Reactivity of acyclic (pentadienyl)iron($1+$) cations: Synthetic studies directed toward the frondosins

Do W. Lee
Marquette University
Rajesh K. Pandey
Marquette University
Sergey Lindeman
Marquette University, sergey.lindeman@marquette.edu
William Donaldson
Marquette University, william.donaldson@marquette.edu

Accepted version. Organic \& Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): 7742-7747.
DOI: © 2011 Royal Society of Chemistry. Used with permission.
The spectral data used in the research for this article may be found here.

Reactivity of acyclic (pentadienyl)iron(1+) cations: Synthetic studies directed toward the frondosins ${ }^{\dagger}$

Do W. Lee
Department of Chemistry, Marquette University Milwaukee, WI
Rajesh K. Pandy
Department of Chemistry, Marquette University Milwaukee, WI
Sergey Lindeman
Department of Chemistry, Marquette University Milwaukee, WI
William A. Donaldson
Department of Chemistry, Marquette University Milwaukee, WI

[^0]
Introduction

The (+)-frondosins A-E (1A-E, Fig. 1, Scheme 1) are a family of sesquiterpenes hydroquinone derivatives isolated from the sponge Dysidea frondosa in 1997. ${ }^{1}$ These compounds were found to inhibit the binding of interleukin-8 (IL-8) to its receptor in the micromolar range, with 1A and 1B being the most active $\left(\mathrm{IC}_{50}=3.4\right.$ and 9.6 mM , respectively). Since IL-8 is involved in enlisting neutrophiles to a site of inflammation, inhibitors of IL-8 might be useful in treating autoimmune disorders as well as tumor suppression. Additionally, frondosins A and D of the opposite optical rotation were found in organic extracts of Euryspongia sp which exhibited HIV inhibitory activity. ${ }^{1 b}$ More recently, liphagal (2), a structurally related compound was isolated from the sponge Aka coralliphaga. ${ }^{2}$ Liphagal was found to be a selective inhibitor of PI3 kinase a at 100 nM level. In addition to their intriguing biological activity, the structural complexity of $\mathbf{1 A} \mathbf{E}$ and $\mathbf{2}$ has generated significant synthetic interest. ${ }^{3,4}$

1A

1B

1C

Scheme 1

We have previously reported an iron-mediated route to cycloheptadienes. ${ }^{5}$ This route involves the addition of alkenyl Grignard reagents to (1-methoxycarbonylpentadienyl)iron(1+) cations 3 to afford the corresponding neutral (2-alkenyl-3-penten-1,5-diyl)iron complexes 4. Oxidatively induced reductive elimination of 4 results in the formation of divinylcyclopropanes $\mathbf{5}$ which undergo Cope

[^1]rearrangement to afford 1,4-cycloheptadienes 6. We have previously utilized this methodology for the preparation of the 5-7-5 fused ring system of the guianolides. ${ }^{5 d}$ We herein report on synthetic studies directed toward frondosins A and B which utilizes this methodology for the formation of the seven-membered ring (Scheme 2).

Scheme 2

Results and discussion

The reaction of tricarbonyl(methyl 6-0xo-2,4-hexadienoate)iron 7 with the Grignard formed from 1-bromo-2,5-dimethoxybenzene gave (dienol)iron complex 8, which upon dehydration with $\mathrm{HPF}_{6} /$ acetic anhydride afforded the acyclic (pentadienyl)iron(1+) cation 9a (Scheme 3). This cation was assigned a cisoid structure on the basis of its ${ }^{1} \mathrm{H}$ NMR spectral data. In particular, the signals for $\mathrm{H}-2$ and $\mathrm{H}-4$ each appear as a doublet of doublets ($J=$ ca. 7 and $11-14 \mathrm{~Hz}$); the larger couplings are consistent with a trans orientation with $\mathrm{H}-1$ and $\mathrm{H}-$ 5 respectively. The chemical shifts and coupling constants for $\mathbf{9 a}$ are similar to those reported for the (1-methoxycarbonyl-5phenylpentadienyl)Fe(CO) ${ }_{3}{ }^{+}$cation 9b. ${ }^{6}$

[^2]

Scheme 3

Reaction of (土)-9a, in methylene chloride, with commercially available isopropenylmagnesium bromide in THF, gave a separable mixture of isomeric complexes (\pm)-10 and (\pm)-11 (Scheme 4). The structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ were tentatively assigned on the basis of their NMR spectral data; in particular, the three separate signals at δ 200212 , the signal at $\delta 94-100$ and the signal at $\delta 11-15 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}$ NMR spectra of each $\mathbf{1 0}$ and $\mathbf{1 1}$ are characteristic of the three metal carbonyls, the central allyl carbon and the carbon σ-bonded to iron in (3-pentene-1,5-diyl)iron complexes. ${ }^{6}$ (Pentenediyl)iron complex $\mathbf{1 0}$ was tentatively assigned as resulting from nucleophilic attack at $\mathrm{C}-2$ of 9 by comparison of its ${ }^{1} \mathrm{H}$ NMR spectral data with a similar 2-substituted-(5-aryl-1-methoxycarbonylpent-3-ene-1,5-diyl)iron complex produced from 9b, ${ }^{6}$ while $\mathbf{1 1}$ was assigned a 4-substituted-(5-aryl-1-methoxycarbonylpent-2-ene-1,5-diyl)iron structure in order to be unique from 10. These tentative structural assignments were eventually corroborated by single crystal diffraction analysis of each. \ddagger

Scheme 4 (Ar = 2,5-dimethoxyphenyl).

Oxidative decomplexation of $\mathbf{1 0}$ with cerium ammonium nitrate (CAN) gave the cycloheptadiene (\pm)-12 in low and variable yield (conditions A, Scheme 4). This reaction presumably proceeds via the intermediacy of the cis-divinylcyclopropane 13, which was not observed. The low yield of this product may be due to further oxidation of the p-dimethoxybenzene ring with CAN to afford a p-quinone substituted product. Oxidative decomplexation of $\mathbf{1 0}$ with CuCl_{2} (conditions B, Scheme 4) gave 12 in considerably improved yield (95%). Attempts to use $\mathrm{CuBr}_{2}, \mathrm{Ag}_{2} \mathrm{O}, \mathrm{Pb}(\mathrm{OAc})_{4}$ or Dess-Martin periodinane for oxidative decomplexation were unsuccessful, giving only unreacted starting material. The structure of $\mathbf{1 2}$ was assigned on the basis of its NMR spectral data; in particular signals for the three olefinic protons appear at $\delta 5.65-5.75(2 \mathrm{H})$ and $6.04(1 \mathrm{H}) \mathrm{ppm}$, while multiplets at 4.07-4.14 and 4.25-4.31 ppm correspond to $\mathrm{H}-3$ and $\mathrm{H}-$ 6.

With successful model studies completed, attention was turned to preparing the bicyclo[5.4.0]undecane scaffold of the frondosins. In our hands, attempts to prepare the Grignard reagent from commercially available 1-bromocyclohexene (14a) were unsuccessful. ${ }^{7}$ For this reason, it was necessary to prepare 1-cyclohexenyllithium by lithium-halogen exchange using t-BuLi/pentane. Addition of a solution of this organolithium reagent, prepared in THF, to $\mathbf{9 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

[^3]$\left(-78{ }^{\circ} \mathrm{C}\right.$) gave the 2 -substituted (pentenediyl)iron complex 15 (eqn (1)). This segment of the structure was assigned by comparison of portions of its NMR spectral data with those for 10; in particular the chemical shifts for $\mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4$, and $\mathrm{H}-5$ of $\mathbf{1 5}$ ($\delta 0.68, \mathrm{ca}$. 3.7, $4.45,5.44$ and 4.50 ppm) are similar to those for $\mathbf{1 0}$. The exact nature of the substituent at $\mathrm{C}-2$ was initially unclear, however single crystal diffraction analysis \ddagger revealed this to be a dichloromethyl substituent. Presumably $\mathbf{1 5}$ arises via deprotonation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent, followed by nucleophilic addition of the resultant dichloromethyl anion at $\mathrm{C}-2$.

In contrast, addition of the organolithium reagent from 1bromocyclohexene by lithium-halogen exchange, prepared in ether/pentane, to $\mathbf{9 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78^{\circ} \mathrm{C}\right)$ gave a separable mixture of 16a and 17a (Scheme 5). Complex 16a was assigned a (pentenediy) iron structure by comparison of its NMR spectral data with that for 10. This assignment was corroborated by single crystal diffraction analysis. \ddagger The structure of 17a was assigned on the basis of its NMR spectral data. In particular signals at $\delta 2.81$ (d), 5.24 (dd) and 5.98 (dd, $\mathrm{J}=5.3$ and 10.5) in the ${ }^{1} \mathrm{H}$ NMR spectrum and signals at $\delta 80.4$ and 88.9 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum and are characteristic of $\mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-4, \mathrm{C}-3$ and $\mathrm{C}-4$ of ($2 \mathrm{E}, 4 \mathrm{Z}$-hexadienoate) $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes. ${ }^{6,8}$ In a similar fashion, addition of the organolithium reagent prepared by lithium-halogen exchange of 6,6-dimethyl-1iodocyclohexene (14b) ${ }^{9}$ in ether/pentane, to $\mathbf{9 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78{ }^{\circ} \mathrm{C}\right)$ gave a separable mixture of $\mathbf{1 6 b}$ and $\mathbf{1 7 b}$ (Scheme 5). The structures of $\mathbf{1 6 b}$ and $\mathbf{1 7 b}$ were assigned by comparison of their NMR spectral data with those for 16a and 17a. The structural assignment for 16b was corroborated by single crystal diffraction analysis (Fig. 1).

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.

Scheme 5 (Ar = 2,5-dimethoxyphenyl).

Fig. 1 Molecular structure of $(\pm) \mathbf{- 1 6 b}$ (arbitrary atom numbering).

The origin of the differences in the reactivity of $\mathbf{9 a}$ with the alkenylmetal species indicated above is presently unclear. However, the results reveal that the regioselectivity of this reaction may depend on such subtle factors as the aggregation of these organometal species. ${ }^{10}$

Oxidative decomplexation of $\mathbf{1 6 a}$ or $\mathbf{1 6 b}$ with CuCl_{2} gave the bicyclo[5.4.0]undecadiene products (\pm)-18a or $(\pm) \mathbf{- 1 8 b}$, respectively. The structures of $\mathbf{1 8 a} / \mathbf{1 8 b}$ were assigned by comparison of their NMR spectral data with that for 12.

Conclusions

A 4-step route from (methyl 6-oxo-2,4-hexadienoate) $\mathrm{Fe}(\mathrm{CO})_{3}$ to the 2-arylbicyclo[5.4.0]undecane scaffold of the frondosins was developed. This route relies on nucleophilic addition of an alkenylmetal species to the acyclic (pentadienyl)iron cation 9a. The low regioselectivity of this nucleophilic addition remains a challenge in this approach. A modified approach to the requisite (pentenediyl)iron complex 16b, which addresses this limitation, is under investigation and results will be reported in due course.

Experimental

General methods

All reactions involving moisture or air sensitive reagents were carried out under a nitrogen atmosphere in oven-dried glassware with anhydrous solvents. Purifications by chromatography were carried out using silica gel $60(40-63 \mu \mathrm{~m})$. NMR spectra were recorded on either a Varian Mercury+ 300 MHz or a Varian UnityInova 400 MHz instrument. CDCl_{3} and $\mathrm{CD}_{3} \mathrm{NO}_{2}$ were purchased from Cambridge Isotope Laboratories. ${ }^{1} \mathrm{H}$ NMR spectra were calibrated to 7.27 ppm for residual CHCl_{3} or 4.33 ppm for $\mathrm{CD}_{2} \mathrm{HNO}_{2}$. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated from the central peak at 77.23 ppm for CDCl_{3} or 60.5 for $\mathrm{CD}_{3} \mathrm{NO}_{2}$. Coupling constants are reported in Hz . Elemental analyses were obtained from Midwest Microlabs, Ltd., Indianapolis, IN, USA, and high-resolution mass spectra were obtained from the University of Nebraska Center for Mass Spectrometry or the COSMIC lab at Old Dominion University. 1-Bromocyclohexene was purchased from Combi-Blocks, LLC, San Diego, CA, USA. 6,6-Dimethyl-1-iodocyclohexene was prepared from 2,2-dimethylcyclohexanone according to the literature procedure. ${ }^{9}$

Tricarbonyl[1-methoxycarbonyl-5-(2',5'-dimethoxyphenyl)pentadienyl]iron(1+) hexafluorophosphate 9a

To a three necked 300 mL round-bottomed flask, equipped with a dropping funnel, condenser and a stirring bar, were charged Mg turnings ($0.54 \mathrm{~g}, 22 \mathrm{mmol}$) and freshly distilled dry THF (30 mL) under nitrogen. A solution of 1-bromo-2,5-dimethoxybenzene ($4.40 \mathrm{~g}, 20.3$ mmol) in dry THF (10 mL) was added dropwise with vigorous stirring under nitrogen. After addition was complete, the reaction mixture was heated at reflux for 30 min . To a solution of $7(5.20 \mathrm{~g}, 18.6 \mathrm{mmol})$ in dry THF (70 mL), cooled to $-40^{\circ} \mathrm{C}$, was added dropwise, over 15 min , the previously prepared Grignard solution. After addition was complete, the cooling bath was removed and the reaction mixture was warmed to room temperature and stirred for 3 h . Water (30 mL) was cautiously added, and the mixture was extracted several times with ethyl acetate. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a crude compound $8(6.40 \mathrm{~g}, 82 \%) . \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8, \mathrm{H}-2), 1.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1, \mathrm{H}-5), 3.01(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.1, \mathrm{OH}), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}$, OMe), $4.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}-6), 5.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8$ and $9.0, \mathrm{H}-4)$, 5.82 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8$ and 9.0, H-3), 6.80-6.90 (3H, m, ArH); $\mathrm{\delta c}_{\mathrm{c}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 46.1,51.8,55.8,55.9,66.6,73.7,83.6,85.7,111.8$, $113.4,113.6,132.1,150.6,154.0,172.8$ (signal for $\mathrm{Fe}-\mathrm{CO}$ not observed). This compound was used in the next step without further purification. To an ice cold solution of crude 8 ($3.00 \mathrm{~g}, 7.18 \mathrm{mmol}$) and acetic anhydride (2.2 mL) in dry ether (10 mL) was added dropwise a cold solution of HPF_{6} ($60 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 2.46 \mathrm{~mL}, 10.1 \mathrm{mmol}$) in acetic anhydride (4.5 mL). An orange precipitate developed and the reaction mixture was stirred for 20 min and then added to a large excess of ether. The solid was collected by filtration through a sintered-glass funnel, and the solid was washed several times with dry ether. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes gave 9a ($3.30 \mathrm{~g}, 84 \%$) as a bright orange solid (Found: C, 39.24; H, 3.36. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{FePF}_{6}$: C, 39.59; H, 3.14.); $\mathrm{V}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2116,2081$ and 1717; $\delta_{H}(300$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) $3.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.8, \mathrm{H}-1), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92$ (3H, s, OMe), 4.01 (3H, s, OMe), 4.78 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5, \mathrm{H}-5$), 6.70 $(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $10.5, \mathrm{H}-2), 6.96(1 \mathrm{H}, \mathrm{dd}, J=7.1$ and $13.5, \mathrm{H}-4)$, $7.12-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and ArH$)$; $\delta_{c}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}\right) 52.2,54.3$, 54.7, 61.3, 92.5, 95.4, 95.9, 102.6, 111.0, 112.4, 119.6, 120.2,
152.5, 153.3, 168.1 (the signals for the metal carbonyls were not observed).

Reaction of 9a with isopropenylmagnesium bromide

To a solution of cation 9a ($0.55 \mathrm{~g}, 1.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL) in a 100 mL Schlenk flask $-78^{\circ} \mathrm{C}$ under nitrogen, was slowly added a solution of isopropenylmagnesium bromide (0.5 M solution in THF, $2.2 \mathrm{~mL}, 1.1 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then slowly warmed to room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the resulting mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of 10 and 11 (71:29 by ${ }^{1} \mathrm{H}$ NMR integration; $0.36 \mathrm{~g}, 81 \%$) as a yellow solid. The mixture was separated by purification over column chromatography (hexanes-ethyl acetate $=20: 1 \rightarrow 4: 1$ gradient). Single crystals of $\mathbf{1 0}$ and of 11, suitable for X -ray diffraction, were obtained by slow evaporation of concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes (1:9) solutions at room temperature.

Tricarbonyl[1-methoxycarbonyl-5-(2',5'-dimethoxy-phenyl)-2-(1-methylethenyl)-3-pentene-1,5-diyl)iron (土)-10. (Found: C, 57.16; H, 5.01. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O} 7 \mathrm{Fe}: \mathrm{C}, 57.03 ; \mathrm{H}, 5.01$); mp 136-139 ${ }^{\circ} \mathrm{C} ; \delta_{\text {н }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9, \mathrm{H}-1), 1.56$ (3H, s, C=CMe), 3.70-3.83 (1H, m, H-2), 3.72 (3H, s, OMe), 3.76 (3H, s, OMe), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.37 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4, \mathrm{H}-3$), 4.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=12.3, \mathrm{H}-5), 4.61$ and $4.63\left(2 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1$ and 12.5, H-4), 6.75-6.82 (3H, m, ArH); $\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.7$, 19.6, 45.4, 51.6, 55.9, 56.0, 57.7, 70.2, 94.1, 109.2, 109.5, 111.7, 113.0, 129.1, 147.4, 151.5, 153.7, 181.1, 204.6, 210.2, 210.7.

Tricarbonyl[1-methoxycarbonyl-5-(2',5'-dimethoxy-phenyl)-4-(1-methylethenyl)-2-pentene-1,5-diyl)iron (土)-11. (Found: C, 57.15; H, 5.08. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O} 7 \mathrm{Fe}: \mathrm{C}, 57.03 ; \mathrm{H}, 5.01$); mp 117-118 ${ }^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2057,1986$ and $1707 ; \delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CMe}), 1.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.6, \mathrm{H}-5), 3.23(1 \mathrm{H}, \mathrm{d}$, $J=10.6, \mathrm{H}-1), 3.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}-4), 3.75-3.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.59(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8$ and $10.2, \mathrm{H}-2), 6.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6$ and 8.6, ArH), 6.69 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6, \mathrm{ArH}$), 6.94 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 15.0,20.0,48.5,52.1,55.3,55.9,59.9,62.0$, 100.6, 109.2, 109.3, 110.3, 111.1, 139.0, 148.3, 151.3, 153.5, 173.9, 200.6, 210.4, 212.4.

[^4]Tricarbonyl[2-dichloromethyl-1-methoxycarbonyl-5-(2',5'-dimethoxyphenyl)-3-pentene-1,5-diyl)iron (土)-15. Tо а stirring solution of 1-bromo-1-cyclohexene ($0.10 \mathrm{~g}, 0.62 \mathrm{mmol}$) in dry THF (5 mL) at $-78^{\circ} \mathrm{C}$, in a 50 mL Schlenk flask, was added dropwise a solution of t-BuLi (1.7 M in pentane, $0.74 \mathrm{~mL}, 1.26 \mathrm{mmol}$). After addition was complete, the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then the anion solution was transferred by cannula into a stirring solution of cation $9 \mathbf{9 a}(0.15 \mathrm{~g}, 0.27 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. To ensure complete transfer of the solution, a further portion of dry THF (1 mL) was transferred by cannula from the flask used for anion preparation. The reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, then slowly warmed to $0{ }^{\circ} \mathrm{C}$ for 4 h , and finally quenched with water (10 mL). The resulting mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography (hexanes-ethyl acetate $=20: 1 \rightarrow 4: 1$ gradient) to afford (\pm)-15 (30 $\mathrm{mg}, 23 \%$) as a pale yellow solid. Single crystals suitable for X-ray diffraction were obtained from layering in hexanes over a concentrated solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (Found: C, 47.09; $\mathrm{H}, 3.99$. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{O}_{7} \mathrm{Fe}$: C, 46.75; H, 4.34); mp $163-166^{\circ} \mathrm{C}$ (dec.); $\mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2066$, 1995 and 1688 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8, \mathrm{H}-1), 3.73$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.75-3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.92(3 \mathrm{H}, \mathrm{s}$, OMe), 4.45 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2, \mathrm{H}-3$), $4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9, \mathrm{H}-5), 4.94$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0,-\mathrm{CHCl}_{2}\right), 5.44(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $12.8, \mathrm{H}-4), 6.83$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6, \mathrm{ArH}$), 6.84 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 6.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4, \mathrm{ArH}$); δ_{c} $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.0,50.3,51.8,54.9,55.91,55.94,70.8,75.8$, 93.6, 109.3, 111.6, 113.6, 128.0, 151.3, 153.8, 179.5, 203.8, 209.2, 209.4.

Reaction of 9a with cyclohexenyllithium in ether

To a stirring solution of 1-bromo-1-cyclohexene ($174 \mathrm{mg}, 1.08$ mmol) in dry $\mathrm{Et}_{2} \mathrm{O} / \mathrm{dry}$ pentane ($2: 3,1 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$, was added dropwise a solution of t-BuLi (1.7 M in pentane, $1.28 \mathrm{~mL}, 2.2 \mathrm{mmol}$). After addition was complete, the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then the solution was transferred by cannula into a stirring solution of cation 9a ($300 \mathrm{mg}, 0.549 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. To ensure complete transfer of the solution, a further portion of dry $\mathrm{Et}_{2} \mathrm{O} /$ dry pentane (1 mL) was transferred by cannula from the
flask used for anion preparation. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, then slowly warmed to room temperature over a 3 h period, and finally quenched with water (10 mL). The resulting mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of 16a and 17a (50:50 by ${ }^{1} \mathrm{H}$ NMR integration; $222 \mathrm{mg}, 84 \%$) as a sticky yellow solid. The mixture was separated by column chromatography (hexanes-ethyl acetate $=20: 1 \rightarrow 4: 1$ gradient). Crystals of 16a suitable for X-ray diffraction were obtained by slow evaporation from a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes (1:9) solution at room temperature.

Tricarbonyl[2-(1'-cyclohexenyl)-1-methoxycarbonyl-5-(2',5'-dimethoxy-phenyl)-3-pentene-1,5-diyl)iron (土)-16a. (Found: C, 59.53; H, 5.67. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}$ 7Fe: C, 59.77; H, 5.43); $\mathrm{mp} 147-150{ }^{\circ} \mathrm{C}$ (dec.); $\mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2058, 1989 and 1682 ; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1, \mathrm{H}-1), 1.40-1.64(4 \mathrm{H}, \mathrm{m}), 1.74-1.81$ $(2 \mathrm{H}, \mathrm{m}), 1.86-1.95(2 \mathrm{H}, \mathrm{m}), 3.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3, \mathrm{H}-2), 3.71(3 \mathrm{H}, \mathrm{s}$, OMe), 3.76 (3H, s, OMe), $3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.33(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4, \mathrm{H}-$ 3), 4.44 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2, \mathrm{H}-5$), 5.27 (1 H, br s, C=CH), 5.44 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=7.0$ and $12.4, \mathrm{H}-4), 6.76-6.91(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 12.4, 22.6, 22.7, 25.1, 25.6, 45.5, 51.5, 55.9, 56.0, 58.4, 70.0, 94.4, 109.5, 111.7, 112.9, 120.0, 129.4, 139.9, 151.5, 153.7, 181.3, 204.6, 210.3, 210.8.

Tricarbonyl[methyl 5-(1'-cyclohexenyl)-5-(2',5'-dimeth-oxyphenyl)-2E,4Z-pentadienoate]iron (土)-17a. $\mathrm{V}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2044, 1973 and $1736 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.48-1.64$ and $1.84-2.02$ ($8 \mathrm{H}, \mathrm{m}$), $2.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5, \mathrm{H}-2), 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1$ and 11.5, $\mathrm{H}-5), 3.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4, \mathrm{H}-6), 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.79 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5$ and 7.7, H-4), 5.54 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}$), $5.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.3$ and $10.5, \mathrm{H}-3), 6.68-6.80$ (3H, m, ArH); $\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.2,22.9,25.4,26.8,51.8,51.9$, 54.5, 55.9, 56.0, 57.9, 80.4, 88.9, 110.4, 111.4, 112.2, 124.0, 129.8, 137.9, 151.0, 153.6, 173.2, 210.8; ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O} \mathrm{OF}_{7} \mathrm{FeNa}$ (M+Na+): m/z 505.0926, found: m/z 505.0924.

Reaction of 9a with dimethylcyclohexenyllithium

To a stirring solution of 1 -iodo-6,6-dimethylcyclohex-1-ene (310 $\mathrm{mg}, 1.31 \mathrm{mmol}$) in a solution of dry $\mathrm{Et}_{2} \mathrm{O} / \mathrm{dry}$ pentane ($2: 3,1 \mathrm{~mL}$) at
$-78^{\circ} \mathrm{C}$ in a 50 mL Schlenk flask, was added dropwise a solution of t BuLi (1.7 M in pentane, $1.55 \mathrm{~mL}, 2.6 \mathrm{mmol}$). After addition was complete, the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then the solution was transferred by cannula into a stirring solution of cation $\mathbf{9 a}$ ($360 \mathrm{mg}, 0.659 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. To ensure complete transfer of the solution, a further portion of dry $\mathrm{Et}_{2} \mathrm{O} / \mathrm{dry}$ pentane (1 mL) was transferred by cannula from the flask used for anion preparation. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, then slowly warmed to room temperature over a 3 h period, and finally quenched with water $(10 \mathrm{~mL})$. The resulting mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of $\mathbf{1 6 b}$ and $\mathbf{1 7 b}$ (69 : 31 by ${ }^{1} \mathrm{H}$ NMR integration; $235 \mathrm{mg}, 70 \%$) as a sticky yellow solid. The mixture was separated by column chromatography (hexanes-ethyl acetate $=20: 1 \rightarrow 4: 1$ gradient). Crystals of $\mathbf{1 6 b}$ suitable for X-ray diffraction were obtained by slow evaporation of a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes (1:9) solution at room temperature.

Tricarbonyl[1-methoxycarbonyl-5-(2',5'-dimethoxy-phenyl)-2-(6',6'-dimethylcyclohex-1'-enyl)-3-pentene-1,5diyl)iron (土)-16b. (Found: C, 61.67; H, 6.19. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}$ 7 Fe : C, 61.19; H, 5.92.); mp 150-152 ${ }^{\circ} \mathrm{C}$ (dec.); $\mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2056, 2000, and 1691; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2, \mathrm{H}-1), 0.96$ (3H, s, Me), 1.10 (3H, s, Me), 1.47-1.51 (2H, m), 1.33-1.37 (2H, m), 1.89-1.93 (2H, m), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.86(1 \mathrm{H}, \mathrm{t}$, $J=8.6, \mathrm{H}-2), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}-3), 4.57(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=12.5, \mathrm{H}-5), 5.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.5, \mathrm{C}=\mathrm{CH}), 5.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2$ and 12.3, H-4), 6.76-6.90 (2H, m, ArH); $\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.3$, 19.0, 26.3, 28.4, 29.5, 34.0, 40.8, 41.6, 51.5, 56.0, 56.1, 61.2, 69.4, 93.5, 109.5, 111.7, 112.9, 123.7, 129.6, 148.2, 151.5, 153.8, 180.7, 204.8, 210.5, 210.8. ESI-HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{FeNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): m / z$ 533.1239. Found: $m / z 533.1232$.

Tricarbonyl[methyl 5-(2',5'-dimethoxyphenyl)-5-(6',6'-dimethylcyclohex-1'-enyl)-2E,4Z-pentadienoate]iron (土)-17b. $\mathrm{V}_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2042,1991,1958$ and $1720 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.38-1.60(4 \mathrm{H}, \mathrm{m}), 1.98-2.04$ (2H, m), 2.94-3.05 (2H, m), 3.75 (3H, s, OMe), 3.76 (3H, s, OMe), $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.7, \mathrm{H}-6), 5.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5$ and $7.2, \mathrm{H}-4), 5.92-5.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{C}=\mathrm{CH}), 6.68-6.80(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1,26.5,28.1,28.4,35.6,40.0,42.7$,

[^5]51.9, 53.5, 56.0, 56.2, 62.7, 80.1, 89.1, 110.4, 111.8, 112.3, 125.8, 130.0, 146.0, 151.1, 153.7, 174.3, 210.8; ESI-HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{FeNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): m / z 533.1239$. Found: $m / z 533.1219$.

3-Methoxycarbonyl-7-(2',5'-dimethoxyphenyl)-1-methyl-1,4-cycloheptadiene (土)-12. To a stirring solution of complex 10 ($100 \mathrm{mg}, 0.226 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ at room temperature, was slowly added a solution of $\mathrm{CuCl}_{2}(91 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ (10 mL). The solution was stirred at room temperature for 30 min and then warmed to $50^{\circ} \mathrm{C}$ with stirring for 1 h . After cooling to room temperature, the solution was concentrated and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and charged onto a silica gel column. Purification by column chromatography (hexanes-ethyl acetate $=20: 1 \rightarrow 10: 1$ gradient) gave (\pm)-12 ($65 \mathrm{mg}, 95 \%$) as a colorless oil. $\delta_{H}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.8, \mathrm{Me}), 2.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5$ and $14.5, \mathrm{H}-7)$, $2.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.9$ and 14.5, H-7'), $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.77(3 \mathrm{H}, \mathrm{s}$, OMe), 3.81 (3H, s, OMe), 4.07-4.14 (1H, m), 4.25-4.31 (1H, m), $5.65-5.75(2 \mathrm{H}, \mathrm{m}), 6.04(1 \mathrm{H}$, dddd, $J=1.2,2.1,3.9$ and 11.4), 6.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3$ and 8.7, ArH), 6.79 (1H, d, J = 8.7, ArH), 6.82 (1 H , $\mathrm{d}, \mathrm{J}=3.3, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.1,35.1,36.7,43.5,52.4$, 55.9, 56.2, 111.3, 111.5, 115.8, 122.3, 127.3, 133.6, 134.2, 139.1, 151.0, 153.7, 174.5; FAB-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 302.1518$, found 302.1526.

3-Methoxycarbonyl-6-(2',5'-dimethoxyphenyl)-

 bicyclo[5.4.0]undeca-1,4-diene (土)-18a. The decomplexation of $\mathbf{1 6 a}(100 \mathrm{mg}, 0.207 \mathrm{mmol})$ with $\mathrm{CuCl}_{2}(84 \mathrm{mg}, 0.63 \mathrm{mmol})$ was carried out in a fashion similar to the decomplexation of $\mathbf{1 0}$. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanesethyl acetate $=20: 1 \rightarrow 10: 1$ gradient) gave (\pm)-18a ($50 \mathrm{mg}, 71 \%$) a pale ivory solid product; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10-1.30(3 \mathrm{H}, \mathrm{m})$, 1.58-1.72 (3H, m), 1.91-2.01 (1H, m), 2.06-2.12 (1H, m), 2.18-2.26 $(1 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.42-4.48 (1H, m), 4.68-4.72 (1H, m), $5.64(1 \mathrm{H}, \mathrm{br}$ s, H-2), 6.05$6.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 6.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2$ and $10.2, \mathrm{H}-4), 6.72(1 \mathrm{H}, \mathrm{dd}$, $J=3.0$ and $8.9, \mathrm{ArH}$), $6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9, \mathrm{ArH}), 6.94$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.0$, $\mathrm{ArH})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.2,28.0,28.9,38.2,39.7,42.5,44.6$, 52.4, 55.9, 56.1, 110.7, 111.4, 116.2, 116.6, 130.0, 131.7, 132.1, 145.8, 151.4, 153.2, 174.9; ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}^{+}$ (M+Na+): m/z 365.1723. Found: $m / z 365.1728$.
Abstract

3-Methoxycarbonyl-6-(2',5'-dimethoxyphenyl)-11,11-dimethylbicyclo[5.4.0]undeca-1,4-diene (土)-18b. The decomplexation 16b ($100 \mathrm{mg}, 0.207 \mathrm{mmol}$) with CuCl_{2} ($79 \mathrm{mg}, 0.58$ mmol) was carried out in a fashion similar to the decomplexation of 10. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes-ethyl acetate $=20: 1 \rightarrow 10: 1$ gradient) gave (\pm)-18b (42 $\mathrm{mg}, 58 \%$) as a pale ivory solid; $\mathrm{v}_{\max }($ neat $) / \mathrm{cm}^{-1} 1734 ; \delta_{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.06$ (3H, s, Me), 1.08 (3H, s, Me), 1.14-1.28 (2H, m), 1.34$1.50(3 \mathrm{H}, \mathrm{m}), 1.59-1.66(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=3.2$ and $12.8, \mathrm{H}-$ 7), 3.792 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.796 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.49 $(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=3.2, \mathrm{H}-3), 4.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.0, \mathrm{H}-6), 5.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0$, $\mathrm{H}-2), 6.18-6.21(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.8$ and 8.8, ArH), 6.82 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8, \mathrm{ArH}$), 6.98 ($1 \mathrm{H}, \mathrm{d}, J=2.8, \mathrm{ArH}$); $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 22.7, 26.1, 28.5, 30.2, 38.3, 39.2, 40.1, 42.5, 42.9, 52.4, $55.9,56.1,110.5,111.5,114.0,116.3,129.9,131.5,132.3,151.4$, 152.1, 153.2, 175.3. ESI-HRMS Calc. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right): \mathrm{m} / \mathrm{z}$ 393.2042. Found: $m / z 393.2026$.

Acknowledgements

This work was supported by the National Science Foundation (CHE0848870) and NSF instrumentation grants (CHE-0521323). Highresolution mass spectra were obtained at the University of NebraskaCenter for Mass Spectrometry and the COSMIC lab at Old Dominion University. The authors thank Anobick Sar for obtaining IR spectra.

Notes and references

1. (a) A. D. Patil, A. J. Freyer, L. Killmer, P. Offen, B. Carte, A. J. Jurewicz and R. K. Johnson, Tetrahedron, 1997, 53, 5047-5060;
2. (b) Y. F. Hallock, J. H. Cardellina II and M. R. Boyd, Nat. Prod. Lett., 1998, 11, 153-160.
3. F. Marion, D. E. Williams, B. O. Patrick, L. Hollander, R. Mallon, S. C. Kim, D. M. Roll, L. Feldberg, R. Van Soest and R. J. Andersen, Org. Lett., 2006, 8, 321-324.
4. (a) M. Inoue, A. J. Frontier and S. J. Danishefsky, Angew. Chem., Int. Ed., 2000, 39, 761-764;

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.
3. (b) M. Inoue, M. W. Carson, A. J. Frontier and S. J. Danishefsky, J. Am. Chem. Soc., 2001, 123, 1878-1889;
3. (c) C. C. Hughes and D. Trauner, Angew. Chem., Int. Ed., 2002, 41, 15691572;
3. (d) C. C. Hughes and D. Trauner, Tetrahedron, 2004, 60, 9675-9686;
3. (e) D. J. Kerr, A. C. Willis and B. L. Flynn, Org. Lett., 2004, 6, 457-460;
3. (f) I. Martinez, P. E. Alford and T. V. Ovaska, Org. Lett., 2005, 7, 11331135;
3. (g) X. Li, R. E. Kyne and T. V. Ovaska, Org. Lett., 2006, 8, 5153-5156;
3. (h) X. Li, R. E. Kyne and T. V. Ovaska, Tetrahedron, 2007, 63, 1899-1906;
3. (i) X. Li and T. V. Ovaska, Org. Lett., 2007, 9, 3837-3840;
3. (j) X. Li, A. E. Keon, J. A. Sullivan and T. V. Ovaska, Org. Lett., 2008, 10, 3287-3290;
3. (k) B. M. Trost, Y. Hu and D. B. Horne, J. Am. Chem. Soc., 2007, 129, 11781-11790;
3. (I) J. P. Olson and H. M. L. Davies, Org. Lett., 2008, 10, 573-576;
3. (m) G. Mehta and N. S. Likhite, Tetrahedron Lett., 2008, 49, 7113-7116;
3. (n) G. Mehta and N. S. Likhite, Tetrahedron Lett., 2009, 50, 5263-5266;
3. (o) T. V. Ovaska, J. A. Sullivan, S. I. Ovaska, J. B. Winegrad and J. D. Fair, Org. Lett., 2009, 11, 2715-2718;
3. (p) K.-S. Masters and B. L. Flynn, Org. Biomol. Chem., 2010, 8, 12901292;
3. (q) D. Garayalde, K. Krueger and C. Nevado, Angew. Chem., Int. Ed., 2011, 50, 911-915.
4. (a) G. Mehta, N. S. Likhite and C. S. A. Kumar, Tetrahedron Lett., 2009, 50, 5260-5262;
4. (b) J. H. George, J. E. Baldwin and R. M. Adlington, Org. Lett., 2010, 12, 2394-2397;
4. (c) E. Alverez-Manzaneda, R. Chahboun, E. Alverez, M. J. Cano, A. Haidour and R. Alvarez-Manzaneda, Org. Lett., 2010, 12, 4450-4453;
4. (d) A. R. Pereira, W. K. Strangman, F. Marion, L. Feldberg, D. Roll, R. Mallon, I. Hollander and R. J. Andersen, J. Med. Chem., 2010, 53, 8523-8533;
4. (e) Y. Zhang, E. Z. Oblak, E. S. D. Bolstad, A. C. Anderson, J. P. Jasinski, R. J. Butcher and D. L. Wright, Tetrahedron Lett., 2010, 51, 61206122.
5. (a) N. J. Wallock and W. A. Donaldson, Org. Lett., 2005, 7, 2047-2049;
5. (b) N. J. Wallock, D. W. Bennett, T. A. Siddiquee, D. T. Haworth and W. A. Donaldson, Synthesis, 2006, 3639-3646;
5. (c) R. K. Pandey, L. Wang, N. J. Wallock, S. Lindeman and W. A. Donaldson, J. Org. Chem., 2008, 73, 7236-7245;
5. (d) J. R. Gone, N. J. Wallock, S. Lindeman and W. A. Donaldson, Tetrahedron Lett., 2009, 50, 1023-1025.
6. S. Chaudhury, W. A. Donaldson, D. W. Bennett, D. T. Haworth, T. A. Siddiquee and J. M. Kloss, J. Organomet. Chem., 2004, 689, 14371443.
7. B. Jousseaume, N. Noiret, M. Pereyre, J.-M. Frances and M. Petraud, Organometallics, 1992, 11, 3910-3914.
8. C. Tao and W. A. Donaldson, J. Org. Chem., 1993, 58, 2134-2143.
9. P. J. Kropp, S. A. McNeely and R. D. Davis, J. Am. Chem. Soc., 1983, 105, 6907-6915.
10. R. A. Gossage, J. T. B. H. Jastrzebski and G. van Koten, Angew. Chem., Int. Ed., 2005, 44, 1448-1454.

Footnotes

\dagger Electronic supplementary information (ESI) available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds and ORTEPs for 10, 11, 15 and 16a. CCDC

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.
reference numbers 823811-823815. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1ob05720k
\# The cif files for 10, 11, 15, 16a and 16b have been deposited with the CCDC. 10: CCDC \# 823813; 11: CCDC \# 823815; 15: CCDC \# 823811; 16a: CCDC \# 823812; 16b: CCDC \# 823814. Crystal structure data for compound (\pm)-16b: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O} 7 \mathrm{Fe} ; \mathrm{M}=510.35$; triclinic, $\mathrm{P} \overline{\mathrm{I}} ; \mathrm{a}=10.2155(4)$, b $=10.6315(4), c=13.0110(5) \AA, a=102.007(3)^{\circ}, \beta=106.062(3)^{\circ}, Y=$ $110.218(3)^{\circ} ; \mathrm{U}=1199.83(8) \AA^{3} ; \mathrm{T}=100 \mathrm{~K} ; \mathrm{Z}=2 ; 18938$ reflections measured, 5984 unique ($\mathrm{R}_{\text {int }}=0.0366$). The final $w R^{2}$ was 0.1155 (all data).

[^0]: A short, 4-step route to the scaffold of frondosin A and B is reported. The [1-methoxycarbonyl-5-(2',5'-dimethoxyphenyl)pentadienyl]Fe(CO) 3^{+} cation was prepared in two steps from (methyl 6-oxo-2,4hexadienoate) $\mathrm{Fe}(\mathrm{CO})_{3}$. Reaction of this cation with isopropenyl Grignard or cyclohexenyllithium reagents affords (2-alkenyl-5-aryl-1-methoxycarbonyl-3-pentene-1,5-diyl) $\mathrm{Fe}(\mathrm{CO})_{3}$ along with other addition products. Oxidative decomplexation of these (pentenediyl)iron complexes, utilizing CuCl_{2}, affords 6-aryl-3-methoxycarbonyl-1,4-cycloheptadienes via the presumed intermediacy of a cis-divinylcyclopropane.

[^1]: Organic and Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): pg. 7742-7747. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

[^2]: Organic and Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): pg. 7742-7747. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

[^3]: Organic and Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): pg. 7742-7747. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

[^4]: Organic and Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): pg. 7742-7747. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

[^5]: Organic and Biomolecular Chemistry, Vol. 9, No. 22 (November 2011): pg. 7742-7747. DOI. This article is © Royal Society of Chemistry and permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Royal Society of Chemistry.

