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A Cautionary Note on Generalized Linear Models for

Covariance of Unbalanced Longitudinal Data

Jianhua Z. Huanga, Min Chenb, Mehdi Maadooliata, Mohsen Pourahmadia

aDepartment of Statistics, Texas A&M University.
bExxonMobil Biomedical Sciences, Inc.

Abstract

Missing data in longitudinal studies can create enormous challenges in data
analysis when coupled with the positive-definiteness constraint on a covari-
ance matrix. For complete balanced data, the Cholesky decomposition of a
covariance matrix makes it possible to remove the positive-definiteness con-
straint and use a generalized linear model setup to jointly model the mean
and covariance using covariates (Pourahmadi, 2000). However, this approach
may not be directly applicable when the longitudinal data are unbalanced, as
coherent regression models for the dependence across all times and subjects
may not exist. Within the existing generalized linear model framework, we
show how to overcome this and other challenges by embedding the covariance
matrix of the observed data for each subject in a larger covariance matrix
and employing the familiar EM algorithm to compute the maximum likeli-
hood estimates of the parameters and their standard errors. We illustrate
and assess the methodology using real data sets and simulations.

Keywords: Cholesky decomposition, missing data, joint mean-covariance
modeling

1. Introduction

To cope with the positive-definiteness constraint, the modified Cholesky
decomposition has been introduced as a tool for reparameterization of the
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covariance matrix in longitudinal studies (Pourahmadi, 1999, 2000). The en-
tries of the lower triangular matrix and the diagonal matrix from the modified
Cholesky decomposition have interpretations as autoregressive coefficients
and prediction variances when regressing a measurement on its predeces-
sors. This unconstrained reparameterization and its statistical interpretabil-
ity makes it easy to incorporate covariates in covariance modeling and to cast
the joint modeling of mean and covariance into the generalized linear model
framework. The methodology has proved to be useful in recent literature; see
for example, Pourahmadi and Daniels (2002), Pan and MacKenzie (2003),
Ye and Pan (2006), Daniels (2006), Huang et al. (2006), Levina et al. (2008),
Yap et al. (2009), and Lin and Wang (2009).

However, it encounters the problem of incoherency of the (auto)regression
coefficients and innovation variances across the subjects when the longitudi-
nal data are unbalanced and covariates are used. Unfortunately, this prob-
lem has not been noticed or pointed out explicitly in the literature. Al-
though covariates have been used in Pourahmadi (1999) for modeling bal-
anced data, the coherency consideration suggests that care must be taken
when the data are unbalanced. In fact, the formulations in Pourahmadi and
Daniels (2002) and the subsequent papers are suitable only when the missing
data are dropouts, where for a subject the missingness occurs from certain
time point to the end of the study. In general, as we illustrate by an example
in Section 2, a coherent system of regressions based on the modified Cholesky
decomposition may not exist if there are intermittent missing values.

In this paper, we propose to handle both dropouts and intermittent miss-
ing values using an incomplete data model and the EM algorithm (Dempster
et al., 1977; Jennrich and Schluchter, 1986) when the data are missing at
random (Rubin, 1976). Our incomplete data framework assumes that a fixed
number of measurements are to be collected at a common set of times for
all subjects with a common “grand covariance matrix” Σ, but since not all
responses are observed for all subjects, a generic subject i’s measurements
will have a covariance matrix Σi which is a principal minor of Σ. Since
the covariance model for Σ is built from measurements at a common set of
times, the incoherency problem is completely avoided. A “generalized EM
algorithm” (in which we try to increase the objective function in the “M”
step rather than maximizing it) is then developed to deal with the missing
data in the context of the modified Choleskey decomposition and to compute
the maximum likelihood estimates.

2



2. The Incoherency Problem in Incomplete Longitudinal Data

Assume that the vector of repeated measures yi of subject i collected at
completely irregular times tij, j = 1, · · · ,mi, follows a zero mean multivariate
normal distribution with covariance matrix Σi. The modified Cholesky de-
composition gives TiΣiT

′
i = Di, where Ti is a lower triangular matrix whose

below-diagonal entries are the negatives of the autoregressive coefficients,
φitj, in ŷit =

∑t−1
j=1 φitjyij, and Di is a diagonal matrix whose diagonal entries

σ2
it’s are the innovation variances of the autoregressions. A generalized lin-

ear model for Σi can be built for each subject by relating the autoregressive
parameters φitj and the log innovation variances log σ2

it to some covariates as

φitj = z′itjγi and log(σ2
it) = u′itλi, 1 ≤ j ≤ t− 1, 1 ≤ t ≤ mi, (1)

where zitj and uit are covariates for covariance matrices, and γi ∈ Rq
i and

λi ∈ Rr
i are the corresponding regression parameters which have different

dimensions for different subjects. The covariates in (1) are usually of the
form

zitj = (1, (tit − tij), (tit − tij)2, . . . , (tit − tij)q−1)′,

uit = (1, tit, t
2
it, . . . , t

r−1
it ).

(2)

This general form gives rise to the following two statistical problems:

• Estimation of γi and λi based on a single vector yi is impossible unless
mi is large or a sort of stationarity assumption is imposed. In other
words, one cannot borrow strength from other subjects.

• Even if these parameters are assumed the same for all subjects so that
one may borrow strength from other subjects, there remains a problem
of interpretation or incoherency of the parameters.

The next example shows the incoherency problem, when the data are
unbalanced. It seems Pourahmadi and Daniels (2002), equ. (4), is the first
place where this problem was encountered and not addressed properly. An-
other source is Lin and Wang (2009) and the references therein. For ease of
reference we call such a method the naive method in what follows.

Example. Let’s consider the simple model, yit = φyit−1 + εit, for t =
2, 3, 4 with yi1 = εi1 and εi ∼ N4(0, I). Thus for a completely observed
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subject D = I4 with the following structures for T and Σ:

T =


1 0 0 0
−φ 1 0 0
0 −φ 1 0
0 0 −φ 1

 , Σ =


1 φ φ2 φ3

φ 1 + φ2 φ2 + φ3 φ3 + φ4

φ2 φ2 + φ3 1 + φ2 + φ4 φ+ φ3 + φ5

φ3 φ3 + φ4 φ+ φ3 + φ5 1 + φ2 + φ4 + φ6

 .

Now, consider two subjects where Subject 1 has three measurements at times
1, 2, 4 and Subject 2 has measurements at times 1, 3, 4. It is straightforward
to obtain Σ1 by deletion of the 3rd row and column of Σ, similarly Σ2 is
obtained by deletion of the 2nd row and column of the Σ. Now by using the
modified Cholesky decomposition, one can obtain Ti and Di for i = 1, 2 as
follows:

T1 =

 1 0 0
−φ 1 0
0 −φ2 1

 , D1 =

1 0 0
0 1 0
0 0 1 + φ2

 ,

T2 =

 1 0 0
−φ2 1 0

0 −φ 1

 , D2 =

1 0 0
0 1 + φ2 0
0 0 1

 .

Although both φi21 can be interpreted as the coefficient when regressing
the second measurement on the first, they actually take different values: For
Subject 1, the measurement at time 2 is regressed on that at time 1, but for
Subject 2, the measurement at time 3 is regressed on that at time 1. More
precisely, it is evident that φ121 = φ while φ221 = φ2. Similar results and
statements hold for the innovation variances. This difference in the values
of the regression coefficients or the lack of coherence implies that a naive
approach that simply relates the φitj to covariates may not be prudent when
the data are unbalanced. Numerical examples in Section 4 will show that
the use of the naive method in the presence of the incoherency problem can
lead to serious bias and tremendously high risk in covariance estimation.

3. The Incomplete Data Model and The EM Algorithm

Let yi be an mi × 1 vector containing the responses for subject i, where
i = 1, . . . , n. The yi are assumed to follow the model

yi = Xiβ + ei,

where Xi is an mi × p known matrix of covariates, β is a p × 1 vector of
unknown regression parameters, and ei is an mi × 1 vector of errors. The
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ei’s are distributed as N(0,Σi) individually and are independent of each
other. We assume that ei is a sub-vector of a larger m × 1 vector e∗i that
corresponds to the same set of m observation times t1, . . . , tm, for all i. This
model assumption is valid in a typical setting of longitudinal data when the
measurements are collected at the same set of scheduled time points for all
subjects although for a particular subject, the measurements at some time
points may be missing (Jennrich and Schluchter, 1986). When the time
points are totally irregular across subjects, one can approximate this setting
by binning the time points.

Under the above model assumptions, Σi is a sub-matrix of Σ∗i = var(e∗i ).
According to the modified Cholesky decomposition, there exists a unique
lower triangular matrix Ti with 1’s as main diagonal entries and a unique
diagonal matrix Di with positive diagonal entries such that TiΣ

∗
iT
′
i = Di.

The below-diagonal entries of Ti are the negatives of the autoregressive co-
efficients, φitj, in ê∗it =

∑t−1
j=1 φitje

∗
ij, the linear least squares predictor of e∗ij

based on its predecessors e∗i(t−1), . . . , e
∗
i1. The diagonal entries of Di are the

innovation variances σ2
it = var(e∗it − ê∗it), where 1 ≤ t ≤ m and 1 ≤ i ≤ n.

The parameters φitj and log σ2
it are unconstrained and are modeled as in (1)

with the same parameters γ and λ for all subjects. We assume that there is
no missing value in these covariates, which is the case if they only depend on
baseline covariates and scheduled observation times.

To compute the maximum likelihood estimator, we use an iterative EM
algorithm for the incomplete data model (Dempster et al., 1977; Jennrich
and Schluchter, 1986). The algorithm consists of two parts. The first part
applies the generalized least squares solution to update β:

β̃ =
( n∑
i=1

X ′iΣ
−1
i Xi

)−1( n∑
i=1

X ′iΣ
−1
i yi

)
, (3)

which is obtained by maximizing the likelihood function with respect to β
while holding γ and λ fixed at their current values. The second part comprises
one iteration of a generalized EM algorithm to update λ and γ, using e∗i as
complete data and sub-vectors ei = yi−Xiβ as observed data, and assuming
β is equal to its current value. The algorithm iterates between the two parts
until convergence.

The details of the EM algorithm for estimating the parameters and the
asymptotic inference are given in the Appendix. For unbalanced normally
distributed longitudinal data, Theorem 1 of Holan and Spinka (2007) estab-
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lishes the consistency and asymptotic normality of the maximum likelihood
estimator of θ = (β′, γ′, λ′)′ under some mild regularity conditions.

4. Data Analysis

We use two real data sets to illustrate and assess the performance of our
approach.

4.1. The Fruit Fly Data

The “fruit fly mortality” (FFM) data (Zimmerman and Núñez Antón,
2010) are age-specific measurements of mortality for 112 cohorts of a common
fruit fly, “Drosphila melanoster”. Everyday, dead flies were counted for each
cohort, and these counts were pooled into 11 five-day intervals. The raw
mortality rate was recorded as − log{N(t + 1)/N(t)}, where N(t) is the
number of live flies in the cohort at the beginning of time t (t = 0, 1, . . . , 10).
For unknown reason 22% of the data were missing. The raw mortality rate
were log-transformed to ensure that the responses are close to be normally
distributed. To apply our method, we implicitly assume that the data are
missing at random. This assumption is fairly common for the likelihood
method to work and is made by Zimmerman and Núñez Antón (2010), but
little is known about the missing data mechanism for this data set.

To formulate model (1) for the FFM data, we rely on the regressograms of
the sample covariance introduced in Pourahmadi (1999). Generally, to come
up with a good replacement for the sample covariance matrix in presence
of missing data, one may construct the sample covariance matrix based on
the pairwise complete observations, but this estimator may lack the positive
definiteness property. An alternative solution is to fit saturated models to
the matrices T and D, based on our proposed EM algorithm to obtain a raw
estimate, denoted by Σ̂s where “s” stands for saturated. Now, the regresso-
grams of Σ̂s can be used to choose the order of polynomials for modeling the
Cholesky factors of covariance matrix. Figure 1, shows the sample regresso-
grams of Σ̂s which suggest cubic polynomial models for the autoregressive
coefficients and the log-innovation variances. Next, we compare the fitted re-
sults using the EM algorithm and the naive method for this dataset. When
applying the EM and the naive algorithm, the design matrices for the regres-
sions were constructed using (2) with q = r = 4. It is clear from Figure 1
that there is a difference between the two fits particularly for the innovation
variances, but since we do not have the complete data, it is impossible to
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know which one is better. This issue is settled in the next two subsections
using a complete real data set and simulations.
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Figure 1: Fitted cubic polynomial models on the FFM data. Dotted and dashed curves
represent respectively results by applying the EM and the naive algorithm. Circles rep-
resent the regressogram for the saturated model of covariance matrix, based on the EM
algorithm.

4.2. The Cattle Data

The Kenward (1987)’s cattle data were obtained by randomly assigning
thirty cattles to two treatment groups, A and B. The weights of the cattles
were recorded 11 times over a 133-day period. Similar to Pourahmadi (1999),
we considered cubic fits for the Cholesky factors of the covariance matrix for
the treatment A group. The fitted cubic polynomials are shown as solid lines
in Figure 2.

We randomly removed four observations from each subject and applied
both our EM algorithm and the naive algorithm on the incomplete data. The
data removing and model fitting process was repeated ten times. It is clear
from Figure 2 that the fits using the EM algorithm on the incomplete data
are less variable and closer to that obtained from the complete data, while
the same cannot be said about the results from the naive algorithm.

4.3. Simulation

We considered five different setups for our simulation study. In each setup
we ran the simulation N = 200 times, and in each run we simulated n = 30
subjects with m = 11 time points. In the first three setups, the data are
drawn from multivariate normal distributions with parameters specified as
follows:
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Figure 2: Fitted cubic polynomial models on the cattle data. Solid curves represent the
fitted model from the complete data. Dotted and dashed curves represent respectively
results for ten simulation runs by applying the EM (top panels) and the naive algorithm
(bottom panels) on the incomplete data.

1. Σ1 (the covariance matrix) and µ1 (the mean vector) are obtained from
applying the EM algorithm to the FFM data;

2. Σ2 and µ2 are the ML estimates based on the complete cattle data;

3. Σ3 is an 11× 11 matrix where the (i, j)th element σij = min(i, j), and
the mean vector µ3 has all entries zero.

For setups 1 and 2, we fit cubic polynomials to both the autoregressive coef-
ficients and the log-innovation variances. For setup 3, we considered a cubic
fit for autoregressive coefficients, but a linear fit for log-innovation variances.
In setup 3, the polynomials are not the true models and only serve as ap-
proximations.

For each of the simulation setups, we generated the data from the mul-
tivariate normal distribution with mean µj and variance Σj, and randomly
removed four out of eleven observations from each subject. Figures 3, 4 and
5 compare the results of the EM algorithm and the naive method for each
setup for ten randomly selected simulation runs. It is apparent that while
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the naive method produces misleading results, the EM algorithm yields more
reasonable results.
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Figure 3: Simulation. Solid curves represent the model for Σ1. Dotted and dashed curves
represent respectively results for ten randomly selected simulation runs by applying the
EM (top panels) and the naive algorithm (bottom panels) on the incomplete data.

To compare the performance of two methods in estimating the covariance
matrix, we considered the risks of parameter estimation for the following two
loss functions

∆1(Σ, G) = trΣ−1G− log |Σ−1G| − n and ∆2(Σ, G) = tr(Σ−1G− I)2,

where Σ is the true covariance matrix and G is a positive-definite matrix
with the same size. ∆1(Σ, G) is known as the entropy loss and ∆2(Σ, G) is
called the quadratic loss. Both of these loss functions are 0 when G = Σ and
positive when G 6= Σ. The corresponding risk functions can be defined as

Ri(Σ, G) = EΣ{∆i(Σ, G)}, i = 1, 2.

The estimator Σ̂ is better than Σ̃ for Σ, if its associated risk function is
smaller, that is, Ri(Σ, Σ̂) < Ri(Σ, Σ̃). Table 1 shows that the naive method
produces substantially larger risks than the EM algorithm, which is antici-
pated because of the incoherency problem of the naive method discussed in
Section 2.
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Figure 4: Simulation. Solid curves represent the model for Σ2. Dotted and dashed curves
represent respectively results for ten randomly selected simulation runs by applying the
EM (top panels) and the naive algorithm (bottom panels) on the incomplete data.

Note that our fitting procedure is based on maximizing the normal like-
lihood. To evaluate its performance when the normality assumption is vio-
lated, we considered the following two setups:

4. Multivariate skew-normal (SN) distribution (Azzalini and Capitanio,
1999, eq. 9, pg. 584), with covariance matrix Σ2, location vector µ2,
and skewness parameter α = 4 ∗ 1, where 1 is a vector of ones.

5. Multivariate t distribution (Kotz and Nadarajah, 2004, pg. 1), with 4
degrees of freedom, scale matrix (1/2)Σ2 and location vector µ2. The
covariance matrix of the distribution is Σ2.

The number of subjects, the number of time points each subject, the missing
data generating mechanism, and the number of simulation runs are the same
as in the first three setups. Results are presented in Table 1 and lead to the
same conclusion as in the multivariate normal simulations, that is, the EM
approach produces substantially smaller risks than the naive approach.
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Figure 5: Simulation. Solid curves represent the model for Σ3. Dotted and dashed curves
represent respectively results for ten randomly selected simulation runs by applying the
EM (top panels) and the naive algorithm (bottom panels) on the incomplete data.
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Appendix

The EM Algorithm

The E-step of the generalized EM algorithm relies on the specifics of the
parameterization of the modified Cholesky decomposition of the covariance
matrix. Minus twice the log likelihood function for complete data, except for
a constant, is given by

−2l =
n∑
i=1

(log |Σ∗i |+ e∗
′

i Σ∗−1
i e∗i ) =

n∑
i=1

{log |Σ∗i |+ tr(Σ∗−1
i Vi)}, (4)

where Vi = e∗i e
∗′
i . Let Q be the expected log likelihood given the observed

data and the current parameter values. Denote V̂i = E(e∗i e
∗′
i |ei), whose
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Table 1: Comparison of the EM algorithm and the naive method in three simulation setups.
The numbers in each cell are the mean and SE (in parathesis) based on 200 simulation
runs.

Model Method Entropy risk Quadratic risk
Normal(µ1,Σ1) EM 0.62(0.028) 1.06(0.047)

Naive 3.04(0.166) 20.24(2.477)
Normal(µ2,Σ2) EM 0.69(0.030) 1.20(0.062)

Naive 49.81(1.928) 2752.49(255.769)
Normal(µ3,Σ3) EM 1.05(0.029) 2.27(0.085)

Naive 27.94(1.146) 841.66(87.257)
SN(µ2,Σ2, α) EM 0.99(0.029) 1.42(0.054)

Naive 21.08(1.016) 602.80(59.077)
t4(µ2, (1/2)Σ2) EM 1.95(0.289) 12.16(5.708)

Naive 56.15(3.497) 4901.98(890.565)

computation is detailed at the end of this paragraph. Then

−2Q =
n∑
i=1

{log |Σ∗i |+ tr(Σ∗−1
i V̂i)}. (5)

We now give two expressions of −2Q that are useful in deriving the steps of
the EM-algorithm. Define RSit = (e∗it−

∑t−1
j=1 e

∗
ijz
′
itjγ)2 and R̂Sit = E(RSit|ei).

The modified Cholesky decomposition TiΣ
∗
iT
′
i = Di can be used (Pourah-

madi, 2000) to get

−2Q =
n∑
i=1

m∑
t=1

(
log σ2

it +
R̂Sit
σ2
it

)
. (6)

For t > 1, denote Z ′it = (zit1, . . . , zit(t−1)), and let V̂itt = V̂i[t, t], V̂
(t−1)
it =

V̂i[1:(t− 1), t], V̂
(t−1)
i = V̂i[1:(t− 1), 1:(t− 1)] be sub-matrices of V̂i. We also

make the convention that V̂
(0)
i1 = 0 and V̂

(0)
i = 0. Using the fact that R̂Sit is

the (t, t)-th element of the matrix TiV̂iT
′
i , we obtain from (6) that

−2Q =
n∑
i=1

m∑
t=1

(
log σ2

it+
V̂itt
σ2
it

)
+

n∑
i=1

m∑
t=1

σ−2
it (−2γ′Z ′itV̂

(t−1)
it +γ′Z ′itV̂

(t−1)
i Zitγ).

(7)
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The calculation of V̂i is as follows. Note that V̂i = E(e∗i e
∗′
i |ei) = ê∗i ê

∗
i

′
+

var(e∗i |ei) with ê∗i = E(e∗i |ei). Write

e∗i =

(
ei
e+
i

)
∼ N(0,Σ∗i ), Σ∗i =

(
Σ∗i11 Σ∗i12

Σ∗i21 Σ∗i22

)
.

The standard results for multivariate normal distributions give that

E(e∗i |ei) =

(
I

Σ∗i21Σ∗−1
i11

)
ei, var(e∗i |ei) =

(
0 0
0 Σ∗i22 − Σ∗i21Σ∗−1

i11 Σ∗i12

)
. (8)

Using (6) and (7), the update of γ and λ proceeds as follows. For fixed
λ, −2Q is a quadratic form in γ and is minimized by

γ̃ =
( n∑
i=1

m∑
t=1

σ−2
it Z

′
itV̂

(t−1)
i Zit

)−1
n∑
i=1

m∑
t=1

σ−2
it Z

′
itV̂

(t−1)
it . (9)

For fixed γ, optimization of −2Q over λ does not have a closed-form expres-
sion and we resort to the Newton-Raphson algorithm. Since log σ2

it = u′itλ,
simple calculation yields

∂Q

∂λ
= −1

2

n∑
i=1

m∑
t=1

(
1− R̂Sit

σ2
it

)
uit

and
∂2Q

∂λ∂λ′
= −1

2

n∑
i=1

m∑
t=1

R̂Sit
σ2
it

uitu
′
it.

The Newton-Raphson algorithm updates the current values λ(0) to λ(1) using

λ(1) = λ(0) + ∆λ, ∆λ = −
( ∂2Q

∂λ∂λ′

)−1∂Q

∂λ
. (10)

For the generalized EM algorithm, we don’t need to do a full iteration of
the Newton-Raphson. We only need to make sure that Q(λ) increases at
each iteration, using partial stepping such as step-halving if necessary. Step-
halving works as follows. If Q(λ(1)) ≤ Q(λ(0)), we replace ∆λ by its half in
the update λ(1) = λ(0) + ∆λ, and continue doing so until Q(λ(1)) > Q(λ(0)).

The steps of the algorithm are summarized as follows:
(i) Initialization: set Σ∗i = I, i = 1, . . . , n.

13



(ii) Using the current estimates of γ and λ (or Σ∗i in the first iteration),
compute the updated estimate β̃ of β using equation (3).

(iii) Compute V̂i, i = 1, . . . , n, where the relevant conditional expectations
are calculated using (8).

(iv) Using the current estimates of β and λ, update γ using (9).
(v) Using the current estimates of β and γ, update the current estimate

λ(0) to λ(1) using one step of Newton-Raphson as (10). Use step-halving to
guarantee that the criterion is increased.

(vi) Iterate (ii)–(v) until convergence.

Asymptotic Inference

The asymptotic covariance matrix of the parameters can be computed
after the EM algorithm following Oakes (1999). The observed information
of (γ, λ) evaluated at (γ̃, λ̃) can be approximated by(∑m

i=1 S(γ̃; yi)S
t(γ̃; yi)

∑m
i=1 S(γ̃; yi)S

t(λ̃; yi)∑m
i=1 S(λ̃; yi)S

t(γ̃; yi)
∑m

i=1 S(λ̃; yi)S
t(λ̃; yi)

)
, (11)

where

S(γ̃; yi) =
∂Qi

∂γ

∣∣∣∣
γ=γ̃

=
m∑
t=1

σ−2
it (Z ′itV̂

(t−1)
it − Z ′itV̂

(t−1)
i Zitγ)

∣∣∣∣
γ=γ̃

and

S(λ̃; yi) =
∂Qi

∂λ

∣∣∣∣
λ=λ̃

= −1

2

m∑
t=1

(
1− R̂Sit

σ2
it

)
uit

∣∣∣∣
λ=λ̃

,

where Qi is the term in Q corresponding to subject i. The asymptotic co-
variance matrix of the maximum likelihood estimate (γ̂, λ̂) is obtained as the
inverse of the observed information matrix (11), evaluated at the estimated
parameter values. Since β̂ and (γ̂, λ̂) are asymptotically independent, the

asymptotic covariance matrix of β̂ is estimated by (
∑m

i=1X
′
iΣ̂
−1Xi)

−1.
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