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Abstract 
99mTc-Hexamethylpropyleneamine oxime (HMPAO) is a clinical single-photon emission computed 
tomography biomarker of tissue oxidoreductive state. Our objective was to investigate whether 
HMPAO lung uptake can serve as a preclinical marker of lung injury in two well-established rat models 
of human acute lung injury (ALI). 

Rats were exposed to >95% O2 (hyperoxia) or treated with intratracheal lipopolysaccharide (LPS), with 
first endpoints obtained 24 h later. HMPAO was administered intravenously before and after 
treatment with the glutathione-depleting agent diethyl maleate (DEM), scintigraphy images were 
acquired, and HMPAO lung uptake was quantified from the images. We also measured breathing rates, 
heart rates, oxygen saturation, bronchoalveolar lavage (BAL) cell counts and protein, lung homogenate 
glutathione (GSH) content, and pulmonary vascular endothelial filtration coefficient (Kf). 

For hyperoxia rats, HMPAO lung uptake increased after 24 h (134%) and 48 h (172%) of exposure. For 
LPS-treated rats, HMPAO lung uptake increased (188%) 24 h after injury and fell with resolution of 
injury. DEM reduced HMPAO uptake in hyperoxia and LPS rats by a greater fraction than in normoxia 
rats. Both hyperoxia exposure (18%) and LPS treatment (26%) increased lung homogenate GSH 
content, which correlated strongly with HMPAO uptake. Neither of the treatments had an effect 
on Kf at 24 h. LPS-treated rats appeared healthy but exhibited mild tachypnea, BAL, and histological 
evidence of inflammation, and increased wet and dry lung weights. These results suggest the potential 
utility of HMPAO as a tool for detecting ALI at a phase likely to exhibit minimal clinical evidence of 
injury. 

INTRODUCTION 
Acute lung injury (ALI) is characterized by rapidly progressing hypoxic lung failure following a direct or 
indirect injury to the pulmonary parenchyma or vasculature (1). This condition is one of the most 
frequent complications encountered in patients admitted to medical intensive care units, and of the 
approximately one million patients receiving invasive mechanical ventilation per year, 25% who did not 



have ALI develop ALI (2). The most serious form of ALI is Acute Respiratory Distress Syndrome (ARDS) 
which occurs in ∼200,000 patients in the United States per year and carries a mortality rate of nearly 
40% despite the best supportive care (1). 

Rat exposure to lethal hyperoxia (>95% O2) or intratracheal endotoxin (lipopolysaccharide [LPS]) 
comprises two well-established animal models of human ALI/ARDS (3–5). Both hyperoxia and LPS 
reproduce the cardinal features of clinical ALI/ARDS, namely bilateral infiltrations on chest 
roentgenographic studies, decreased lung compliance, parenchymal injury including increased vascular 
permeability, low-pressure edema, and hypoxemia (3, 4). 

Crapo et al. (4) provide a detailed description of histologic and morphometric changes in lungs of rats 
exposed to lethal (>95% O2) hyperoxia. No structural or functional changes are observed in lungs of 
rats exposed to lethal hyperoxia for up to 40 h. However, by 60 h, there is a 30% loss in capillary 
endothelial cells and cell surface, infiltration of phagocytic leukocytes, and an increase in the thickness 
of air–blood barrier. Further loss in endothelial cells and edema, and an increase in the thickness of the 
air–blood barrier, pleural effusion, severe hypoxemia, and death follow within 72 h. 

Previous studies have demonstrated that rat intratracheal (IT) treatment with LPS induces dose-
dependent lung functional, histological, and cellular changes consistent with those observed with 
clinical sepsis (5, 6). For low LPS doses (<5 mg/kg), lung injury peaks around 24 h and is reversible (5, 6). 

Oxidative stress and inflammation are common pathways in the pathogenesis of hyperoxia and LPS-
induced ALI (3, 7). In particular, endothelial apoptosis (7–9), mitochondrial dysfunction (7–12), and altered 
lung tissue oxidoreductive state (13, 14) are features of both disorders. Furthermore, there is strong 
evidence that the pulmonary capillary endothelium is a primary and initial site of both hyperoxia- and 
LPS-induced ALI (4, 7, 11). This vulnerability and the large pulmonary capillary endothelium surface area in 
direct apposition with blood–borne compounds suggest the utility of biomarker imaging for detecting 
lung endothelial injury following hyperoxia or LPS exposure (8, 9, 14). 

The single-photon emission computed tomography (SPECT) biomarker technetium-labeled 
hexamethylpropyleneamine oxime (99mTc-HMPAO) was originally developed as a brain perfusion agent 
but its uptake and retention in several tissues serves as a marker of tissue redox state (15). Uptake from 
the circulation is dependent on its rate of diffusion across the plasma membrane (15). Once 
intracellular, HMPAO can either diffuse back to the interstitial/vascular region, or be reduced to its 
hydrophilic, non-diffusible form and retained within cells (15). HMPAO reduction and thus its cellular 
retention has been shown to be strongly dependent on the oxidoreductive state of the tissue including 
intracellular glutathione (GSH) content and other factors involving mitochondrial function (15). 

Previously, we demonstrated that the lung uptake of HMPAO is differentially altered in rats 
preconditioned to induce increased or decreased susceptibility to the otherwise lethal effects of 
prolonged exposure to lethal hyperoxia (14). We also used 99mTc-HMPAO along with 99mTc-duramcyin 
(DU) an SPECT biomarker of tissue injury sensing cell death via apoptosis and/or necrosis, to identify 
the different stages of lung O2 toxicity in rats exposed to sublethal hyperoxia (85% O2) for 21 days (9). 
The lung uptake of both DU and HMPAO increased during the inflammatory phase (days 3–7). 
Thereafter, HMPAO lung uptake leveled off and remained elevated during the adaptation phase (>7 
days), whereas DU uptake decreased to near control levels by 21 days (9). 



Roughly 70% of ALI patients are not recognized as such on presentation by bedside providers (16). 
Experts stress the importance of early detection of ALI (i.e. prior to evidence of clinical respiratory 
distress) for enhancing the efficacy of existing therapies and improving outcomes of ALI/ARDS 
patients (16). Thus, our long-term goal is to develop a means for early clinical detection and monitoring 
of ALI in individual patients. To that end, the main objective of the present study was to determine 
whether 99mTc-HMPAO lung uptake can serve as a marker of lung injury at a time point likely to exhibit 
minimal clinical evidence of injury in two rat models of human ALI/ARDS, namely rat exposure to lethal 
hyperoxia (>95% O2) or IT treatment with a low LPS dose (1 mg/kg). Another objective was to evaluate 
the ability of HMPAO lung uptake to track lung injury progression with sustained exposure to lethal 
hyperoxia, and reversibility following treatment with LPS. 

MATERIALS AND METHODS 
Materials 
HMPAO (Ceretec) was purchased from GE Healthcare (Arlington Heights, IL), and technetium-labeled 
macroaggregated albumin (99mTc-MAA, particle sizes 20–40 μm) was purchased from Cardinal Health 
(Wauwatosa, Wis). Antibody to myeloperoxidase (MPO) (Abcam # Ab9535) was used with secondary 
antibody (Abcam #6829 HRP) to identify MPO-positive cells. Diethyl maleate (DEM) and other reagent 
grade chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

Rat models of ALI 
All treatment protocols were approved by the Institutional Animal Care and Use Committees of the 
Zablocki Veterans Affairs Medical Center, the Medical College of Wisconsin and Marquette University 
(Milwaukee, Wis). 

For normoxia (control) rat studies, adult (68–77 days old) male Sprague-Dawley rats (Charles River; 323 
± 4 (SEM) g, n = 24) were exposed to room air in chambers side by side with those exposed to 
hyperoxia. For hyperoxia studies, rats within the same weight (341 ± 3 g, n = 55) and age range of 
normoxia rats were housed in a Plexiglass chamber maintained at >95% O2 for 24 h (n = 32) or 48 h (n = 
23) as described (14). 

For LPS and saline (LPS vehicle) studies, rats (336 ± 5 g, n = 56 for LPS; 331 ± 9, n = 29 for saline) were 
anesthetized with isoflurane (0.5–3%). The vocal cord was then visualized and LPS (1 mg/kg in 0.25 mL 
sterile saline) or sterile saline (0.25 mL) was introduced into the lungs using a microsprayer (Penn-
Century, Philadelphia, PA) (17). The rats recovered from anesthesia and were studied 24 h (n = 41), 3 
days (n = 8), or 7 days (n = 7) later. 

Breathing rate 
Breathing rates were measured in room air via plethysmography as previously published by us (18). Rats 
were placed in a transparent box connected to a differential pressure transducer. The mean breathing 
rate in each rat was calculated from a minimum of four steady regions of recording lasting at least 15 s 
each. Measurements were acquired in 10–15 min, after which time rats in hyperoxia were returned to 
the high oxygen environment. 



Heart rate and oxygen saturation measurements 
Heart rate and oxygen saturation were measured in nonanesthetized rats using a veterinary pulse 
oximeter (Nonin, 8600 V series, Plymouth, Minn) connected to a computer with WinDaq data 
acquisition and analysis software (18). A probe was positioned over the tail artery in gently restrained 
rats, and recordings from the oximeter were acquired over several minutes. Steady traces with two to 
four 10-s stable pulse readings in the physiological range were acquired from each rat and analyzed by 
an operator blinded to the treatment of the rat. 

Chest X-ray images 
Representative rats from normoxia, 24-h hyperoxia, 24-h saline, and 24-h LPS groups were 
anesthetized with pentobarbital (50 mg/kg). Chest X-rays were then acquired using a microfocal X-ray 
system (Feinfocus FXE 0.20) with 0.25-s exposure time, 70 kVp voltage, and 30 μA current. Images 
were compared by a trained investigator masked to the treatment group (STH). 

Bronchoalveolar lavage (BAL) 
Representative rats from normoxia, 24-h hyperoxia, 24-h saline, and 24-h LPS groups were 
anesthetized intraperitoneally with Beuthanasia (40–50 mg/kg i.p.). The trachea was surgically exposed 
and cannulated. The excision was extended caudally to open the chest and the heart and lungs were 
removed from the thoracic cavity. The lungs were infused through the trachea with a total volume of 3 
mL of iced phosphate-buffered saline with no added calcium ex vivo(19). The solution was withdrawn 
and saved for analysis, and the procedure was repeated with a second volume of 3 mL for a total 
instilled lavage of 6 mL (19). 

Cell counts and cytospins 
The returned BAL volume was measured, then 1 mL was removed for determination of total cell counts 
and protein concentration in the cell-free supernatant. The remainder of the sample was used for 
cytospin preparations. Cell counts were obtained by resuspending the cell pellet from 1 mL after 
centrifugation at 1,000 g for 10 min in a known volume and counting with a hemocytometer. Cytospins 
were prepared from the BAL fluid using a standard clinical protocol (19). 

Differential counts were obtained from high-resolution JPEG images of Papanicolaou-stained cytospin 
analyzed by a clinician (ERJ) who was blinded to the identity of each sample. The cytospin image was 
divided into six sections. A region of interest roughly 0.5 mm × 0.5 mm within each section was 
selected at low power. Differential cell distributions were determined at ×200 power on a minimum of 
100 and maximum of 200 cells per BAL sample. Depending on cell density, between three and six of 
the regions detailed above were analyzed. 

Lung wet-to-dry weights 
Heart and lungs from a randomly selected subset of each of the groups of rats were isolated and 
washed free of blood using the isolated perfused lung preparation described below for filtration 
coefficient measurements. After washing, the lungs were dissected free of the heart, trachea, and 
mainstem bronchi and total lung wet weight was obtained. The left lung lobe was weighed and dried at 
60oC for wet-to-dry weight ratio and the remaining lung lobes were used for glutathione assays or for 
the histological studies described below. 



Isolated perfused lung preparation and pulmonary vascular endothelial filtration 
coefficient (Kf) 
Representative rats from normoxia, 24-h hyperoxia, 48-h hyperoxia, 24-h saline, and 24-h LPS groups 
were anesthetized with Beuthanasia (40–50 mg/kg i.p.). The trachea was surgically isolated and 
cannulated, the chest opened, and heparin (0.7 IU/g body wt.) injected into the right ventricle as 
previously described (14). The pulmonary artery and the pulmonary venous outflow were accessed via 
cannula. The lung was removed and suspended from a calibrated force displacement transducer 
(ModelFT03; Grass Instruments, Warwick, RI) and lung weight was monitored continuously. The Krebs–
Ringer bicarbonate perfusate contained (in mM) 4.7 KCl, 2.51 CaCl2, 1.19 MgSO4, 2.5 KH2PO4, 118 NaCl, 
25 NaHCO3, 5.5 glucose, and 5% bovine serum albumin. The perfusion system was primed (Masterflex 
roller pump) with the perfusate maintained at 37oC and equilibrated with 15% O2, 6% CO2, balance 
N2 gas mixture resulting in perfusate PO2, PCO2 and pH of ∼105 Torr, 40 Torr, and 7.4, respectively. The 
lung was ventilated (40 breaths/min) with the above gas mixture with end-inspiratory and end-
expiratory pressures of ∼6 and 3 mm Hg, respectively. The pulmonary arterial and venous pressures 
were referenced to atmospheric pressure at the level of the left atrium and monitored continuously 
during the course of the experiments. Perfusate was pumped (0.03 mL/min/g body weight) through 
the lung until it was evenly blanched and venous effluent was clear of visible blood before switching 
from single pass to recirculation mode. 

The value of Kf, a measure of vascular permeability, was determined using the approach described by 
Bongard et al. (20). After a 10-min stabilization period with the venous pressure (PV) set at atmospheric 
pressure, PV was raised to 3.7 mm Hg and the lung perfused for 10 min. Then, PV was raised to 10 mm 
Hg and perfusion continued for an additional 10 min. Kf was determined by dividing the difference in 
the rate of lung weight gain measured 10 min after increasing PV from 3.7 to 10 mm Hg and after 
increasing PV from 0 to 3.7 mm Hg by the difference in pulmonary capillary pressure at these PV values. 
For each PV, the capillary pressure was estimated as the average of arterial and venous 
pressures. Kf was normalized to gram of dry lung weight. 

Histological studies 
In a randomly selected subset of normoxia, 24-h hyperoxia, 24-h saline-treated, and 24-h LPS-treated 
rats, lungs were fixed inflated in 10% neutral buffered formalin (Fisher Scientific, Pittsburgh, PA) and 
embedded in paraffin. Whole-mount sections of lung were cut (4-μm-thick whole mounts), processed, 
and stained with Hematoxylin & Eosin (H&E; Richard Allan, Kalamazoo, MI) or myeloperoxidase (MPO; 
Abcam Ab9535 1:100), the latter after deparaffinization and antigen retrieval. 

Using high-resolution jpeg images of the slides, an investigator masked to the treatment groups 
obtained six representative images from each slide (×10 for H&E and ×20 for MPO) avoiding large 
vessels or airways. These images were then scored independently by two investigators blinded to the 
treatment groups. For grading of H&E, we used a 0–3 scoring system for epithelial, inflammatory, and 
fibrotic changes (21): 0 = no inflammation; 1 = mild perivascular or peribronchiolar inflammatory 
infiltrates; 2 = moderate mixed inflammatory infiltrates throughout the lung; 3 = severe infiltration of 
mixed inflammatory cells. For MPO studies undertaken to better define inflammatory cell infiltrates, 
the number of brown (positive) cells per field was counted. 



Imaging studies 
Rat imaging studies described below were conducted for a randomly selected subset of each of the 
groups (see results for the number of rats for each group). 

99mTc-HMPAO was constituted and labeled according to kit directions, while 99mTc-MAA was obtained 
in its labeled form. Rats were anesthetized with pentobarbital sodium (40–50 mg/kg, i.p.) and a 
femoral vein was cannulated. The rat was then placed supine on a plexiglass plate (4 mm) positioned 
directly on the face of a parallel-hole collimator (hole diameter = 2 mm, depth = 25 mm) attached to a 
modular gamma camera (Radiation Sensors, LLC, Harvest, Ala) for planar imaging (9, 14). An injection 
of 99mTc-HMPAO (37–74 MBq) was administered via the femoral vein catheter. The injected dose was 
calculated from the difference between the pre- and postinjection activity within the syringe using a 
dose calibrator. At 15-min postinjection, a 1-min planar image was acquired (9, 14). 

To investigate the role of GSH in the lung retention of 99mTc-HMPAO, rats were then treated with the 
GSH-depleting agent DEM (1 g/kg BW i.p.) and after 45 min a second injection of 99mTc-HMPAO was 
made and the animal reimaged 15 min later (14). DEM depletes GSH by conjugating with it to form a 
thioether conjugate via a reaction catalyzed by the enzyme glutathione-S-transferase (14). Again, 
without relocation of the rat, a third injection, this time of 99mTc-MAA (37 MBq), was made via the 
same cannula and the rat re-imaged. The 99mTc-MAA injection provided a planar image in which the 
lung boundaries were clearly identified, since >95% of 99mTc-MAA lodged in the lungs. After imaging, 
the rats were euthanized with an overdose of pentobarbital sodium. For a subset of these imaged rats, 
the lungs were removed, fixed inflated with paraformaldehyde, and then following 99mTc decay, used 
for histological studies described above. 

Image analysis 
Images were analyzed using MATLAB-based software developed in-house. The boundaries of the upper 
portion of the lungs were identified in the high-sensitivity 99mTc-MAA images and manually outlined to 
construct a lung region of interest (ROI) free of liver contribution (9, 14). The 99mTc-MAA lung ROI mask 
was then superimposed on the 99mTc-HMPAO images yielding a lung 99mTc-HMPAO ROI. No registration 
was required since the animal was maintained in the same location throughout the imaging study. 
Background regions in the upper forelimbs were also identified in the 99mTc-HMPAO images to 
normalize lung activity for injected 99mTc-HMPAO specific activity, dose, and decay (9). Mean 
counts/sec/pixel/injected dose within both the lung and forelimb-background ROIs were then 
determined and decay corrected. The ratio of the lung and background ROI signals averaged over the 
15 to 20-min time interval, when the 99mTc-HMPAO signal within the ROIs had reached steady state, 
was used as the measure of lung steady-state 99mTc-HMPAO uptake (9, 14). The 99mTc-HMPAO images 
acquired after DEM treatment were analyzed in the same way except that the pre-injection baseline 
activity level within each ROI was subtracted from the corresponding postinjection activity level to 
account for residual 99mTc-HMPAO from the first injection (9). 

Glutathione (GSH) content 
Lungs were isolated and washed free of blood using the Krebs–Ringer bicarbonate perfusate described 
above. Total lung wet weight was obtained and then a fraction of the lung was used for the glutathione 
assay. 



Lung tissue was dissected free from large airways and connective tissue and weighed. The tissue was 
then placed into 10 volumes (per lung wet weight) of 4oC sulfosalicylic acid (5%), minced, and 
homogenized. The homogenate was centrifuged (10,000 × g) at 4oC for 20 min, and the supernatant 
was used to determine reduced (GSH) and oxidized (GSSG) lung glutathione content as previously 
described (14, 20). 

STATISTICAL ANALYSIS 
Statistical evaluation of data was carried out using SigmaPlot version 12.0 (Systat Software Inc, San 
Jose, CA). For the imaging studies, sample sizes were chosen to achieve a power >85% using power 
analysis (ANOVA power; SigmaPlot version 12.0) based on previously published results with 99mTc-
HMPAO (9, 14). When several samples from the same rat were obtained (e.g. images of six fields for 
quantitation of MPO positive cells from a single rat), averages of these values were taken as an “n” of 1 
for statistical comparisons. Values from different groups were compared using one-way ANOVA. In 
some studies as indicated in the text such as comparison of HMPAO before and after DEM, 
paired t test or Wilcoxon Signed Rank was employed. For studies with repeated measurements at more 
than two time points, one-way repeated-measure ANOVA was used. The level of statistical significance 
was set at P <0.05. Values for the histological scores of two graders were averaged, then performance 
of the groups compared by Kruskal–Wallace one-way ANOVA on ranks. Values are mean ± SEM or 
confidence intervals as indicated in the text unless otherwise indicated. 

RESULTS 
Body weights, breathing rates, heart rates, oxygen saturation, and chest X-ray 
All rats in each of the treatment groups moved spontaneously about the cage, exhibited good 
condition of the fur, sought food, and water actively, and had good skin turgor at the time of 
euthanasia. Posture and skin/mucous membrane color were normal. For rats exposed to hyperoxia, 
their initial body weight increased by 1.9 ± 0.3% (paired t test, P <0.001) after 24 h, but decreased by 
2.2 ± 0.5% (Wilcoxon Signed Rank Test, P <0.001) after 48 h (Table 1). For rats treated with IT saline, 
their initial body weight was unchanged by 24 h (Table 1). On the other hand, rats treated with LPS lost 
6.2 ± 0.4% (paired t test, P <0.001) of their initial body weight by 24 h accompanied by a decrease in 
their water (41%) and food (49%) intake. However, by 48 h after LPS treatment, their body weights and 
oral intake had recovered to baseline (Fig. 1) and continued to rise after that time (Table 1). 

Table 1: Body weight pre and post-treatment 

Treatment Prebody wt (g) Post-body wt (g) 
24-h hyperoxic (n=32) 341 ± 5 347 ± 4∗ 
48-h hyperoxic (n=23) 340 ± 5 333 ± 5∗ 
24-h saline (n=29) 331 ± 9 322 ± 9 
24-h LPS (n=42) 330 ± 7 309 ± 6∗ 
3-day LPS (n=8) 350 ± 3 348 ± 5 
7-day LPS (n-7) 352 ± 4 376 ± 7∗ 

Values are mean ± SE. n is the number of rats. *Significantly different from the corresponding prebody weight 
(paired t test or Wilcoxon Signed Rank Test, 𝑃𝑃 < 0.05).  
LPS indicates lipopolysaccharide 



 
Fig. 1: A, Rat body weights (BW) and respiratory rates (RR) following exposure to hyperoxia (hyper) for 24 or 48 
h.Values are mean ± SEM, n = 6 for 24-h hyperoxia and 48-h hyperoxia. For each rat, BW and RR are expressed 
as a fraction of those just prior to treatment (0 h, n = 6). One-way repeated measure ANOVA followed by the 
Tukey test was used to evaluate differences among the three time points: *significantly different from day 0 
(P <0.05). B, Rat BW and RR over a 72-h period following treatment with LPS or saline (day 0). Values are mean ± 
SEM, n = 5 for LPS-treated rats and n = 6 for saline-treated rats. For each rat, BW and RR are expressed as a 
fraction of those just prior to LPS or saline treatment (0 h). One-way repeated measure ANOVA followed by the 
Tukey test was used to evaluate differences among the three or four time points for LPS-treated rats: 
*significantly different from day 0 (P <0.001). Paired t test was used to evaluate differences in BW or RR before 
and after saline treatment: &saline (24 h) BW significantly different from 0 h (P <0.05). LPS indicates 
lipopolysaccharide. 
 

Rat exposure to >95% O2 for 24 h resulted in ∼10% decrease in breathing rate (123 ± 11 bpm at 0 h vs. 
110 ± 3 breaths per min (bpm) at 24 h) (one-way repeated measure ANOVA, P <0.005) (Fig. 1). 
Breathing rates after 48 h of hyperoxia exposure (104 ± 3 bpm) were not different from those after 24 
h of exposure (110 ± 3 bpm). Treatment with IT saline had no effect on breathing rates (133 ± 5 (n = 6) 
bpm just before treatment vs. 130 ± 5 bpm 24 h following treatment). Breathing rates increased in rats 
24 h following treatment with LPS from 123 ± 2 (n = 6) to 172 ± 9 bpm (one-way repeated measure 
ANOVA, P <0.001). Figure 1 shows that 3 days following treatment with LPS, breathing rates (122 ± 5 
bpm) were not different from baseline or saline values. 

Blood oxygen saturations 24 h after hyperoxia, IT saline, or IT LPS were not different from those of 
normoxia rats, consistent with a pulmonary reserve and capacity to compensate in the three treatment 
groups (Table 2). Rat exposure to hyperoxia for 48 h resulted in a small (∼2%) clinically irrelevant, but 
statistically significant decrease in oxygen saturation. Heart rates 24 h after hyperoxia or IT saline were 
not different from those of normoxia rats (Table 2). Twenty-four hours after LPS treatment, there was 
a small (∼13%), but statistically significant decrease in heart rate as compared with that of normoxia 
but not that of IT saline rats (Table 2). 

Table 2: Heart rates (HR) and oxygen saturation (pulse Ox) 

Treatment HR (bmp) Pulse Ox (% saturation) 
Normoxia (n=9) 394 ± 9 95.5 ± 0.4 
24-h hyperoxia (n=4) 423 ± 4 94.2 ± 0.7 
48-h hyperoxia (n=4) 394 ± 5 93.4 ± 0.3∗ 
24-h saline (n=3) 384 ± 37 92.6 ± 0.8 
24-h LPS (n=6) 336 ± 16∗ 94.5 ± 1.0 



Values are mean ± SE. n is the number of rats. 
*Different from normoxia (ANOVA, P<0.05). 
 

Based on blinded interpretation, there were no differences in the chest X-rays of rats 24 h after 
treatment with hyperoxia, saline, or LPS as compared with those of normoxia rats (not shown). 

Lung wet/dry weight ratios and filtration coefficients 
Rat exposure to hyperoxia for 24 h had no effect on left lobe wet weight/body weight ratio or wet-to-
dry weight ratio as compared with those for lungs of normoxia rats (Table 3). In contrast, rat exposure 
to hyperoxia for 48 h increased left lobe wet weight/body weight ratio by 31% (P <0.001) compared 
with that of normoxia rats (Table 1). The wet-to-dry weight ratio in this group was not different from 
that of normoxia rats. For LPS-treated rats, left lobe wet weight/body weight ratio increased by 44% 
(P <0.001) 24 h later as compared with that of saline-treated rats. However 3 days after LPS treatment, 
left lobe wet weight/body weight ratio was back to near values of saline-treated rats (Table 3). LPS 
treatment had no effect on lung wet-to-dry weight ratio (Table 3). The lung vascular endothelial 
filtration coefficients (Kf) 24 h after hyperoxia, IT saline, or LPS were not different from that for 
normoxia lungs (Table 3). However, rat exposure to hyperoxia for 48 h increased Kf by more than 
∼200% as compared with that for normoxia lungs (Table 3) 

Table 3: Lung weights and vascular endothelial filtration coefficient (𝐾𝐾f) 

 Left lobe wet weight/body 
weight (mg/g) 

Left lobe wet/dry ratio 𝐾𝐾𝑓𝑓(mL/min/cmH2O/g dry 
lung wt) 

Normoxia 1.22 ± 0.03;  𝑛𝑛 = 8 5.22 ± 0.09;  𝑛𝑛 = 8 0.0275 ± 0.0024;  𝑛𝑛 = 6 
24-h hyperoxia 1.21 ± 0.04;  𝑛𝑛 = 6 4.77 ± 0.08;  𝑛𝑛 = 6 0.0241 ± 0.0068;  𝑛𝑛 = 6 
48-h hyperoxia 1.60 ± 0.08∗;  𝑛𝑛 = 16 5.70 ± 0.15;  𝑛𝑛 = 16 0.0860 ± 0.0129∗;  𝑛𝑛 = 6 
24-h saline 1.24 ± 0.04;  𝑛𝑛 = 5 4.99 ± 0.15;  𝑛𝑛 = 5 0.0324 ± 0.0056;  𝑛𝑛 = 5 
24-h LPS 1.79 ± 0.10†;  𝑛𝑛 = 6 5.14 ± 0.05;  𝑛𝑛 = 6 0.0192 ± 0.0021;  𝑛𝑛 = 5 
3-day LPS 1.45 ± 0.10;  𝑛𝑛 = 4 4.86 ± 0.05;  𝑛𝑛 = 4 NA 
7-day LPS 1.44 ± 0.06;  𝑛𝑛 = 3 5.36 ± 0.11;  𝑛𝑛 = 3 NA 

Values are mean±SEM. n is the number of rats. One-way ANOVA on ranks followed by Tukey range test (𝑃𝑃 <
0.05) was used to evaluate differences among means of the groups. 
*Significantly different from normoxia. 
†Different from saline. 
 

Histology and BAL 
Figure 2 depicts representative H&E stained lung images of normoxia rats and of rats 24 h after 
hyperoxia exposure, IT saline, or IT LPS. Images from normoxia rats show the lacey architecture of 
normal lungs with very thin alveolar capillary membranes to facilitate gas exchange. Scores of 
inflammation were not different in lungs from normoxia and hyperoxia rats with respect to 
inflammatory changes (H&E, Fig. 2 and Table 4) or number of MPO positive cells (Fig. 3, Table 5). Lungs 
from rats treated with LPS exhibited mild inflammatory changes and an increase in the number of MPO 
positive cells as compared with those of normoxia rats (see Figs. 2, 3 and Tables 4, 5). 



 
Fig. 2: Representative images of normoxia (A), 24-h hyperoxia (B), 24-h saline (C), and 24-h LPS (D) H&E 
stained lung slices.No histological differences were evident in sections from hyperoxia rats. In contrast, 
many, though not all, sections from rats treated with LPS exhibited scattered inflammatory infiltrates 
in the interstitium (blue arrow) or alveolar spaces (green arrow). H&E indicates Hematoxylin & Eosin; 
LPS, lipopolysaccharide. 
 
Table 4: H&E inflammation analysis 

Group Median 25% 75% 𝑃𝑃 < 0.05 vs, normoxia 𝑃𝑃 < 0.05 vs. saline 
Normoxia (n=5) 0 0 0 - No 
24-h hyperoxia (n=5) 0 0 0 No No 
24-h saline (n=4) 0.3 0.2 0.6 No - 
24-h LPS (n=5) 0.9 0.5 1.4 Yes No 

Inflammatory changes were scored on a 0–3 scale (21): 0 indicates no inflammation; 1, mild perivascular or 
peribronchiolar inflammatory infiltrates; 2, moderate mixed inflammatory infiltrates throughout the lung; 3, 
severe infiltration of mixed inflammatory cells. n is the number of rats. Images were scored independently by 
two investigators blinded to the treatment groups and compared by ANOVA on ranks. 
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Fig. 3: Representative sections of normoxia (A), 24-h hyperoxia (C), 24-h saline (E), and 24-h LPS (G) 
lungs stained with myeloperoxidase (MPO) to identify inflammatory cells.(B, D, F, and H) are enlarged 
images from the areas demarcated by squares in (A, C, E, and F, respectively) to more clearly 
demonstrate the brown MPO staining in the cytoplasm of inflammatory cells. The red arrows identify 
MPO-positive cells. 

Table 5: Myeloperoxidase (MPO) analysis 

Group (n) Median 25% 75% 𝑃𝑃 < 0.05 vs. normoxia 𝑃𝑃 < 0.05 vs. saline 
Normoxia (n=5) 0 0 0 - No 
24-h hyperoxia (n=5) 0 0 0 No No 
24-h saline (n=4) 1.9 0.6 4.4 No - 
24-h LPS (n=5) 9.6 3.1 20.0 Yes No  

Numbers of MPO-positive cells per field were counted by reviewers blinded to the treatment group and 
compared by ANOVA on ranks. n is the number of rats. Images from LPS-treated rats exhibited more MPO cells 
than normoxia rats, consistent with neutrophil infiltration. 
 

Protein concentrations in BAL from cohorts of rats that received IT saline and 24 h hyperoxia were not 
different from those of normoxia (Table 6). Protein concentrations in BAL from rats 24 h after LPS 
treatment were higher than those of the other three groups. 

Table 6: BAL protein, cell counts, and cell types 

 Normoxia 24-h hyperoxia 24-hs saline 24-h LPS 
Protein (mean ± SEM, 
mg/mL) 

0.73 ± 0.04 n = 5 0.68 ± 0.10 n = 5 0.78 ± 0.02 n = 4 1.24 ± 0.09*,†; n = 7 

Cell count (×104 in collected 
BAL fluid (mean ± SEM) 

99 ± 25; n = 5 90 ± 20; n = 5 334 ± 33*; n = 4 3301 ± 1178*,†; n = 7 

Differential (mean + SEM%)     
Macrophages 80.0 ± 3.6; n = 5                              70.2 ± 6.0; n = 5 48.4 ± 7.1*; n = 4 7.7 ± 2.2*,†; n = 4 
Neutrophils 5.3 ± 2.1; n = 5 8.3 ± 1.3; n = 5 37.6 ± 7.9*; n = 4 89.7 ± 1.4*,†; n=4 
Lymphocytes 11.3 ± 5.3; n = 5 15.1 ± 2.3; n = 5 8.1 ± 2.3; n = 4 1.5 ± 0.3*; n = 4 
Others 3.3 ± 1.1; n = 5 6.5 ± 3.2; n = 5 5.9 ± 1.5; n = 4 1.0 ± 0.7†; n=4 

n is the number of rats. One-way ANOVA or one-way ANOVA on ranks followed by Tukey range test (P <0.05) 
was used to evaluate differences among normoxia, saline, and LPS groups. 
*Different from normoxia. 
†Different from saline. 
 

Total cell counts in BAL were identical in normoxia and 24-h hyperoxia cohorts (Table 6). IT saline 
increased the total cell counts over that of normoxia rats by a factor of ∼3, whereas the cell counts 
increased by a factor of ∼30 in BAL from rats 24 h after LPS treatment (P <0.05 saline vs. LPS). 
Differential macrophage, polymorphonuclear neutrophil (PMN), lymphocyte, and other cell counts 
(mostly epithelial and unidentifiable cells) in normoxia and hyperoxia cohorts were not different. IT 
saline increased PMN percentages over that of normoxia rats. BAL from 24-h LPS rats had ∼90% PMNs 
with the percentage (but not total numbers) of macrophages commensurately less than those of the 
other three cohorts. 



HMPAO imaging results 
Figure 4 shows representative HMPAO images at steady state obtained from a normoxia rat (A), and 
from rats 24 h after either hyperoxia (B), IT saline (C) or IT LPS (D), where the lung and background 
ROIs are outlined. Increased HMPAO lung uptake is evident in the lung region of both the hyperoxia 
and LPS-treated rats. 

 
Fig. 4: Planar images of 99mTc-HMPAO distribution in a normoxia (A), 24-h hyperoxia (B), 24-h saline (C), 
and 24-h LPS (D) rat 20 min after HMPAO injection (pre-DEM).Lung (LU) ROI is determined from the 
MAA image with the solid horizontal lower boundary used to avoid liver contribution, and background 
(BK) ROIs from upper forelimb. DEM indicates diethyl maleate; LPS, lipopolysaccharide; ROI, region of 
interest. 

Figure 5 shows the time course of the lung uptake (the ratio of lung-to-background signal at steady 
state) of HMPAO for the two injury models. For rats exposed to hyperoxia, HMPAO lung uptake 
increased by 134% and 172% after 24 and 48 h of exposure, respectively. For LPS-treated rats, HMPAO 
lung uptake 24 h later was 188% higher than that in IT saline rats. Relative to IT saline, the increase in 
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HMPAO lung uptake was significantly lower at 3 days (84%) and 7 days (53%) after LPS treatment. In 
saline-treated rats, HMPAO lung uptake was not different from that in normoxia rats, indicating that 
the LPS treatment, and not vehicle (saline) or anesthesia during the LPS instillation procedure, was 
responsible for increased HMPAO lung uptake. 

 
Fig. 5: A, 99mTc-HMPAO lung uptake in normoxia (n = 8), 24-h hyperoxia (n = 6), and 48-h hyperoxia (n = 5) rats 
before (closed symbols) and after (open symbols) treatment with DEM.*Different from normoxia pre 
DEM; #different from 24-h hyperoxia pre DEM; &different from pre DEM for a given group of rats; b different 
from normoxia post DEM; c different from 24-h hyperoxia post DEM. B, 99mTc-HMPAO lung uptake in normoxia (n 
= 8), 24-h saline (n = 5) and LPS (n = 6), 72-h LPS (n = 4), and 168-h LPS (n = 4) rats before (closed symbols) and 
after (open symbols) treatment with DEM. Values are mean ± SEM. *Different from normoxia pre 
DEM; #different from 24-h LPS pre DEM; &different from pre DEM for a given group of rats. One-way ANOVA 
followed by Tukey range test (P <0.05) was used to evaluate differences among the three groups for (A) and 
among means of the five groups for (B). Paired t test (P <0.05) was used to evaluate difference pre and post 
DEM for a given group. 
 

We investigated the role of GSH in HMPAO lung uptake by imaging rats before and after treatment 
with the GSH-depleting agent DEM (14). In all groups, DEM treatment resulted in significantly reduced 
HMPAO uptake (Fig. 5, open vs. closed symbols) suggesting the role of GSH in the uptake of HMPAO. 
For rats exposed to hyperoxia for 24 h, the enhanced HMPAO lung uptake was mostly DEM sensitive. 
On the other hand, for rats exposed to hyperoxia for 48 h, only ∼50% of the measured increase in 
HMPAO lung uptake was DEM sensitive. Almost all of the increase in HMPAO lung uptake in LPS-
treated rats at 24 h, 3 days, and 7 days was DEM sensitive. 

Table 7 shows the results of the glutathione assays indicating that rat exposure to hyperoxia increased 
lung tissue GSH content after 24 h (17%) of exposure as compared with lungs of normoxia rats. For LPS-
treated rats, lung tissue GSH content increased at 24 h (26%), but not at 7 days after treatment as 
compared with that in lungs of IT saline alone. Lung GSH content of saline-treated rats was not 
different from that of normoxia rats, indicating that the LPS treatment, and not vehicle (saline) or 
anesthesia during the LPS instillation procedure, was responsible for the increase 24 h after treatment. 
The GSH/GSSG ratios in hyperoxia and LPS lungs were not different from those in normoxia lungs. 
However, the GSH/GSSG ratios for 24-h LPS lungs were significantly higher than that for IT saline lungs 
(P <0.05). Figure 6 shows that there is a strong correlation between GSH tissue content measured from 
lung tissue assay and in vivo HMPAO lung uptake determined from imaging. 

Table 7: Reduced (GSH) and oxidized (GSSG) glutathione content of lung homogenate 

 GSH (fraction of normoxia) GSH/GSSG 
Normoxia (n = 7)  1.00 20.0 ± 3.5 
24-h hyperoxia (n = 6)  1.17 ± 0.03* 23.6 ± 1.9 
24-h saline (n = 4)  1.04 ± 0.02 12.7 ± 1.1 
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24-h LPS (n = 6)  1.26 ± 0.02*,† 36.9 ± 7.4† 
7-day LPS (n = 3)  1.00 ± 0.01 10.8 ± 1.1 

Values are mean ± SEM. n is the number of rats. One-way ANOVA on ranks followed by Tukey range test (P 
<0.05) was used to evaluate differences among means of the five groups. 
*Significantly different from normoxia. 
†Different from saline. GSH concentration for normoxia lungs was 7.81 ± 0.63 (SEM, n ¼ 7) mmol/g dry wt. 
 

 
Fig. 6: Correlation between 99mTc-HMPAO lung uptake (Figure 5) and lung tissue GSH content (as fraction of 
normoxia, Table 7).Values are mean ± SEM. Solid line is linear model fit (r 2 = 0.92, Pearson Product Moment 
Correlation test, P = 0.01). GSH indicates glutathione. 
 

DISCUSSION AND CONCLUSIONS 
The results of this study demonstrate for the first time a large increase in 99mTc-HMPAO lung uptake in 
the absence of clinically relevant lung injury 24 h after hyperoxia-induced ALI or following treatment 
with a low dose of LPS (Table 8). Moreover, we demonstrated the ability of HMPAO lung uptake to 
track the progression of hyperoxia-induced ALI and the reversibility of LPS-induced ALI (Figs. 1 and 5). 

Table 8: Summary of changes in clinically relevant indices of lung function and HMPAO lung uptake in 
rats 24 h after treatment with hyperoxia, saline, or LPS as compared with normoxia rats 

 BR HR Pulse 
Ox 

Thoracic X-
ray 

BW BAL 
protein 

BAL cell 
count 

HMPAO Lung 
uptake 

24-
hyperoxia 

-10% NS NS NS +1.9% NS NS +135% 

24-h saline NS NS NS NS NS NS +300% NS 
24-h LPS +40% NS NS NS -6.2% +70% +3,000% +188% 

% change from normoxia. 
BAL indicates bronchoalveolar lavage; HR, heart rate; NS, not significant. 
 

Our choice of injury models and time points was motivated by our long-term goal of developing a 
means for early clinical detection and monitoring of ALI in individual patients, and by the objectives of 
this paper which are key first steps toward this goal. Hyperoxia was selected as an injury model 
because sustained exposure to high fractions of oxygen causes ARDS in and of itself, and it is an 
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essential therapy for hosts with hypoxemia from any cause (4). For rats exposed to hyperoxia for 24 h, 
the increase in 99mTc-HMPAO lung uptake occurred well prior to functional, morphometric, or 
histologic changes known to occur with sustained exposure to hyperoxia based upon heart rate (HR), 
oxygen saturation, plain films of the chest, BAL protein, cell counts, and differentials (Figs. 1–3, Tables 
1–6). A larger increase in HMPAO lung uptake was measured for rats exposed to hyperoxia for 48 h 
(Fig. 5), consistent with the potential of HMPAO lung uptake to track the severity of lung injury, which 
for this model is related to the exposure period (Fig. 1, Tables 1 and 3) (4). 

Previously, we evaluated the lung uptake of HMPAO in rats exposed to sublethal 60% O2 or 85% O2(9, 

14). Figure 7 shows HMPAO lung uptake as a function of O2 concentration. For 60% and 85% O2, HMPAO 
uptake was greatest at 7 days of exposure and was 50% and 74% higher than the uptake in normoxia 
rats, respectively, and significantly lower than the uptake in rats exposed to >95% O2 for 24 h. 

 
Fig. 7: 99mTc-HMPAO lung uptake in normoxia rats (n = 8), and in rats exposed to 60% O2 for 7 days (n = 4) (14), 
85% O2 for 7 days (n = 5) (9), or >95% O2 for 24 h (n = 6).*Different from normoxia; &different from 7-day 60% 
O2 and 7-day 85% O2 (one-way ANOVA followed by Tukey range test, P <0.05). 
 

Though the pathophysiologic features of clinical sepsis vary depending on underlying conditions and 
source of infection, we selected a model and time frame to mimic patients presenting with preclinical 
septic lung dysfunction (22). In particular, the low 1 mg/kg LPS dose and IT administration were chosen 
to result in limited and reversible lung injury and minimal systemic manifestations. This model allowed 
us to evaluate the utility of HMPAO lung uptake not only for preclinical detection of lung injury, but 
also, as stated above, for tracking the reversibility of the injury (Fig. 5). Common findings of LPS injury 
include lung influx of neutrophils (5, 23, 24), bronchoalveolar lavage fluid with increased protein and 
neutrophils (5, 23), decreased lung compliance (12), and decreased oxygenation with high doses of LPS (24), 
some of which we have corroborated here (Table 6). Several authors reported increased lung wet-to-
dry weight ratio 24 h after endotoxin (23, 24), which was not the case in the present study (Table 1). The 
44% increase in left lobe wet weight/body weight ratio 24 h after LPS treatment may be expected to 
contribute to decreased compliance and tachypnea. Neutrophil influx (Table 6) and inflammatory 
changes likely account for much of the increase in lung wet weight and increased MPO we observed at 
24 h (Table 5). The fact that we did not see an increase in lung wet-to-dry weight ratio may reflect the 
low dose or lot of LPS we used, rat strain, or other factors, but is consistent with the absence of 
increased permeability as quantified by Kf (Table 3). Rats followed beyond 24 h exhibited spontaneous 
recovery by 3 days in functional endpoints perturbed by LPS which included reversal of body weight 
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loss, tachypnea, and lung wet weight (Fig. 1, Tables 2 and 3), again consistent with limited data from 
other investigators on low-dose IT LPS in Sprague Dawley rats and a minimal injury model (5, 6). 

For LPS-treated rats, 99mTc-HMPAO lung uptake identifies both the injury and recovery phases of this 
model (Figs. 1 and 5). The lung uptake was highest at 24 h after LPS treatment (injury phase) and 
decreased toward normoxia levels during the recovery phase (days 3–7). The increase in HMPAO lung 
uptake at 24 h occurred simultaneously with histological evidence of mild inflammatory changes and 
increase in lung wet weight consistent with LPS-induced inflammatory cell infiltration, modest and 
transient tachypnea and decrease in body weight, increase in BAL protein and cell counts, but no 
clinical evidence of distress (normal heart rate, oxygen saturation, thoracic X-ray, posture, grooming, 
activity, color, skin turgor) or increase in microvascular permeability (Kf) (Table 1). 

We monitored heart rate, oxygen saturation, thoracic X-ray, and respiratory rates (RR) in our rats 
because they serve as noninvasive indicators of lung function and are routinely measured clinically. 
Only RR was significantly altered 24 h after LPS (+40%) or hyperoxia (−10%) treatment (Table 8). The 
∼40% increase in RR observed 24 h after LPS treatment is consistent with the weight loss and 
decreased food and water intake which reversed in the following 2 days. However, the modest nature 
of this injury is supported by the relatively limited degree of tachypnea. For comparison with other 
injuries, rats with radiation pneumonitis after 15 Gy to the thorax increased their respiratory rates to 
∼200% of baseline (18). Also, in a clinical setting an increase in respiratory rate from 12 to 17 (roughly 
40%) may be considered to still fall within the range of normal. Exposure to hyperoxia for 24 h, on the 
other hand, resulted in a modest, but significant decrease (∼10%) in RR. This result is in line with the 
decrease (29%) in RR reported by Torbati and Reilly (25). They speculated that this hyperoxia-induced 
decrease in RR could be due to modulation in afferent inputs from lung stretch receptors or 
peripheral/central chemoreceptors (25). Table 8 shows that clinically relevant measures of lung 
function/injury were either not altered or differentially altered early in the development of hyperoxia 
and LPS-induced lung injury. On the other hand, HMPAO lung uptake was substantially higher early in 
the development of both hyperoxia and LPS-induced lung injury, suggesting the potential utility of 
HMPAO for early detection of ALI, i.e., prior to evidence of clinical respiratory distress. 

For LPS-treated rats, we found that almost all of the increase in HMPAO lung uptake at 24 h, 3 days, 
and 7 days was DEM sensitive (Fig. 5), i.e., HMPAO lung uptake following DEM treatment was nearly 
the same as HMPAO uptake in normoxia and saline-treated rats. For rats exposed to hyperoxia, the 
enhanced uptake of HMPAO after 24 h of exposure was also DEM sensitive (Fig. 5). However, ∼50% of 
the increase in uptake after 48 h of exposure was DEM insensitive. Since DEM is a known glutathione 
depletor, there is strong evidence from this study and others (14) that a large portion of the increased 
lung uptake of HMPAO in these two injury models is GSH dependent. The increase in the reduced 
(GSH) glutathione content of lung homogenate (+18% for 24-h hyperoxia and +26% for 24-h LPS 
compared with normoxia) is lower than the ∼130% to 190% increase in HMPAO lung uptake measured 
from the in vivo images and the ∼600% to 900% increase in the DEM-sensitive portion of the HMPAO 
lung uptake. One explanation for this difference could be the fact that the GSH content reported in this 
study is the average GSH content of all lung cells and alveolar fluid. Although the results of this study 
do not provide information regarding the specific types of lung cells contributing to the lung uptake 
and retention of HMPAO, previous studies have suggested that its retention is predominantly 



attributable to endothelial cells (26, 27), which account for ∼50% of lung cells and are in direct contact 
with blood (4). Other studies have also demonstrated that different cell types have different GSH 
content, and oxidant stress has different effects on the GSH content of these cells (28, 29). For instance, 
Deneke et al. (28) demonstrated that exposure of endothelial cells to hyperoxia (85% O2 for 48 h) 
increased GSH content by 85%. On the other hand, neutrophil GSH content is not sensitive to oxidant 
injury (29), an important consideration in our studies given the neutrophilic influx in LPS-evoked injury. 
Thus, depending on the GSH content of the various lung cells and how the GSH content of these cells 
changes in response to exposure to hyperoxia or treatment with LPS, the GSH content in lung 
homogenate measured in this study may overestimate or underestimate the effect of hyperoxia or LPS 
on the GSH content of pulmonary capillary endothelial cells. 

Other factors that could account for the enhanced HMPAO lung uptake in hyperoxia and LPS-treated 
rats include reduced thioredoxin (30), mitochondrial and/or cytosolic redox status, and/or capillary 
endothelial permeability (14, 31). The pulmonary endothelial filtration coefficient (Kf) did not increase 24 
h following treatement with hyperoxia or LPS demonstrating that capillary endothelial permeability 
was unchanged in either model at that time point (Table 3). Thus, the enhanced HMPAO lung uptake 
observed with these cohorts of rats cannot be attributed directly to increased diffusion of HMPAO 
across the capillary endothelial barrier. For 48-h hyperoxia, ∼50% of the enhanced HMPAO lung uptake 
was DEM insensitive. This component of the enhanced HMPAO uptake could be due to the increased 
capillary endothelial permeability as measured by pulmonary endothelial filtration coefficient (Kf) 
(Table 3) or altered mitochondrial redox state. Previously, we demonstrated that rat exposure to >95% 
O2 for 48 h decreased lung tissue mitochondrial complex I and II activities and altered mitochondrial 
redox state (32). 

Reduced thioredoxin is an effective reductant of disulfides in proteins and peptides such as GSSG and 
peroxiredoxins, which catalyze the reduction of H2O2 using reduced thioredoxin as the electron 
donor (30). Thus, reduced thioredoxin could contribute to the DEM-sensitive component of HMPAO lung 
tissue retention through its effect on GSSG and H2O2. As such, an increase in the reduced thioredoxin 
content could also contribute to the difference between the effect of rat exposure on hyperoxia or 
treatment with LPS on GSH and the DEM-sensitive fraction of the lung retention of HMPAO discussed 
above. Additional studies would be needed to evaluate the effect of these insults on the lung 
thioredoxin system (30, 33). 

This study suggests the potential utility of 99mTc-HMPAO, which is in common clinical use, as marker of 
early ALI under conditions lacking overt clinical evidence of lung injury, and for tracking the progression 
or reversibility of the injury. Previous studies have reported increased HMPAO lung uptake in 
subclinical lung injury due to chemotherapy, radiation injury, and inhalation injuries (26, 27, 34, 35), but not 
within the time frame of 24 h. Though much work remains before these observations are ready for 
clinical application, biomarkers to identify patients at risk of ALI are particularly desirable. These 
markers could permit identification and intervention in patients at increased risk for ALI or ARDS at a 
phase in these disorders when interventions are most effective, prior to the development of 
hypoxemia, tachypnea, or hypotension. Because HMPAO uptake may track disease severity, it could 
also be useful for following individual patients over time: those with continuously rising HMPAO uptake 



might stratify into a group with worsening lung injury whereas those who peak and fall may be on a 
path to resolution. 

Beyond antibiotics, patients at risk for ALI are strong candidates for strategies including limited blood 
transfusions (to avoid transfusion related lung injury), closer clinical observation (such as in an 
intermediate care unit), limitation of inhaled oxygen fractions to levels needed to support vital organ 
function, but not more, and strict attention to intake and output measurements to limit fluid retention 
and pulmonary edema while preserving vital perfusion to kidneys, brain, and other organs. These 
interventions are not universally implemented because of risk to benefit ratios in the larger population 
of persons receiving enhanced fractions of oxygen or who are septic. However with identification of 
those who have increased probability of disease progression, the risks of the strategies listed above 
may be acceptable compared with the risks of progressive ARDS and end organ failure. 
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