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Abstract: Two new redox active ligands based on di(2-(3-organopyrazolyl)-

ptolyl)amine have been prepared in order to investigate potential effects of 

steric bulk on the structures, electronic properties, or reactivity of 

tricarbonylrhenium(I) complexes. Replacing the hydrogens at the 3-pyrazolyl 
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positions with alkyl groups causes significant distortion to the ligand 

framework due to potential interactions between these groups when bound to 

a fac-Re(CO)3 moiety. The distortions effectively increase the nucleophilic 

character of the central amino nitrogen and ligand-centered reactivity of the 

metal complexes. 

Introduction  

Metal complexes of pincer ligands are receiving increased 

attention for studies in a wide range of topical areas from catalysis to 

bioinorganic and materials chemistry.1 The appeal of these complexes 

arises from their generally high stability and the unusual reactivity that 

suitably designed ligands can impart on a metal center. Further 

interest is educed by emergent reports documenting non-innocent 

pincer variants that promote unexpected chemistry.2 We recently 

introduced a new non-innocent NNN-pincer ligand based on di(2-

(pyrazolyl)-p-tolyl)amine and its various tricarbonylrhenium(I) 

complexes (Fig. 1).3  

 

The quasi-reversible electrochemistry associated with the (metal-

bound) ligand oxidation could be reproducibly turned ‘off’ or ‘on’ by 

protonation and deprotonation reactions with Brønsted acids or bases, 

respectively. Moreover, the one-electron oxidized product 

[Re(CO)3(LH)]+ was demonstrated to contain a ligand-centred radical 

by IR and EPR experiments. These results were also suggested by a 

theoretical (DFT) study that showed that most of the spin density was 

located on the central amido nitrogen, substantial contributions were 

found at the ortho- and para- aryl carbons, and a smaller contribution 

extended onto a metal d-orbital. During the course of that work it 
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occurred to us that if the stability of the ligand cation radical results 

from hole delocalization over the entire 𝜋-conjugated diarylamine 

framework, it should be possible to alter the stability (i.e. increase the 

reactivity) of this cation or even its precursors by increasing the aryl-

aryl dihedral angle, effectively disrupting conjugation. Inspection of 

the structures of Re(CO)3(LH) and associated derivatives suggested 

that this goal could be achieved simply by placing steric bulk at the 3-

position of the pyrazolyls. Herein we fully document the successful, yet 

surprising, results of these efforts including the preparation of two new 

NNN-pincer ligands (R = Me, iPr, Scheme 1) and the properties of their 

various Re(CO)3 complexes.  
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Results and Discussion 

Preparation 

The syntheses of the ligands and fac-Re(CO)3 complexes follows 

methodology similar to that reported for di(2-(pyrazolyl)-ptolyl) 

amine, H(LH) and its complexes.3 The preparative routes to the 

complexes are summarized in Scheme 1. For the ligand syntheses 

described in the experimental, the CuI-catalyzed amination reactions4 

between HN(2-Br-p-tolyl)2
5 and either 3-methyl- or 3-isopropyl-

pyrazole6 proceeded smoothly to give 60–65% yields of H(LMe) or 

H(LiPr) simply by heating neat mixtures for 1 d at 200˚C followed by 

conventional workup. In contrast, low yields of H(LH) are obtained 

when heating neat reaction mixtures because unsubstituted pyrazole 

distills out of the reaction mixture and condenses as a solid onto cooler 

parts of the reaction apparatus; here, the addition of minimal xylenes 

helps to wash pyrazole back to the heterogeneous reaction mixture. 

The longer reaction time required for the preparation of H(LH) (2d, 

monitored by TLC, 69% isolated yield) is likely limited by the 

distillation temperature of xylenes (bp = 151◦C). For the 3-

organopyrazolyl derivatives, only the desired isomer of H(LMe) or 

H(LiPr) as depicted in the top left of Scheme 1 was obtained (from NMR 

spectral data and crystallographic determinations of the free ligand, 

H(LMe)† and of all metal complexes with these ligands). Hypothetical 

di(2-(5-R-pyrazolyl)-p-tolyl)amine isomers (with both R groups 

situated proximal rather than distal to the aryls) or mixed 3,5-isomers 

have not been detected. In the IR spectrum (KBr) of each ligand, the 

N–H stretching frequency occur as a medium intensity, sharp bands at 

rather low energy for 2˚ arylamines (3261 cm-1 for H(LH); 3297 cm-1 

for H(LMe); 3296 cm-1 for H(LiPr)) which typically occur nearer to 3400 

cm-1, presumably a result of the intramolecular hydrogen bonding.7 

The reactions between the free ligands [of general notation 

H(LR)] and Re(CO)5Br in boiling toluene causes elimination of two 

equivalents of CO concomitant with the precipitation of the fac-

ReBr(CO)3[H(LR)] complexes (1R) as analytically pure colorless 

powders. The ensuing reactions of 1R with TlPF6 in CH3CN provide 

{fac-Re(CO)3[H(LR)]}(PF6) (2R). As found in related diarylamine 

systems,8 complexation of the ligands to metal centers causes a 

progressive red-shift in the N–H stretching frequency with increasing 
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electron density of the metal center. For instance, 𝜈NH = 3243 cm-1 for 

2H and 𝜈NH = 3147 cm-1 for 1H. Finally, the reactions of colorless 1R or 

2R in CH3CN with the Brønsted base (NEt4)(OH) leads immediately to 

the formation of the corresponding yellow fac-Re(CO)3(LR) complexes 

(3R) where the hydrogen on the diarylamine has been eliminated 

(after reaction with hydroxide to give H2O). Of the two routes to 3R, 

that starting from 1R is preferred since one less synthetic step is 

required (and in our hands it was easier to separate 3R from NEt4Br 

than from NEt4(PF6)). In either case, it is noted that the reaction time 

is best kept short (15 min) as longer reaction times give lower yields 

due to a slow but competing decomposition reaction that produces 

increasing amount of ‘free’ ligand H(LR); the nature of the rhenium-

containing decomposition by-product is unclear. Fortuitously, the 

separation of 3R and other products is facilitated by the significantly 

different solubilities of the desired and unwanted products in MeOH or 

in benzene and Et2O. 

Solid State Structures 

`The structures of H(LMe) and the six rhenium complexes 1R, 2R, and 

3R (R = Me, iPr) were determined by single crystal X-ray diffraction; 

those of H(LH), 1H, 2H, and 3H were reportedpreviously. Representative 

structures for 1Me, 2Me, and 3Me are provided in Fig. 2–4 while other 

new structures are provided in the Electronic Supplementary 

Information (ESI).† Selected interatomic distances and angles are 

listed in Table 1.  
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All of the rhenium complexes retain the fac-Re(CO)3 moiety and all are 

chiral (with C1-symmetry) as a result of the various ligand 

conformations (vide infra).  

 

For the 1R series, the ligand is bound to the metal in a chelating 

k2N-manner via the central amino nitrogen and one pyrazolyl nitrogen. 

In each of these cases, the amino hydrogen is oriented toward the 

axial bromide rather than the axial carbonyl. For each, the rhenium-

nitrogen bond involving the amino group (Re–N1, or Re–NAr, ca. 2.27 

Å) is longer than that involving the pyrazolyl (Re–N11, or Re–Npz, ca. 

2.19 Å).  
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The bond distances in this series of complexes are typical of other N,N-

chelating ligands containing the fac-Re(CO)3Br moiety such as in the 

closely related Re(CO)3Br[H(pzAnMe)] (H(pzAnMe) is 2-pyrazolyl-4-

toluidine; Re–Br = 2.628 Å , Re–NAr = 2.219 Å , and Re–Npz 2.179 Å)9 

or those in the NNN-pincer- relative, ReBr(CO)3[bis(1-methyl-1H-

benzoimidazol-2-ylmethyl)amine)] (Re–Br, Re–Navg = 2.23–2.28 Å).10 

Within the series 1R, the steric profile of the 3-R-pyrazolyl substituent 

has the expected but small effect on Re–Npz bond distances with the 

unsubstituted derivative having a shorter bond (2.18 Å) than the 3-

substituted derivatives (ca. 2.20 Å) but there is no significant 

difference in the Re–N1 (amino nitrogen) bond distances (ca. 2.26 Å). 

Interestingly, the most striking influence of 3-pyrazolyl substitution 

occurs with the interatomic distances and angles associated with the 

‘free’ arm of the ligand. For 1H, there is a relatively short hydrogen 

bonding interaction between the amino hydrogen H1 and the free 

pyrazolyl nitrogen N21 (N1H1…N21: 1.91 Å , 140˚) that brings the 

‘free’ pyrazolyl and tolyl groups closer to coplanarity (dihedral between 

mean planes of 14˚) than those rings that are bound to rhenium 

(dihedral between mean planes of 41˚). For 1Me and 1iPr, the hydrogen 

bonding interaction becomes progressively longer (and presumably 

weaker) and the pz-tolyl dihedral becomes larger with increasing steric 

bulk (N1H1…N21: 2.02 Å, 141˚and pztolyl dihedral 24˚ for 1Me and 

N1H1…N21: 2.13 Å , 153˚ and pz-tolyl dihedral 29˚ for 1iPr). A similar 

observation is made for the structures of the free ligands [two 

independent molecules: avg. N1H1…N21: 2.04 Å, 132˚ and pz-tolyl 
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dihedral 30˚ for H(LH); N1H1…N21: 2.20Å, 129˚ and pz-tolyl dihedral 

43˚ for H(LMe)]. 

For each ionic derivative 2R, the ligand binds rhenium in a 𝜘3N- 

manner giving a fac-ReN3C3 kernel. The average Re–N distances in 2R 

are shorter than the corresponding distances in 1R, as expected from 

the cationic nature of the former. Within the series of 2R, 3-pyrazolyl 

substitution results in gradual increase in Re–Npz distances with 

increasing steric bulk but, as with 1R, substitution has little impact on 

the Re–N1 distances. In 2R, there are two six-memberReN3C2 chelate 

rings that can be differentiated by small differences in Re–Npz bond 

lengths, chelate bite and fold angles. As found in Table 1, one chelate 

ring (containing N11) has a shorter Re–Npz bond, a smaller chelate bite 

(N1ReN11 angle) and a greater chelate ring puckering (more acute 

fold angle) than the other chelate ring containing N21. The chelate 

ring with smaller bite and fold angles in 2R has similar metrical 

parameters to those found in 1R. A final small but noteworthy effect of 

changing 3-pyrazolyl substituents is found by examining the local 

coordination geometry around the amino nitrogen N1. The 3-

organopyrazolyl groups in 2Me and 2iPr enforce greater 

pyramidalization about N1 (relative to the mean plane defined by C1 

C31 and Re) compared to the unsubstituted pyrazolyl derivative 2H. 

That is, the sum of angles about N1 (Σ∠’s about N1, not involving N1–

H1) and the perpendicular distance between N1 and the mean plane 

defined by C1 C31 and Re, ⊥N1…(C2Re), are 332˚ and 0.52 Å for 2Me 

and 2iPr but are 334˚ and 0.49 Å for 2H; a planar nitrogen would have 

ideal values of 360 ˚ and 0Å . 

In a manner similar to 2R, the ligands in 3R bind rhenium in a 

k3N-manner giving fac-ReN3C3 kernels. Deprotonation of the amino 

hydrogen is accompanied by a significant shortening of the Re–NAr 

bond in 3R (ca. 2.19 Å) relative to the corresponding distances in 1R 

(ca. 2.27 Å) or 2R (ca. 2.26 Å). Within the series 3R, the Re–NAr bond 

is longer for derivatives with 3-organo substituents (2.163(2) Å for 3H, 

2.178(3) Å for 3Me and 2.183(2)Å for 3iPr). As highlighted in Fig. 5, the 

structure of 3H is distinct from those of 3Me and 3iPr in that the former 

approaches mirror symmetry (disregarding the tolyl-tolyl dihedral and 

slight differences in chelate ring distortions that give the complex 

actual C1 symmetry) with a short average Re–Npz distance (2.16 Å) 

and a nearly planar amido nitrogen (Σ∠’s about N1 = 356˚). In 
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contrast, the latter two complexes more closely resemble their 

protonated counterparts 2Me and 2iPr each with decidedly C1 

symmetry. Relative to 3H, 3Me and 3iPr have longer Re–Npz bond 

distances (2.20Å for 3Me and 2.21 v for 3iPr) and more pyramidal 

amido nitrogens (Σ∠̕s about N1 = 339˚ for each). Presumably, 

potential steric interactions involving 3-organopyrazolyl groups enforce 

the observed C1 symmetric conformations, and make hypothetical 

pseudo-Cs symmetric conformations of either 3Me or 3iPr much higher 

energy. 

 

Solution Characterization 

Selected electrochemical and IR spectral data for complexes 1R–

3R(R = H, Me, iPr) are given in Table 2. The current discussion of 

solution properties will center on the data for 3R because of their 

interesting electronic properties and disparate reactivity patterns is the 

focus of this work. The solution characterization data of analytically 

pure 1R–3R (R = H, Me, iPr) are less germane to the central point of 

the work but are noteworthy since they are unexpectedly complex, as 

described previously for R = H.3 That is, NMR and other solution data 

show that all 1R are involved in ionization equilibria to form 2R and 

another ionic intermediate, presumably five-coordinate [Re(CO)3(𝜘2-

HLR)+](Br−)†. All 2R and ionized forms of 1R are also involved in 

dynamic exchange processes. Full details of the complex NMR data for 

these complexes can be found in the ESI.† 
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The NMR spectra for 3R are simpler than expected based on the 

low-symmetry solid state structures owing to rapid processes that 

interchange supposedly symmetrically inequivalent halves of the 

ligands (or that invert conformations of chelate rings). That is, if the 

solid state structures were retained, two sets of resonances for 

pyrazolyl and tolyl hydrogens would be expected but only one set is 

observed (vide infra). In surprising contrast to 1R, 2R or 4R, the rate of 

the exchange process in 3R could not be slowed down enough to be 

measured by NMR even when CD2Cl2 or acetone-d6 solutions are 

cooled to 193 K. Given that the exchange processes can be frozen at 

low temperatures for derivatives with quaternary amino nitrogens (1R, 

2R or 4R, vide infra),† nitrogen inversion facilitates the exchange 

processes of 3R. 

 

In either the solid state or solution, the IR spectrum of each 

3R gives a characteristic pattern of three C–O stretching bands (Table 

1) for fac-Re(CO)3 units; the N–H stretching band is also absent. In 

accord with expectations based on the increasing electron density at 

metal centres (and greater back-bonding), the CO stretches appear at 

lower energy relative to 1R and 2R where average stretching 

frequencies decrease in the order 2R > 1R > 3R. For 3R, replacement 

of 3-pyrazolyl hydrogens for more electron donating methyl or 

isopropyl substituents has a surprisingly small electronic effect, as 

http://dx.doi.org/10.1039/C1DT10030K
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Dalton Transactions, Vol. 40, No. 35 (September 2011): pg. 8776-8787. DOI. This article is © The Royal Society of 
Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. The Royal Society of 
Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from The Royal Society of Chemistry. 

11 

 

indicated by the nearly identical average CO stretching frequencies. It 

is likely that any potential inductive electronic effects may be offset by 

steric interactions that enforce longer Re–N bonds along the series 3H 

< 3Me < 3iPr. 

 

The electrochemistry of each 3R is distinct from their 

counterparts 1R or 2R (Table 1) as each 3R in CH2Cl2 shows a quasi-

reversible oxidation near Br versus Fc/Fc+ (Fig. 6, ipc/ipa = 1, but ΔΕ = 

Εpa - Εpc increases as a function of scan rate); 1R and 2R have 

irreversible oxidations (ipc/i ≪ 1 and ΔΕ ≫59 mV) at higher potentials. 

The oxidation potentials of 3Me and 3iPr are nearly equivalent and are 

only slightly (10–15mV) more favourable than that of 3H. 

Interestingly, in CH3CN the oxidation becomes reversible for 3H and 

3Me but not for 3iPr.† Spectrophotometric titrations with organic 

oxidants indicate that the oxidation is a one-electron event, as 

discussed later.  
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The electronic absorption spectra of 3R complexes in CH2Cl2 are 

found in Fig. 7. The spectra are qualitatively similar, as might be 

expected, but there are subtle differences that distinguish the R = H 

from the R = Me, iPr derivatives. Each spectrum has two bands above 

about 350 nm that give rise to the yellow colour of the complexes. For 

3H these low energy bands are more intense (휀 ~ 8000–10000 M-1cm-

1) than those of either 3Me or 3iPr (휀 ~ 5000 M-1cm-1). For 3H the 

lowest energy band (400 nm, 휀 ~ 8000 M-1cm-1) is less intense than 

the second lowest energy band (360 nm, 휀 ~ 10000 M-1cm-1) while 

the opposite is true for either 3Me or 3iPr; for the latter deconvolution is 

necessary to observe the second lowest energy band.  

 

 
 

Since these two bands are absent in 1R and 2R, they are 

attributed to transitions between electronic states involving an 

engaged d𝜋–p𝜋  interaction (between the metal and available lone pair 

on the central amido nitrogen of the ligand). Such an assessment was 

bolstered by theoretical calculations (TD-DFT, see ESI for full details) 
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where the lowest energy band enveloped transitions between the 

HOMO and various LUMO(+N) (N = 0–4) levels and the second-lowest 

energy band involves transitions between the HOMO(-1) and the 

various LUMO(+N) (N = 0–4) levels. As illustrated in Fig. 8, the HOMO 

is mainly a 𝜋-based orbital centralized on the pincer ligand but extends 

onto a d-orbital of rhenium. The HOMO(-1) is qualitatively similar to 

the HOMO but with greater rhenium character. For 3H, conjugation 

across both 2-pyrazolyl-p-tolyl ‘arms’ of the pincer ligand is evident 

from the atomic orbital contributions to the HOMO and to a lesser 

extent the HOMO(-1) but for 3Me and 3iPr the conjugation appears 

confined to only one ‘arm’ of the ligand. 

 

 
The LUMO and LUMO(+1) are mainly 𝜋*-orbitals of the pincer 

ligand while next three higher-energy virtual orbitals are those of the 

tricarbonyl fragment. As such these two lowest energy bands can be 

considered to have metal–ligand-to-ligand charge transfer (MLLCT) 

character in accord with conventions used elesewhere.11 The higher 

energy band found at 300 nm is likely due to charge transfer 

transitions involving the tricarbonylrhenium fragment as found in 

related systems7 while the high-intensity bands found below 275 nm 

are likely 𝜋–𝜋* transitions on the basis of energy and intensity 

considerations. 
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Reactivity 
 

Given the availability of a lone pair of electrons on the central 

nitrogen in 3R, the potential for these complexes to engage in 

nucleophilic substitution (SN2) reactions12 as in Scheme 2 was 

evaluated.  Initial stoichiometric NMR experiments performed in 

C6D6 at room temperature showed either no or trace reaction after a 

couple of hours. However, in hot (45˚C) acetone and with a 10-fold 

excess of MeI, complexes 3R (R = Me, iPr) underwent clean conversion 

to give {fac-Re(CO)3[Me(LR)]}(I), 4R, over the course of about four 

hours, detected by both NMR and IR (Table 2) spectroscopy.  

 

 
 

Complex 3H failed to react with MeI even after days under 

similar reaction conditions (of temperature and reagent 

concentrations). The NMR spectrum of each 4R shows two sets of 

resonances for pyrazolyl and tolyl hydrogens whereas that of 3R shows 

only one set. Additionally, the solution IR spectrum (CH2Cl2) of 4R 

exhibited C–O stetching bands with avg. 𝜈co ~ 1960 cm-1 which is 

comparable to that of 2R. Single crystal X-ray diffraction of 4iPr (Fig. 9) 

confirmed that the methyl group was indeed bound to the central 
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nitrogen of the ligand rather than to a pyrazolyl nitrogen. Also, in 

contrast to the 1iPr where the bromide was bound to rhenium, the 

iodide in 4iPr is a spectator ion and the ligand binds rhenium in a 𝜅3N-

manner similar to that in 2iPr. The greater steric profile of an methyl 

versus a hydrogen bound to nitrogen subtly impacts the cation 

structure by increasing the bond distances around rhenium and 

distorting the ligand framework (by comparing values in Table 1).13 

 

 
The resonances for various 3-organopyrazolyl hydrogens for 3R 

(R = Me, iPr) and the corresponding 4R products are sufficiently well 

separated to allow for a convenient means to monitor the rates of 

reaction by using relative integration of signals (Fig. 10).  
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As illustrated in Fig. 11, the pseudo-first order conditions ([MeI]/[3R] 

≥ 10) gave straight-line plots with statistically identical half-lives; t1/2 

of 62 (± 3) min for 3Me and 65 (± 3) min for 3iPr where the 

uncertainty arises from the measurements of different types of 

resonances within the same experiment. In accord with eqn (1) and 

the experimental conditions, the corresponding second-order rate  

 

-d[3R]/dt = kobs[3R] = k2[MeI][3R]    (1) 

 

constants were found to be k2 = 5.7 ¥ 10-4 M-1s-1 for 0.033 M 3Me and 

0.331 M MeI and k2 = 8.4 ¥ 10-4 M-1s-1 for 0.021 M 3iPr and 0.212 M 

MeI. More in-depth kinetic analysis of these and other related systems 

is underway. 

 

The difference in reactivity between the various 3- 

organopyrazolyl derivatives 3R and that of 3H can be attributed to 

inter-related structural and electronic factors. It was anticipated and 

found that the replacement of the two (very close) hydrogen atoms 

labeled in Fig. 12 with any other group should (and does) drastically 

alter the structure and reactivity of the complexes. Given the typical 

inert nature of Re-ligand bonds, the spectroscopic data, and that no N-
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methyl pyrazolyls was detected in reactions with MeI, it is expected 

that the ligands remain tridentate in acetone solutions of 3H and 3R 

and that pyrazolyl dissociation is unlikely the origin of increased 

reactivity of 3R versus 3H. If the ligands are indeed tridentate, the 

greater reactivity of 3R versus 3H toward MeI can be rationalized by 

the greater steric accessibility of the more pyramidal nitrogen of 3R to 

incoming electrophiles than that in 3H. The pyramidal nature of 

nitrogen in 3R has two consequences. First, the complexes 3R are pre-

organized in a conformation similar to that found for 4R (right of Fig. 

12); the activation barrier for the conversion of 3H to hypothetical 4H 

should be higher due to requisite structural reorganization. Moreover, 

the basicity of the amido nitrogen in 3R is also expected to be greater 

owing to the greater s-character, lower degree of conjugation and the 

slightly higher energy HOMO versus 3H (Fig. 8). 

 

 
 

The discrepancy in properties and reactivity between 3R (R = 

Me, iPr) and 3H perpetuates in the one-electron oxidized products 

(3R+)(SbCl6-). Reactions of 3R with the organic cation radical 

9,10-dimethoxyocta-hydro-1,4:5,8-dimethanoanthracenium 

hexachloroantimonate [(CRET+)(SbCl6-)],14 a modest oxidant 

(E1/2,red 0.58 V vs. Fc/Fc+), affords blue-green (3R+)(SbCl6-), see 

Fig. 13 and ESI. While (3H+) was found to be stable as a solid and only 

very slowly decomposed at 295 K in aerated CH2Cl2 (t1/2 = 3d), 

(3R(= Me or iPr)+)(SbCl6-) decomposed much more rapidly in aerated 

CH2Cl2 (t1/2 = 3.5 h for both); thus, solution measurements must 
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be made on freshly prepared samples with exclusion of air. At 

295 K, the EPR spectrum of each cation radical (3R+) in CH2Cl2 

(Fig. 14) displays a well-resolved sextet signal due to the hyperfine 

interaction between the electronic spin and the 185/187Re nuclei (I = 

5/2). The isotropic signal for (3H+) (giso = 2.017 aRe 49.5G) is similar 

but distinct from the signals for either (3Me+) (gav = 2.016, aRe = 33.4 

G, aN = 7.5 G) or (3iPr+) (gav = 2.016, aRe = 33.8 G, aN = 7.5 G). 

 

 
 

In each case, the relatively small deviation of g-values from that for 

the free electron ge = 2.0023 and the small hyperfine couplings are 

consistent with a ligand-centred rather than a metal-centred radical, 

with the spin density on rhenium being highest for (3H+).3,15 

Theoretical calculations indicate most of the spin density is located on 

the ligand (Fig. 15) in accord with other experimental indicators of a 

ligand-centred radical such as the occurrence of intense piradical 

bands (𝜋(L) → SOMO) in the 650–750 nm range of the electronic 
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absorption spectrum. Also, the average energy of the C–O stretching 

bands in the solution (CH2Cl2) IR spectra, 𝜈co(avg), increases by only 

33, 37, and 41 cm-1 on traversing between 3R and 3R+ for R = H, Me, 

and iPr, respectively (Table 2). Such a relatively small increase in 

energy is similar to the 38 cm-1 increase for related PNP pincer 

complexes [Re(CO)3(PNP)]n+ (n = 0,1) (measured for KBr pellets) and 

is consistent with ligand-centered oxidation.2 Rhenium-centred 

oxidations would be expected to have 𝜈co(avg) increase on the order of 

50–100 cm-1.2,3,1 A final set of poorly understood observations that 

highlight the incongruent reactivity patterns of 3R (R = Me, iPr) and 3H 

derivatives is thatCH2Cl2 solutions of 3Me or 3iPr were light sensitive but 

those of 3H were not. Thus, CH2Cl2 solutions of the latter two 

compounds should be protected from light and measurements should 

be made on freshly prepared solutions. A more extended account of 

the unexpected photodecomposition behaviour can be found in the 

Electronic Supporting Information. 

 

Conclusions 
 

The purpose of this study was to investigate whether the 

reactivity of tricarbonylrhenium(I) complexes of di(2-(3-R-pyrazolyl)-

ptolyl) amine derivatives would be altered by substitution at the 

3-pyrazolyl position; the properties of various Re(CO)3 complexes of 

the unsubstituted ligand H(LR) R = H were communicated previously. 

To this end, two new 3-alkylpyrazolyl ligands (R = Me, iPr) were 

prepared in good yield by straightforward CuIcatalyzed amination 

reactions. The availability of the three H(LR) ligands (R = H, Me, and 

iPr) ligands allowed a series of nine tricarbonylrhenium(I) complexes 

to be prepared and fully characterized both in solution and the solid 

state. The most significant structural and reactivity differences were 

found across the series of fac-Re(CO)3(LR) (3R) complexes with 

deprotonated, formally uninegative, NNN-ligands. The bond distances 

in 3R increased with increasing steric bulk of the 3-pyrazolyl 

substituents.For 3H, a conformation with near Cs symmetry and a 

planar amido nitrogen was found in the solid state whereas for 3Me or 

3iPr, the ligands were greatly distorted with substantial 

pyramidalization of the amido nitrogen. This conformation is dictated 

by unfavorable steric interactions that would occur between 3-

pyrazolyl substituents in a pseudo-Cs symmetric conformation such as 
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in 3H. The solution spectroscopic data demonstrate that none of the 

three complexes retain their static solid state geometries. Based on 

comparisons with other complexes, this behavior is attributed to 

conformational changes of intact complexes with tridentate ligands. 

Pyrazolyl dissociation to give bidentate ligands and perhaps a 

coordinatively unsaturated (or weakly-solvated)metal centers cannot 

be excluded in either 2R or 3R cases (which show dynamic solution 

behavior), but seems unlikely owing the usual kinetically inert nature 

of rhenium-ligand bonds, the flexibility of six-membered chelate rings, 

combined with the observed reactivity patterns. The relative 

reactivities follow the divisive pattern where 3Me and 3iPr are reactive 

towards MeI to afford an N-methyl (amino not pyrazolyl) derivative but 

3H does not react with MeI under similar conditions. Moreover, CH2Cl2 

solutions of the former two complexes are photosensitive but similar 

solutions of 3H were photo-stable. A final difference was found for the 

one-electron oxidized products (3R+); the room-temperature EPR 

spectrum of CH2Cl2 solutions for R = Me or iPr gave signals indicative 

of a more asymmetric ligand environment than that for R = H. 

Moreover, solutions of (3Me+) and (3iPr+) were considerably more 

prone to decomposition than (3H+). The incongruent nature of the 

structures and electronic spectra of the two classes of complexes 

combined with results of DFT calculations for the various 3R and (3R+) 

cation radicals indicate that the differences arise from a combination of 

the lower degree of conjugation across the ligand backbone and a 

(surprising) greater accessibility to a more pyramidal amido nitrogen 

on the ligand. Studies are underway to further explore the chemical 

and photochemical potential of these and related complexes. 

 

Experimental  

 

Materials 

 
Pyrazole, 3-methylpyrazole, CuI, N,N’-dimethylethylenediamine 

(DMED), anhydrous K2CO3 powder, and (NEt4)(OH) (1 M in MeOH) 

were purchased from commercial sources and used without further 

purification while Re(CO)5Br,17 di(2-bromo-p-tolyl) amine,5 3 

isopropylpyrazole6 were prepared by literature methods. Methyl iodide 

was distilled under vacuum before use. Solvents used in the 
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preparations were dried by conventional methods and were distilled 

under nitrogen prior to use. 

 

Instrumentation 
 

MidwestMicroLab, LLC, Indianapolis, Indiana 45250, performed 

all elemental analyses. 1H and 13C NMR spectra were recorded on a 

Varian 400 MHz spectrometer. Chemical shifts were referenced to 

solvent resonances at 𝛿H 7.27, 𝛿C 77.23 for CDCl3; 𝛿H 5.32, 𝛿C 54.00 

for CD2Cl2 and 𝛿H 2.05, 𝛿C 29.92 for acetone-𝑑6. Melting point 

determinations were made on samples contained in glass capillaries 

using an Electrothermal 9100 apparatus and are uncorrected. Infrared 

spectra were recorded on samples a KBr pellets and as CH2Cl2 solutions 

using a Nicolet Magna-IR 560 spectrometer. Absorption measurements 

were recorded on an Agilent 8453 spectrometer. Electrochemical 

measurements were collected under nitrogen atmosphere at a scan 

rate of 100 mV s-1 for samples as 0.1 mM CH2Cl2 solutions with 0.1 M 

NBu4PF6 as the supporting electrolyte. A three-electrode cell comprised 

of an Ag/AgCl electrode, a platinum working electrode, and a glassy 

carbon counter electrode was used for the voltammetric 

measurements. With this set up, the ferrocene/ferrocenium couple had 

an E1/2 value of +0.53 V consistent with the literature value in this 

solvent.18 Mass spectrometric measurements recorded in ESI(+) or 

ESI(-) mode were obtained on a Micromass Q-TOF spectrometer 

whereas those performed by using direct-probe analyses were made 

on a VG 70S instrument. For the ESI(+) experiments formic acid 

(approximately 0.1% v/v) was added to the mobile phase (CH3CN). 

EPR measurements were obtained using a Bruker ELEXSYS E600 

equipped with an ER4116DM cavity resonating at 9.63 GHz, an Oxford 

Instruments ITC503 temperature controller and ESR-900 helium-flow 

cryostat. The ESR spectra were recorded with 100 kHz field 

modulation. 

 

Di(2-(3-methylpyrazolyl)-p-tolyl)amine, H(LMe) 
 

A reaction vessel was charged with a mixture of 3.44 g (9.69 

mmol) di(2-bromo-p-tolyl)amine, 2.78 g (33.9 mmol, 3.5 equiv) 3- 

methylpyrazole, 5.35 g (38.7 mmol, 4.0 equiv)K2CO3, and 0.38mL 

(3.87 mmol, 40 mol %) DMED, and was deoxygenated by three 
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evacuation and nitrogen back-fill cycles. Then, 0.18 g (0.97 mmol, 

10 mol %) CuI was added as a solid under nitrogen. The reaction 

mixture was heated under nitrogen at 200˚C for 15 h. After cooling to 

room temperature, 200 mL of H2O was added and the mixture was 

extracted with three 100 mL portions of CH2Cl2. The combined organic 

layers were dried overMgSO4, filtered, and solvent was removed by 

rotary evaporation to give an oily residue that was purified by column 

chromatography on silica gel. Elution with 8 : 1 hexanes:ethyl acetate 

(Rf 0.7) afforded 2.28 g (66%) of H(LMe) as a white solid. Mp, 83–

85˚C. Anal. Calcd (obs.) for C22H23N5: C, 73.92 (73.68); H, 6.49 

(6.53); N, 19.59 (19.41). IR (KBr) 𝜈NH 3297. 1H NMR: (CD2Cl2) 8.43 (s, 

1H, NH), 7.62 (d, J = 2 Hz, 2H, H5pz), 7.22 (d, J = 8 Hz, 2H, Ar), 7.09 

(s, 2H, Ar), 7.00 (d, J = 8 Hz, 2H, Ar), 6.19 (d, J = 2 Hz, 2H, H4pz), 

2.29 (s, 12H, CH3). 1HNMR: (acetone-d6) 8.86 (s, 1H, NH), 7.85 

(d, J = 2 Hz, 2H, H5pz), 7.24 (d, J = 8 Hz, 2H, Ar), 7.19 (s, 2H, 

Ar), 7.05 (d, J = 8 Hz, 2H, Ar), 6.24 (d, J = 2, 2H, H4pz), 2.29 

(s, 6H, ArCH3), 2.28 (s, 6H, pzCH3). 13C NMR: (CDCl3) 149.9, 

134.6, 131.0, 130.7, 130.2, 128.8, 125.8, 118.9, 106.6, 20.7, 13.8. 

UV-VIS 𝜆max, nm (휀, M-1cm-1), CD2Cl2: 242(37149), 304(26376). 

Single crystals suitable for X-ray diffraction were obtained by slow 

evaporation of a hexane solution. 

 

Di(2-(3-isopropylpyrazolyl)-p-tolyl)amine, H(LiPr) 
 

In a manner similar to that described above, a mixture of 7.17 g 

(0.0202 mol) di(2-bromo-p-tolyl)amine, 7.78 g (0.0706 mol, 3.5 

equiv) 3-isopropylpyrazole, 11.05 g (0.0800 mol, 4.0 equiv)K2CO3, and 

0.79 mL (0.65 g, 7.4 mmol, 35 mol %) DMED, 0.38 g 

(2.0 mmol, 10 mol %) CuI afforded 5.06 g (61%) ofH(LiPr) as a light 

yellow oil after workup and purification (SiO2, 8 : 1 Hexane: ethyl 

acetate Rf 0.6). Anal. Calcd (obs.) for C26H31N5: C, 75.51 (75.61);s H, 

7.56 (7.48); N, 16.93 (16.78). IR (KBr) 𝜈NH 3296. 1H NMR: 

(CD2Cl2) 8.82 (s, 1H, NH), 7.67 (d, J = 2 Hz, 2H, H5pz), 7.18 (d, 

J = 2 Hz, 2H, Ar), 7.14 (s, 2H, Ar), 6.98 (dd, J = 8, 2 Hz, 2H, Ar), 

6.21 (d, J = 2 Hz, 2H, H4pz), 2.95 (sept, J = 7 Hz, 2H, Me2 CH), 

2.29 (s, 6H, ArCH3), 1.22 (d, J = 1 Hz, 6H, iPrCH3), 1.20 (d, J = 

1 Hz, 6H, iPrCH3). 1H NMR: (acetone-d6) 8.70 (s, 1H, NH), 7.87 

(d, J =2Hz, 2H, H5pz), 7.23 (s, 2H, Ar), 7.20 (d, J =8Hz, 2H, Ar), 

7.01 (d, J =8Hz, 2H, Ar), 6.28 (d, J =2Hz, 2H, H4pz), 2.99 (sept, 
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J = 7 Hz, 2H, Me2CH), 2.29 (s, 6H, ArCH3), 1.24 (d, J = 1 Hz, 

6H, iPrCH3), 1.22 (d, J = 1 Hz, 6H, iPrCH3), 13C NMR: (CDCl3) 

160.4, 134.3, 130.9, 130.5, 129.9, 128.5, 125.6, 119.3, 103.7, 27.9, 

22.9, 20.7. UV-VIS 𝜆max, nm (𝜖, M-1cm-1), CD2Cl2: 244(36386), 

304(22429). 

 

ReBr(CO)3[H(LMe)], (1Me) 

 
A mixture of 0.172 g (0.423 mmol) Re(CO)5Br and 0.151 g 

(0.422 mmol) of H(LMe) in 20 mL of toluene was heated at reflux 

15h. The resulting precipitate was isolated by filtration, washed 

with two 5 mL portions Et2O and dried under vacuum which 

afforded 0.22 g (75%) 1Me as a fine white powder. Mp, 269–271˚C 

dec. Anal. Calcd (obs.) for C25H23BrN5O3Re: C, 42.44 (42.20); H, 

3.28 (3.21); N, 9.90 (9.74). IR (KBr) 𝜈NH 3138; 𝜈co 2025, 1915, 

1895 cm-1. 1H NMR: (CD2Cl2, 303 K) three species, see text: I, 

88% of signal integration intensity from resolved resonances in 

the R–CH3, NH, H5pz and H4pz regions of spectrum; II, 10% of 

signal; III 2% of signal): 12.10 (br s, 1H, NH, III), 11.84 (br s, 1H, 

NH, II), 10.50 (br s, 1H, NH, I), 8.06 (d, J = 2 Hz, 1H, H5pz, I), 

8.03 (d, J = 2 Hz, 1H, H5pz, II), 7.89 (d, J = 2 Hz, 1H, H5pz, II), 

7.79 (d, J = 2 Hz, 1H, H5pz, I), 7.58 (d, J = 8 Hz, 1H, Ar, I), 7.33– 

7.24 (m, 4H, Ar, I/II/III), 7.21–7.02 (br m, 4H, Ar I/II/III), 6.60 

(d, J = 2 Hz, 1H, H4pz, II), 6.59 (d, J = 2 Hz, 1H, H4pz, I), 6.31 

(d, J = 2 Hz, 1H, H4pz, II), 6.20 (d, J = 2 Hz, 1H, H4pz, I), 2.74 

(s, 3H, pzCH3, I), 2.47 (s, 3H, ArCH3, I), 2.44 (s, 3H, ArCH3, I), 

2.41–2.28 (br m, 9H, pz- and ArCH3, II/III), 2.21 (s, 3H, pzCH3, 

II), 1.98 (s, 3H, pzCH3, I). 1H NMR: (CD2Cl2, 213 K) 11.70 (br s, 

1H, NH, III), 11.48 (br s, 1H, NH, II), 10.29 (br s, 1H, NH, I), 

8.17 (d, J = 8 Hz, 1H, Ar, II), 8.13 (br s, 1H, H5pz, III), 8.08 (br s, 

1H, H5pz, I), 7.99 (br s, 1H, H5pz, II), 7.95 (br s, 1H, H5pz, III), 

7.86 (br s, 1H, H5pz, II), 7.80 (d, J = 8 Hz, 1H, Ar, I), 7.74 (br s, 

1H, H5pz, I), 7.53 (br s, 1H, Ar, II), 7.41–7.01(br m, see text, Ar, 

I/II/III), 6.91 (s, 1H, Ar, II), 6.83 (d, J =8Hz, 1H, Ar, II), 6.61 (d, 

J = 2 Hz, 1H, H4pz, II), 6.58 (d, J = 2 Hz, 1H, H4pz, I), 6.38 (br s, 

1H, H4pz, III), 6.31 (d, J = 2 Hz, 1H, H4pz, II), 6.18 (br s, 1H, 

H4pz, III), 6.16 (br s, 1H,H4pz, I), 6.07 (d, J =2Hz, 1H, H4pz, II), 

5.87 (1H, H4pz, III), 2. 78 (s, 3H, pzCH3, II), 2.73 (s, 3H, pzCH3, 

III), 2.68 (s, 3H, pzCH3, I), 2.62 (s, 3H, pzCH3, III), 2.45 (s, 3H, 
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ArCH3, II), 2.44 (s, 3H, ArCH3, I), 2.39 (s, 3H, ArCH3, I), 2.33 (s, 

3H, ArCH3, III), 2.24 (s, 3H, ArCH3, III), 2.18 (s, 3H, ArCH3, II), 

2.02 (s, 3H, pzCH3, II), 1.83 (s, 3H, pzCH3, I). UV-VIS 𝜆max, nm 

(휀, M-1cm-1), CD2Cl2: 231(50963), 261(34522), 289(11818). X-ray 

quality crystals of 1Me·acetone were grown by layering an acetone 

solution with hexane and allowing the solvents to slowly diffuse over 

two days. 

 

ReBr(CO)3[H(LiPr)] (1iPr) 

 
A mixture of 0.256 g (0.630 mmol) Re(CO)5Br and 0.260 g 

(0.727 mmol) of H(LiPr) in 20mL of toluene was heated at reflux for  

15 h. The resulting precipitate was isolated by filtration, washed with 

two 5 mL portions Et2O and dried under vacuum which afforded 0.34 g 

(71%) as a fine white powder. Mp, 264–267˚C dec. Anal. Calcd (obs.) 

C29H31BrN5O3Re: C, 45.61 (45.40);H, 4.09 (3.96);N, 9.17 (9.14). IR 

(KBr) 𝜈NH 3143; 𝜈co 2020, 1910, 1880 cm-1. 1H NMR: (CD2 Cl2, 293 K) 

two species, see text: I, 92% of signal integration intensity from 

resolved resonances in the R–CH3, NH, H5pz and H4pz regions of 

spectrum; II, 8% of signal: 11.96 (br s, 1H, NH, II), 10.50 (br s, 1H, 

NH, I), 8.08 (d, J = 2.9Hz, 1H,H5pz, I), 8.06 (brm, 1H,H5pz, II), 7.90 

(d, J = 2.5Hz, 1H,H5pz, II), 7.82 (d, J = 2.5 Hz, 1H, H5pz, I), 7.63 

7.53 (br s, 6H, Ar, II), 7.29 (m, 3H, Ar, I), 7.18 (m, 3H, Ar, I), 6.65 

(d, J = 2.9 Hz, 1H, H4pz, II), 6.64 (d, J = 2.9 Hz, 1H, H4pz, I), 6.37 

(br m, 1H, H4pz, II), 6.25 (d, J = 2.5 Hz, 1H, H4pz, I), 3.85 (sept, J = 

7.1 Hz, 1H, Me2CH, I), 2.51 (sept, J = 6.7 Hz, 1H, Me2CH, II), 2.46 

(s, 3H, ArCH3, I), 2.43 (s, 3H, ArCH3, I), 2.38 (br s, 3H, ArCH3, II), 

1.33 (d, J = 7 Hz, 3H, iPrCH3, I), 1.29 (d, J = 7 Hz, 3H, iPrCH3, I), 

1.23 (brm, 3H, iPrCH3, II), 1.04 (d, J = 7 Hz, 3H, iPrCH3, I), 0.99 (d, J 

= 7 Hz, 3H, iPrCH3, I), 0.88 (br m, 3H, iPrCH3, II). UV-VIS 𝜆max, nm 

(휀,M-1cm-1), CD2Cl2: 295 (10,900), 259 (38,200), 230 (51,500). 
13CNMR: (CD2Cl2) 168.3, 161.7, 138.6, 137.5, 133.5, 130.6, 130.5, 

129.4, 127.3, 125.2, 121.8, 107.2, 105.1, 31.1, 28.4, 24.3, 23.4, 

23.1, 22.8, 21.3, 20.9. X-ray quality crystals were grown by layering 

an acetone solution with hexane and allowing the solvents to slowly 

diffuse over two days. 
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{Re(CO)3[H(LMe)]}(PF6), (2Me) 

 
A mixture of 0.075 g (0.11 mmol) of 1Me and 0.04 g (0.11 

mmol) of TlPF6 in 10 mL dry CH3CN was heated at reflux overnight. 

After cooling to room temperature TlBr was separated by filtration 

through Celite, and solvent was removed by rotary evaporation. 

The residue was washed with two 5 mL portions Et2O and was dried 

under vacuum to give 0.060 g (75%) of 2Me as a colorless to pale 

yellow powder. 

 

Mp, 243–246˚C dec. Anal. Calcd (obs.) for 

C26H25Cl2F6N5O3PRe (2Me·CD2Cl2): C, 36.41 (36.25); H, 2.94 (2.77); N, 

8.17 (8.27). IR (KBr) 𝜈NH 3253; 𝜈co 2030, 1940, 1920 cm-1. 1H NMR: 

(CD2Cl2, 233 K) 7.98 (d, J = 3 Hz, 1H, H5pz), 7.54 (s, 1H, NH), 7.53 

(d, J = 3 Hz, 1H, H5pz), 7.48 (d, J = 8 Hz, 1H, Ar), 7.41 (d, J = 8 Hz, 

1H, Ar), 7.30 (s, 1H, Ar), 6.94 (s, 1H, Ar), 6.89 (d, J = 9 Hz, 1H, Ar), 

6.69 (d, J = 9 Hz, 1H, Ar), 6.66 (d, J = 3 Hz, 1H, H4pz), 6.10 (d, J = 3 

Hz, 1H, H4pz), 2.80 (s, 3H, pzCH3), 2.49 (s, 3H, ArCH3), 2.23 (s, 3H, 

ArCH3, ArCH3), 2.04 (s, 3H, pzCH3). 13C NMR: (CD2Cl2, 295 K) no 

signals were observed even after prolonged acquisition times. UV-VIS 

𝜆max, nm (휀, M-1cm-1), CD2Cl2: 230(34154), 250 (28087), 294 (8854). 

X-ray quality crystals were grown by layering an acetone solution with 

hexane and allowing the solvents to slowly diffuse over two days. 

 

{Re(CO)3[H(LiPr)]}(PF6), (2iPr) 
 

A mixture of 0.205 g (0.27 mmol) of 1iPr and 0.084 g (0.27 

mmol) TlPF6 in 20 mL dry THF was heated at reflux overnight. After 

cooling to room temperature, TlBr was separated by filtration through 

Celite and solvent was removed from the filtrate by rotary 

evaporation. The residue was washed with two 5 mL portions 

Et2O and was dried under vacuum to give 0.198 g (84%) of 2iPr as a 

white powder. Mp, 278–280˚C dec. Anal. Calcd (obs.) for 

C29H31F6N5O3PRe: C, 42.03 (42.26); H, 3.77 (4.02); N, 8.45 (8.12) 

IR (KBr) 𝜈NH 3236; 𝜈co 2035, 1940, 1911 cm-1. 1H NMR: (CD2Cl2, 

233 K) 8.24 (s, 1H, NH), 7.97 (d, J = 3 Hz, 1H, H5pz), 7.56 (d, 
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J = 3 Hz, 1H, H5pz), 7.55 (d, J = 8 Hz, 1H, Ar), 7.40 (d, J = 

8 Hz, 1H, Ar), 7.29 (s, 1H, Ar), 6.90 (s, 1H, Ar), 6.87 (d, J = 

8.5 Hz, 1H, Ar), 6.73 (d, J = 3 Hz, 1H, H4pz), 6.70 (d, J = 8.5 Hz, 

1H, Ar), 6.15 (d, J = 3 Hz, 1H, H4pz), 3.84 (sept, J = 7 Hz, 1H, 

Me2CH), 2.92 (sept, J = 7 Hz, 1H, Me2CH), 2.49 (s, 3H, ArCH3), 

2.23 (s, 3H, ArCH3), 1.49 (d, J = 7 Hz, 3H, iPrCH3), 1.36 (d, J = 

7 Hz, 3H, iPrCH3), 1.16 (d, J = 7 Hz, 3H, iPrCH3), 0.62 (d, J = 

7 Hz, 3H, iPrCH3 ). 13C NMR: (CD2Cl2, 295 K) no signals were 

observed even after prolonged acquisition times. UV-VIS 𝜆max, nm 

(휀, M-1cm-1), CD2Cl2: 229(31536), 249(24891), 294(5514). X-ray 

quality crystals were grown by layering an acetone solution with 

hexane and allowing the solvents to slowly diffuse over two days.  

 

Re(CO)3(LMe), (3Me) 

 
Method A. To a solution of 0.201 g (0.28 mmol) 1Me in 20 mL 

of CH3CN was added 2.75 mL (0.283 mmol) (NEt4)(OH) solution in 

MeOH immediately giving a yellow solution. The mixture was stirred 

for 30 min then solvent was removed by rotary evaporation. The 

yellow residue was washed with two 5 mL portions MeOH and was 

dried under vacuum to leave 0.150 g (88%) of 3Me as a yellow 

powder. Mp, 250–254˚C dec. Anal. Calcd (obs.) for C25H22N5O3Re: C, 

47.91 (48.01); H, 3.54 (3.58); N, 11.18 (11.23). IR (KBr) 𝜈co 2020, 

1905, 1885 cm-1. 1H NMR: (CD2Cl2, 293 K) 7.81 (d, J = 2 Hz, 2H, 

H5pz), 6.92 (s, 2H, Ar–H), 6.90 (part of AB d, 2H, Ar), 6.63 (part of AB 

d, 2H, Ar), 6.28 (d, J = 2 Hz, 2H, H4pz), 2.52 (s, 6H, pzCH3), 2.27 (s, 

6H, ArCH3). 1H NMR: (acetone-d6) 8.26 (d, J = 3 Hz, 2H, H5pz), 7.10 

(d, J = 2 Hz, 2H, Ar), 6.92 (part of AB d, J = 8, 2 Hz, 2H, Ar), 6.61 

(part of AB d, J = 8 Hz, 2H, Ar), 6.44 (d, J = 3 Hz, 2H, H4pz), 2.53 (s, 

6H, pzCH3), 2.23 (s, 6H, ArCH3). 13C NMR: (CD2Cl2) 198.2, 196.7, 

155.5, 149.8, 132.2, 131.5, 129.6, 128.2, 124.2, 122.1, 108.3, 20.6, 

17.1. UV-VIS 𝜆max, nm (휀, M-1cm-1), CD2Cl2: 234(44756), 247(41711), 

298(14615), 392(3687). X-ray quality crystals were grown by layering 

an acetone solution with hexane and allowing the solvents to slowly 

diffuse over two days.  

 

Method B. A 0.32 mL aliquot of 0.509 M (NEt4)(OH) 

(0.16 mmol) in MeOH was added to a solution of 0.124 g 

(0.160 mmol) 2Me in 10 mL of CH3CN immediately giving a yellow 
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solution. The mixture was stirred for 15 min then solvent was 

removed by rotary evaporation. The yellow residue was extracted 

with three 5 mL portions of benzene and solvent was removed 

by vacuum distillation to leave a mixture of benzene-soluble 

3Me contaminated with H(LMe) (NMR). The contaminant was 

removed by washing with minimal Et2O (2 mL), to leave 0.030 g 

(30%) of 3Me with characterization data identical to above. Selective 

precipitation of 3Me using MeOH as inMethod A, did not lead to 

improved yield. 

 

Re(CO)3(LiPr), (3iPr) 

 
In a manner similar to method A of 3Me, 0.091 mmol 

(NEt4)(OH) (1.3 mL of 0.07 M solution in MeOH) and 0.073 g (0.095 

mmol) gave 0.040 g (61%) of 3iPr as a yellow powder. Mp, 240–243˚ 

Cdec. Anal. Calcd (obs.) for C29H30N5O3Re: C, 51.01 (51.24); H, 4.43 

(4.54); N, 10.26 (10.22). IR (KBr): 𝜈co 2010, 1900, 1875 cm-1. 1H 

NMR (CD2Cl2, 293 K) 7.80 (d, J = 3 Hz, 2H, H5pz), 6.89 (s, 2H, 

Ar), 6.88 (part of AB d, 2H, Ar), 6.60 (part of AB d, 2H, Ar), 6.33 

(d, J = 3 Hz, 2H, H4pz), 3.57 (sept, J = 7 Hz, 2H, Me2CH), 2.26 

(s, 6H, ArCH3), 1.34 (d, J = 7 Hz, 6H, iPrCH3), 1.02 (d, J = 7 Hz, 

6H, iPrCH3). 1H NMR: (acetone-d6) 8.18 (d, J =3Hz, 2H, H5pz), 

7.07 (s, 2H, Ar), 6.89 (part of AB d, 2H, Ar), 6.56 (part of AB d, 

2H, Ar), 6.55 (d, J = 2 Hz, 2H, H4pz), 3.62 (sept, J = 7 Hz, 1H, 

Me2CH), 2.22 (s, 6H, ArCH3), 1.37 (d, J =7Hz, 6H, iPrCH3), 1.08 

(d, J =7Hz, 6H, iPrCH3). 13CNMR: (CD2Cl2) 197.2, 194.5, 166.0, 

150.0, 133.0, 131.5, 129.5, 128.5, 124.4, 122.0, 104.6, 30.6, 23.6, 

23.3, 20.6. UV-VIS 𝜆max, nm (휀, M-1cm-1), CD2Cl2: 234(49162), 

247(46362), 305(12127), 391(3667). X-ray quality crystals were 

grown by layering an acetone solution with hexane and allowing the 

solvents to slowly diffuse over two days. 

 

General procedure for NMR-scale reactions between 3R 

and MeI 
 

Solutions were prepared in NMR tubes by dissolving 7–9 mg 

3R in 0.35 mL of acetone-d6. A ten-fold excess MeI (7–9 mL, as 

appropriate) was injected into the solution, the NMR tube was 

http://dx.doi.org/10.1039/C1DT10030K
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Dalton Transactions, Vol. 40, No. 35 (September 2011): pg. 8776-8787. DOI. This article is © The Royal Society of 
Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. The Royal Society of 
Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from The Royal Society of Chemistry. 

28 

 

immediately sealed and inserted into the pre-heated 45˚C NMR cavity 

for measurements where time of insertion served as the reference 

point (t = 0 min). NMR spectra were acquired at 10 min intervals for 

the first 30 min, then at 30 min intervals thereafter. 

 

Colorless crystals of {Re(CO)3[Me(LiPr)]}(I), (4iPr) suitable for 

single-crystal X-ray diffraction were obtained by removing volatile 

components from the completed reactions by vacuum distillation, 

dissolving the residue in CH2Cl2, layering with n-hexane, and allowing 

the solvents to slowly diffuse 15 h.  

 

4Me Mp, 265–270˚C dec. IR (CH2Cl2) 𝜈co 2036, 1930, 1923 cm-1. 
1H NMR: (acetone-d6, 293 K) 8.78 (d, J = 2.8 Hz, 1H, H5pz), 8.06 

(d, J = 2.8 Hz, 1H, H5pz), 8.00 (part of AB d, Japp = 8.4 Hz, 1H, 

Ar), 7.72 (s, 1H, Ar), 7.66 (part of AB, d, Japp = 8.4, 2.1, 1 Hz, 1H, 

Ar), 7.57 (s, 1H, Ar), 7.04 (part of AB d, Japp = 8.4 Hz, 1H, Ar), 

7.01 (d, J = 2.8 Hz, 1H, H4pz), 6.82 (part of AB d, Japp = 8.4 Hz, 

1H, Ar), 6.33 (d, J = 2.8 Hz, 1H, H4pz), 3.76 (s, 3H, NCH3), 2.92 

(s, 3H, CH3), 2.53 (s, 3H, CH3), 2.28 (s, 3H, CH3), 2.06 (s, 3H, 

CH3). UV-VIS 𝜆max, nm (휀, M-1cm-1), CD2Cl2: 242 (52,000), 289sh 

(13,000), 368 (1,300). 

 

4iPr.Mp, 260–265˚C dec. IR(CH2Cl2) 𝜈co 2033, 1927, 1915 cm-1. 
1H NMR: (acetone-d6, 293 K) 8.79 (d, J = 3.0 Hz, 1H, H5pz), 8.12 

(d, J = 3.0 Hz, 1H, H5pz), 8.00 (part of AB d, Japp = 8.4 Hz, 1H, 

Ar), 7.71 (s, 1H, Ar), 7.66 (part of AB, d, Japp = 8.4, 2.1, 1 Hz, 

1H, Ar), 7.53 (s, 1H, Ar), 7.17 (d, J = 2.8 Hz, 1H, H4pz), 7.05 

(part of AB d, Japp = 8.4 Hz, 1H, Ar), 6.82 (part of AB d, Japp = 

8.4 Hz, 1H, Ar), 6.49 (d, J = 2.8 Hz, 1H, H4pz), 3.93 (sept, J = 

7 Hz, 1H, Me2CH), 3.75 (s, 3H, NCH3), 2.91 (sept, J = 7 Hz, 1H, 

Me2CH), 2.54 (s, 3H, ArCH3), 2.28 (s, 3H, ArCH3), 1.57 (d, J = 

7 Hz, 3H, iPrCH3), 1.49 (d, J = 7 Hz, 3H, iPrCH3), 1.22 (d, J = 

7 Hz, 3H, iPrCH3), 0.81 (d, J = 7 Hz, 3H, iPrCH3). UV-VIS 𝜆max, 

nm (휀, M-1cm-1), CD2Cl2: 242 (50,000), 293sh (9,000), 367 (400). 
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Crystallographic Structure Determinations 
 

X-ray intensity data from a colorless prism of H(LMe), colorless 

block of each ReBr(CO)3[H(LMe)]·acetone (1Me·acetone), 

ReBr(CO)3[H(LiPr)] (1iPr), {Re(CO)3[H(LMe)]}(PF6), (2Me), 
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and{Re(CO)3[H(LiPr)]}(PF6), (2iPr), of a yellow block of Re(CO)3(LMe), 

(3Me), and of a pale yellow block of Re(CO)3(LiPr), (3iPr), were 

measured at 100(2) K with a Bruker AXS 3-circle diffractometer 

equipped with a SMART219 CCD detector using Cu(K𝛼) radiation. X-ray 

intensity data from a colorless needle of 

{Re(CO)3[Me(LiPr)]}(I)·2CH2Cl2, (4iPr·2CH2Cl2) were measured at 

100(2) K with an Oxford Diffraction Ltd. Supernova diffractometer 

equipped with a 135 mm Atlas CCD detector using Cu(Ka) (or Mo(Ka) 

for 4iPr·2CH2Cl2) radiation. Raw data frame integration and Lp 

corrections were performed with SAINT+.20 Final unit cell parameters 

were determined by least-squares refinement of 5019, and 9735 

reflections from the data sets of 1Me·acetone, and 1iPr, respectively, of 

8854, and 7055 reflections from the data sets of 2Me and 2iPr 

respectively, and of 8940, and 8003 reflections from the data sets of 

3Me and 3iPr, respectively, and of 38198 reflections from the data set 

of 4iPr with I > 2s(I) for each. Analysis of the data showed negligible 

crystal decay during collection in each case. Direct methods structure 

solutions, difference Fourier calculations and full-matrix least-squares 

refinements against F2 were performed with SHELXTL.21 Numerical 

absorption corrections based on the real shape of the crystals for the 

compounds were applied with SADABS.20 All non-hydrogen atoms were 

refined with anisotropic displacement parameters. Hydrogen atoms 

were placed in geometrically idealized positions and included as riding 

atoms, except where noted below. The X-ray crystallographic 

parameters and further details of data collection and structure 

refinements are presented in Tables 3 and 4. 
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