather than expressing it in the cell's periplasmic 
space. Ultimately, an immobilized PBP system will be investigated to improve 
understanding of phosphate-PBP sorption and desorption potential. 
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Figure S1. Original images for (a) SDS-PAGE analysis and (b) Western blotting using the 
purified PBP protein. In Figure S1a, lanes 1, M1, and 2 represent bovine serum albumin 
(BSA), protein marker, and purified protein PBP, respectively. In Figure 1b, lanes 3 and M2 
represent purified protein PBP and protein biomarker, respectively.  
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Figure S2. Phosphate concentrations released from PBP E. coli, unexpressed E. coli, and E. 
coli K12 suspensions within 3 h as a function of temperature. All concentration values were 
normalized to the P concentration released from unexpressed E. coli at 22ºC. All 
suspensions had a bacteria concentration of OD 600 = 0.50. Bars and error bars represent 
mean ± one standard deviation of triplicate experiments. 
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Figure S3. Percentage of phosphate released from PBP E. coli, unexpressed E. coli, and E. 
coli K12 suspension within 3 h at different ionic strengths (1 mM, 10 mM, and 100 mM 
KCl). All concentration values were normalized to the total P of the cell suspension. The 
initial pH of all samples was 6.8 and the initial concentration of all bacterial suspensions 
was OD 600 = 0.50. Bars and error bar represent mean ± one standard deviation of 
triplicate experiments. 
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Figure S4. Percentage of phosphate released from PBP E. coli, unexpressed E. coli, and E. 
coli K12 suspension within 3 h at different pHs. All concentrations were normalized to the 
total P concentration of each cell suspension at pH 6.8. 1 mM KCl was used for all of tests. 
The initial concentration of all bacterial suspensions was OD 600 = 0.50.  Bars and error 
bar represent mean ± one standard deviation of triplicate experiments. 

 

 

 

 

 

 

 

 

 

 

 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Unexpressed E.coli E.coli K12 PBP E.coli

Pe
rc

en
ta

ge
 o

f P
 r

el
ea

se
d 

(%
)

pH 3.8 pH 6.8 pH 8.4

https://doi.org/10.1093/femsle/fnw240
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the 
link in the citation at the bottom of the page. 

FEMS Microbiology Letters, Vol. 363, No. 20 (October 2016). DOI. This article is © Oxford University Press and permission has been granted for 
this version to appear in e-Publications@Marquette. Oxford University Press does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Oxford University Press. 

18 
 

 

Figure S5. Percentage of phosphate released from PBP E. coli, unexpressed E. coli, and E. 
coli K12 suspensions within 3 h as a function of temperature. All concentrations were 
normalized to the total P of the cell suspension at 22 ºC. All suspensions had a bacteria 
concentration of OD 600 = 0.50. Bars and error bar represent mean ± one standard 
deviation of triplicate experiments. 
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