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Abstract 

 

Mutation of Arg427 and Arg472 in Rhizobium etli pyruvate carboxylase to serine or lysine greatly increased the 

activation constant (Ka) of acetyl CoA, with the increase being greater for the Arg472 mutants. These results 

indicate that while both these residues are involved in the binding of acetyl CoA to the enzyme, Arg472 is more 

important than Arg427. The mutations had substantially smaller effects on the kcat for pyruvate carboxylation. 

Part of the effects of the mutations was to increase the Km for MgATP and the Ka for activation by free 

Mg2+ determined at saturating acetyl CoA concentrations. The inhibitory effects of the mutations on the rates of 

the enzyme-catalyzed bicarbonate-dependent ATP cleavage, carboxylation of biotin, and phosphorylation of 

ADP by carbamoyl phosphate indicate that the major locus of the effects of the mutations was in the biotin 

carboxylase (BC) domain active site. Even though both Arg427 and Arg472 are distant from the BC domain active 

site, it is proposed that their contacts with other residues in the allosteric domain, either directly or through 

acetyl CoA, affect the positioning and orientation of the biotin-carboxyl carrier protein (BCCP) domain and thus 

the binding of biotin at the BC domain active site. On the basis of the kinetic analysis proposed here, it is 

proposed that mutations of Arg427 and Arg472 perturb these contacts and consequently the binding of biotin at 

the BC domain active site. Inhibition of pyruvate carboxylation by the allosteric inhibitor l-aspartate was largely 

unaffected by the mutation of either Arg427 or Arg472. 
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Pyruvate carboxylase (PC, EC 6.4.1.1) is a key metabolic enzyme whose main function is the replenishment of 

tricarboxylic acid cycle intermediates that have been removed for synthetic purposes. In mammals, the 

anaplerotic role of PC is imperative to gluconeogenesis, adipogenesis, neurotransmitter synthesis, and 

regulation of insulin release.(1) PC is a biotin-dependent enzyme whose activity, in most organisms, is regulated 

by the allosteric activator acetyl CoA. The degree of activation by acetyl CoA is different for PCs from different 

organisms, with the activity of some of them being totally independent of acetyl CoA while others are almost 

completely dependent on acetyl CoA for activity.(2, 3) The activities of PC from most microbial sources, 

including Rhizobium etli PC (RePC(4)), are negatively regulated by l-aspartate, which acts as an antagonist to 

acetyl CoA activation (for a recent review see ref 3). 

Similar to other biotin-dependent carboxylases, the pyruvate carboxylation reaction is catalyzed by PC in three 

steps (Figure 1). Briefly, bicarbonate is initially activated in the biotin carboxylase (BC) domain via 

phosphorylation by MgATP to form the putative carboxyphosphate intermediate (reaction i). The covalently 

attached biotin prosthetic group is then carboxylated in the BC domain to form carboxybiotin in reaction (ii). The 

reversible decomposition of the carboxyphosphate intermediate results in the formation of Pi and CO2. Pi most 

likely acts as the active site base, deprotonating the covalently attached biotin at the N1-position, while 

CO2 carboxylates the resulting biotin-enolate. Carboxybiotin is then translocated to the carboxyl transferase (CT) 

domain where the carboxyl group is transferred from carboxybiotin to pyruvate, producing oxaloacetate 

(reaction iii).(5-7) The biotin carboxyl carrier protein (BCCP) domain, to which the biotin prosthetic group is 

covalently attached, facilitates the intersubunit movement of carboxybiotin from the BC domain to the CT 

domain of an adjacent subunit. 

E − biotinH + MgATP + HCO3
− ⇔ E − biotinH +  −O2COPO3

2− + MgADP 

(i) 

E − biotinH +  −O2COPO3
2− ⇔ E − biotin − CO2

− + Pi 

(ii) 

E − biotin − CO2
− + CH3COCO2

− ⇔ E − biotinH +  −O2CCH2COCO2
−

 

(iii) 

Figure 1. PC catalyzes the reaction of pyruvate carboxylation in two steps. Reactions (i) and (ii) occur in the BC 

domain of the enzyme and result in the carboxylation of the covalently attached biotin. Reaction (iii) occurs in 

the CT domain and results in the formation of oxaloacetate via the decarboxylation of carboxybiotin and 

concomitant carboxylation of pyruvate. 

Acetyl CoA was shown to have a major stimulatory effect on reactions (i) and (ii)(8-10) and only a small effect on 

reaction (iii).(10, 11) The steady-state rates of ATP cleavage(8-10) and the carboxylation of free biotin(12) are 

stimulated by acetyl CoA, while the rate of the approach to steady-state for the formation of enzyme-

carboxybiotin complex was also dependent on acetyl CoA concentration.(9) Attwood and Graneri(8) and 

Zeczycki et al.(10) also showed an interrelationship between the activation of the bicarbonate-dependent ATP 

cleavage and pyruvate carboxylation reactions by acetyl CoA and Mg2+. Using chimeric enzymes generated from 

the two yeast isoforms of PC (Pyc1 and Pyc2), Jitrapakdee et al.(13) showed that the extent of the activation of 

the enzyme by acetyl CoA was largely determined by the BC domain. 

Recently determined structures of RePC,(14, 15) human PC, and Staphylococcus aureus PC(16-18) have led to an 

improved molecular-level description of PC function. In particular, the high-resolution X-ray crystal structure 

of RePC complexed with ethyl CoA, a nonhydrolyzable analogue of acetyl CoA, in the allosteric domain has 



disclosed several residues poised to play a key role in the binding of acetyl CoA. The acetyl CoA binding site lies 

at the interface between the BC domain and a distinct allosteric domain which physically links the BC, CT, and 

BCCP domains (Figure 2a). A detailed view of the allosteric binding site of RePC highlights the interactions 

between the guanidinyl groups of Arg427 and Arg472 and the 3′-phosphate and 5′-α-phosphate, respectively, of 

ethyl CoA (Figure 2b). The positioning of Arg427 and Arg472 relative to ethyl CoA suggests that these residues 

may be important for the proper binding and orientation of acetyl CoA in the allosteric domain and, thus, to the 

overall allosteric regulation of the enzymatic activities. 

 
Figure 2. (a) The allosteric binding site (green), with ethyl CoA bound, lies in part between the BC (blue) and CT 

(yellow) domains and between the CT and BCCP (red) domains. (b) Detailed view of the interactions between 

nucleotide portion of ethyl CoA and residues contained in BC and allosteric domains, including Arg427 and 

Arg472. Reproduced from St. Maurice et al. (2007). 

In this study, we have performed site-directed mutagenesis of residues Arg427 and Arg472 to produce four 

mutants: R427S, R427K, R472S, and R472K. We have performed kinetic analyses of these mutants to investigate 

the roles of residues Arg427 and Arg472 in binding the allosteric activator and the effects on the induction of 

allosteric changes that lead to enhancement of catalysis. In addition, we have examined the effects of these 

mutations on the allosteric inhibition of RePC by l-aspartate. 



Materials and Methods 

Materials 
IPTG, malate dehydrogenase, and lactate dehydrogenase were obtained from Roche. HisPurTM cobalt IMAC 

resin was obtained from Thermo Scientific. All other materials were purchased from Sigma-Aldrich. 

Construction of the RePC Mutants 
Mutagenesis was conducted on the 1.0 kb Xho I −Sac II PC gene fragment corresponding to the allosteric domain 

using a Quickchange site-directed mutagenesis kit (Stratagene). Mutations were verified by DNA sequencing 

(Macrogen, Korea). The primers used to generate R427S, R427K, R472S, and R472K are listed in the Table S1 

(Supporting Information). The equivalent fragment of the wild-type RePC gene in the expression clone(14, 

19) was then replaced with the mutagenized fragments. 

Expression and Purification of RePC 
The bacteria Escherichia coli BL21-(DE3), containing the pCY216 plasmid,(20) which encodes the E. coli BirA 

gene, were transformed with either the wild-type RePC or mutant RePC plasmid. The cultures were grown in 8 L 

Luria–Bertani broth supplemented with 6.25 g/L arabinose, 10 mg/L biotin, 200 mg/L ampicillin, and 30 mg/L 

chloramphenicol at 37 °C until an OD600 of 1.0–1.2 was reached. The cultures were subsequently cooled on ice 

for 30 min, induced with addition of 0.1 mM IPTG, and incubated for approximately 36 h at 16 °C. The cells were 

harvested by centrifugation at 4039 g and 4 °C for 15 min. The harvested cells were disrupted by incubation with 

1 mg/mL lysozyme followed by mechanical disruption of the cells using a Bead-Beater (Biospec). Nucleic acids 

were removed from the lysate by protamine sulfate precipitation and the total proteins were subsequently 

precipitated with 36% (w/v) saturated ammonium sulfate. The total proteins were then suspended in loading 

buffer (300 mM NaCl, 50 mM NaH2PO3, and 10 mM imidazole, pH 7.4) prior to loading onto a 20 mL of HisPurTM 

cobalt resin. RePC was selectively eluted from the resin using elution buffer (300 mM NaCl, 50 mM NaH2PO3, and 

150 mM imidazole, pH 7.4). Purified PC was stored at −80 °C in storage buffer containing 30% (v/v) glycerol, 0.1 

M Tris-HCl (pH 7.8), and 1 mM DTE.(12) 

Determination of the Biotin Content of RePC 
Aliquots of the enzyme were digested in triplicate with 0.2% (w/v) chymotrypsin (Sigma) in 0.2 M 

KH2PO4 (pH7.2) at 37 °C for 24 h followed by digestion with 0.45% (w/v) protease from Streptomyces griseus at 

37 °C for 48 h. The biotin assay was performed as described by Rylatt et al.(21) in triplicate. The enzyme 

concentrations referred to are determined by the total amount of enzymic biotin in the purified wild-type and 

mutant RePC proteins. 

Sedimentation Analysis of the Enzymic Quaternary Structure 
Sedimentation velocity analytical centrifugation was performed with a Beckman Proteome Lab XL-A (Beckman-

Coulter, Palo Alto, CA) ultracentrifuge using the absorbance optics system to visualize the protein at a 

wavelength of 280 nm. Two-sector cells were used and data were acquired at every 0.003 cm. Data were 

collected as 300 absorbance scans with a nominal time increment of 1 min at 30 °C and at a speed of 40000 rpm. 

In all cases enzyme samples were prepared at a concentration of 2 μM in 0.1 M Tris-HCl (pH 7.8), 20 mM 

NaHCO3, 5 mM MgCl2, 10 mM pyruvate, 0.1 mM acetyl CoA, and 1 mM DTE. The computer-captured data were 

analyzed with SEDFIT.(22) The partial specific volume of the enzyme was calculated from the amino acid 

composition using SEDNTERP [www.bbri.org/RASMB].(22) The density of the Tris-HCl buffer (1.005 g/mL) was 

assumed to be the density of the enzyme solution. 



Pyruvate Carboxylation Activity Assays 
The initial rates of the enzymatic carboxylation of pyruvate were determined using a coupled 

spectrophotometric assay in which the oxaloacetate was converted to malate using malate dehydrogenase. The 

concomitant oxidation of NADH was measured by the change in absorbance at 340 nm.(23) The enzymic activity 

was determined at 30 °C in a 1 mL reaction mixture containing 0.1 M Tris-HCl (pH 7.8), 6 mM MgCl2, 20 mM 

NaHCO3, 10 mM pyruvate, 0.22 mM NADH and 5 units of malate dehydrogenase. In reactions where the 

concentration of acetyl CoA was varied, 1 mM MgATP was present in all assays. In the assays where MgATP 

concentrations were varied, reactions with the wild-type enzyme contained 0.25 mM acetyl CoA. Assays to 

determine mutant RePC activity were performed at acetyl CoA concentrations of 0.5 mM (R427S), 2 mM (R427K) 

or 5 mM (R472S and R472K). These acetyl CoA concentrations were also used in the experiments where free 

Mg2+ concentrations were varied at a constant MgATP concentration (1 mM). Inhibition of pyruvate 

carboxylation activity was determined in the presence of 1 mM MgATP at varied concentrations of l-aspartate 

(0–60 mM) in the absence of acetyl CoA. Assays were initiated with the addition of enzyme (final concentrations 

0.02–0.2 μM). Apparent kcat values were calculated by dividing the measured reaction velocity by the biotin 

concentration of the RePC used in the assay. 

Bicarbonate-Dependent ATP-Cleavage Activity Assays 
The specific activities for the wild-type and mutant RePC-catalyzed bicarbonate-dependent ATP-cleavage were 

determined in triplicate using a coupled spectrophotometric assay where pyruvate kinase and lactate 

dehydrogenase were used as coupling enzymes.(8) The reactions were performed at 30 °C in a 1 mL reaction 

volume containing 0.1 M Tris-HCl (pH 7.8), 5 mM MgCl2, 1 mM MgATP, 20 mM NaHCO3, 10 mM 

phosphoenolpyruvate, 0.22 mM NADH, 5 units of pyruvate kinase and 4 units of lactate dehydrogenase. 

Activities were determined both in the presence or absence of saturating concentrations of acetyl CoA (0.25 mM 

for the wild-type enzyme, 0.5 mM for R427S, 2 mM for R427K, 5 mM for R472S and R472K mutant RePC 

enzymes) and initiated with the addition of enzyme (final concentration 2 μM.) 

Phosphorylation of MgADP by Carbamoyl Phosphate 
The rate of ADP phosphorylation by carbamoyl phosphate was determined for the wild-type and RePC mutant 

enzymes in triplicate, using a spectrophotometric assay where hexokinase and glucose-6-phosphate 

dehydrogenase were used as coupling enzymes.(24) Reactions were performed at 30 °C in a 1 mL reaction 

mixture containing 0.1 M Tris-HCl (pH 7.8), 8 mM MgCl2, 2 mM ADP, 10 mM carbamoyl phosphate, 0.5 mM 

glucose, 0.5 mM NADP, 5 units of hexokinase, 4 units of glucose-6-phosphate dehydrogenase, in the presence or 

absence of saturating concentrations of acetyl CoA (0.25 mM for the wild-type enzyme, 0.5 mM for R427S, 2 

mM for R427K, 5 mM for R472S and R472K). Reactions were initiated with the addition of enzyme 

(concentration of 2 μM). 

Carboxylation of Free Biotin 
The rate of free biotin carboxylation was performed essentially as described by Adina-Zada et al.(12) The 

reaction mixture contained 0.1 M Tris-HCl (pH 7.8), 10 mM biotin, 1 mM MgATP, 5 mM MgCl2, 20 mM NaHCO3, 

10 μCi/mL NaH14CO3, and saturating concentrations of acetyl CoA (0.25 mM for the wild-type enzyme, 0.5 mM 

for R427S, 2 mM for R427K, 5 mM for R472S and R472K RePC mutant enzymes). Reactions were performed at 30 

°C and were initiated with the addition of enzyme to a final concentration of either 0.5 μM (wild-type enzyme) 

or 10 μM (RePC mutant enzymes). At one-minute intervals over a period of six minutes, the reaction was 

terminated by a rapid transfer (in triplicate) of 0.1 mL aliquots to 0.9 mL cold denaturating solution, (water 

and n-octanol; 35:1), chilled on ice. The remaining H14CO3
–/14CO2 was removed by bubbling CO2 gas through the 

solutions for 40 min at room temperature. 0.5 mL aliquots of gassed solutions were subsequently added to 

scintillation fluid and the radioactivity due to the presence of 14C-carboxybiotin was counted. Controls were 



performed in which aliquots of the reaction mixture were transferred to the termination solution before the 

initiation of the reaction. After enzyme had been added to these quenched aliquots, CO2 was bubbled through 

as above and the radioactivity was determined. The endogenous radioactivity in these control samples was 

subtracted from that determined in the enzymatic reactions. Specific radioactivity of NaH14CO3 was determined 

by measuring the radioactivity of aliquots of a reaction mixture containing a known number of moles of total 

NaHCO3. The rates of biotin carboxylation were calculated by linear regression analysis of the reaction time-

courses. 

Data Analysis 
The dependence of pyruvate carboxylation activity on acetyl CoA concentration was analyzed using nonlinear 

least-squares regression fits of the initial velocities determined at varying acetyl CoA concentrations to eq 1 

𝑘cat
app

= 𝑘cat
∘ + 𝑘cat[A]h/(𝐾a

h + [A]h) 

(1) 

where [A] is the concentration of acetyl CoA, Ka is the activation constant and h is the Hill coefficient of 

cooperativity. The kcat
app is the apparent rate constant at each concentration of acetyl CoA, k°cat is the catalytic 

rate constant of the acetyl CoA-independent reaction and kcat is the catalytic rate constant of the acetyl CoA-

dependent reaction. 

The dependence of pyruvate carboxylation activity on the concentration of free Mg2+, which is treated as a 

pseudosubstrate in this kinetic examination, was analyzed using nonlinear least-squares regression fits of the 

initial velocities determined at varying Mg2+ concentrations ([A]) to the Michaelis–Menten (eq 2). 

𝑘cat
app

= 𝑘cat[A]/(𝐾a + [A]) 

(2) 

Inhibition of pyruvate carboxylation by l-aspartate was analyzed by nonlinear regression fits of the data to eq 3 

activity = (100 + 𝑅[Asp] 𝐾𝑖⁄ )/(1 + [Asp] 𝐾𝑖⁄ ]) 

(3) 

where the total activity is expressed as a percentage of the activity in the absence of l-aspartate. R is the 

pyruvate carboxylation activity in the presence of saturating concentrations of l-aspartate which is expressed as 

a percentage of the activity in the absence of l-aspartate. Ki is the apparent inhibition constant and [Asp] is the 

concentration of l-aspartate. 

Results 

Effects of Mutations at Arg427 and Arg472 on the Quaternary Structure of RePC 
Sedimentation velocity analytical ultracentrifugation was used to determine if the incorporation of mutations at 

Arg427 and Arg472 resulted in the destabilization of the overall tetrameric arrangement of RePC (Figure 3). With 

the exception of the R472K mutant, the wild-type and mutant RePC enzymes predominantly existed (>70%) in 

the tetrameric form under conditions that closely mimicked those used for the steady-state kinetic analysis 

(Table 1). The R472S mutant does display a more highly resolved monomer peak in the sedimentation profile 

than the wild-type and R427K/S mutants, but still retains more than 70% of the tetrameric form of the enzyme. 

Based on the sedimentation profile, approximately 45% of the R472K enzyme was estimated to exist as a 

tetramer in the presence of 0.1 mM acetyl CoA. The effect of higher concentrations of the activator on the 



quaternary structure of the R427K mutant could not be determined since the increased absorbance, resulting 

from increasing concentrations of acetyl CoA, did not allow for the accurate measurement of the protein 

absorbance. 

 
Figure 3. Sedimentation velocity analyses of wild-type RePC and the R427S, R427K, R472S, R472K RePC mutants. 

Experiments were performed as described in Materials and Methods. Plots of derived sedimentation coefficients 

distribution [c(s)] vs sedimentation coefficient obtained from the application SEDFIT and maximum entropy 

method of analysis to the original apparent sedimentation coefficient distribution vs apparent sedimentation 

coefficient data (g(s*) vs S8 plots). 



Table 1. Molecular Masses and Quaternary Structure Compositions of Wild-Type, R427S, R427K, R472S, and R472K Determined by Analytical 

Ultracentrifugation (see Figure 2)a 

  monomer     dimer   tetramer   

RePC 
enzyme 

sedimentation coefficient molecula
r mass 
(kDa) 

% sedimentation 
coefficient 

molecular 
mass 
(kDa) 

% sedimentation 
coefficient 

molecular mass 
(kDa) 

% 

WT mixture of monomers and 
dimers 

    16 18.34 ± 0.80 525 ± 31 84 

R427S 5.89 ± 0.79 105 ± 20 4 10.50 ± 1.79 255 ± 63 13 18.52 ± 1.34 589 ± 67 83 

R427K 7.70 ± 1.23 145 ± 33 13 12.26 ± 1.40 293 ± 48 12 17.9 ± 1.51 507 ± 64 75 

R472S 9.25 ± 1.56 195 ± 51 28       17.9 ± 1.51 507 ± 64 72 

R472K tetramers, dimers and 
monomers mixture of 

        

aAnalysis performed in 0.1 M Tris-HCl (pH 7.8), 20 mM NaHCO3, 5 mM MgCl2, 10 mM pyruvate, 0.1 mM acetyl CoA, and 1 mM DTE with 2 μM enzyme. 



Effects of Mutations at Arg427 and Arg472 on the Binding of Acetyl CoA and the 

Activation of the Pyruvate Carboxylation Reaction 
In order to investigate the effects of the mutations on the overall reaction catalyzed by RePC, the pyruvate 

carboxylation activities for each of the RePC mutants were determined at fixed concentrations of substrates, 

that were saturating for the wild-type RePC, and varying concentrations of acetyl-CoA (Figure 4). Preliminary 

data for the effect of the R472S mutation on the Ka for acetyl CoA was reported by Adina-Zada et al.(25) The 

estimates of the kinetic parameters derived from fits of the initial rates of pyruvate carboxylation to eq 1 are 

presented in Table 2. The value of Ka for acetyl CoA was 15-fold, 76-fold, 203-fold, and 252-fold greater than that 

determined for the wild-type enzyme in the R427S, R427K, R472S, and R472K mutant enzymes, respectively. The 

increase in Ka indicates that these mutations have greatly reduced the affinity of the enzyme for acetyl CoA. 

Further, the reduced apparent kcat values for the four mutants (R427S, R427K, R472S, and R472K were 41%, 32%, 

25%, and 32% of the wild-type enzyme kcat) suggests that the mutations reduced the ability of acetyl CoA to 

stimulate catalysis, even at saturating concentrations. Values of k°cat were approximately 2- and 6-fold greater in 

the R427S- and R427K- catalyzed reactions, respectively, than that determined for the wild-type enzyme. These 

results indicate that mutations at Arg427 had a positive effect on the acetyl CoA-independent pyruvate 

carboxylation activity. In contrast, the kcat values determined for the Arg472 mutant-catalyzed reactions were 

not significantly different from that of the wild-type catalyzed reaction (t test; p > 0.2). The Hill coefficients of 

cooperativity that were determined ranged from 2.3 and 3.0 for all forms of the enzyme except for the R427K 

mutant, which had a Hill coefficient of 1.3, suggesting a marked reduction in the cooperative activation of this 

mutant by acetyl CoA. 

 
Figure 4. Activation of the wild-type RePC and R427S, R427K, R472S, R472K RePC mutant catalyzed carboxylation 

of pyruvate by acetyl CoA. Solid lines represent nonlinear least-squares regression fits of the data to eq 1. 

Preliminary data for R427S were reported by Adina-Zada et al. (2011). 

Table 2. Kinetic Parameters for Pyruvate Carboxylation with Varied Concentrations of Acetyl CoAa 

enzyme k°cat (s–1) kcat (s–1) Ka acetyl CoA (μM) h 

WT 0.15 ± 0.01 10.6 ± 0.2 8.1 ± 0.2 2.8 ± 0.2 

R427S 0.26 ± 0.03 4.3 ± 0.1 121 ± 2 3.0 ± 0.1 

R427K 0.67 ± 0.03 3.4 ± 0.2 614 ± 50 1.3 ± 0.1 

R472S 0.10 ± 0.04 2.6 ± 0.1 1640 ± 60 2.4 ± 0.2 

R472K 0.17 ± 0.04 3.4 ± 0.1 2040 ± 75 2.3 ± 0.2 
aAssay conditions: 100 mM Tris-HCl (pH 7.8), 30°C, 20 mM NaHCO3, 1 mM MgATP, 5 mM MgCl2, acetyl CoA (0–6 

mM). The reported errors are standard errors of the values of the parameters calculated from the nonlinear 

regression fits of the data shown in Figure 2 to eq 1. 

Pyruvate carboxylation activity was also measured as a function of MgATP concentration in the presence of 

saturating acetyl CoA (Figure 5, Table 3). The kcat values for the wild-type and mutant enzyme-catalyzed 

reactions were similar to those determined when acetyl CoA was varied (see above), but the mutants exhibited 



higher Km values for MgATP relative to the wild-type enzyme (1.5-fold, 2.6-fold, 8.7-fold, and 6.7-fold greater for 

R427S, R427K, R472S, and R427K respectively). The combined effects of the mutations on kcat and the Km result 

in kcat/Km values that are 26%, 12%, 2%, and 3%, respectively, of the wild-type enzyme. The smaller values 

of kcat/Km for the Arg472 mutants indicate that mutation of this residue has a larger effect on reaction steps from 

MgATP binding to the first irreversible step in the reaction than mutation of Arg427 does. 

 
Figure 5. The dependence of apparent kcat for the pyruvate carboxylation reaction catalyzed by wild-type RePC 

(■), R427S (●), R427K (○), R472S (▲), and R472K (▽) mutant RePC on the concentration of MgATP. Solid lines 

represent nonlinear least-squares regression fits of the data to Michaelis–Menten equation. 

Table 3. Kinetic Parameters for Pyruvate Carboxylation with Varied Concentrations of MgATPa 

enzyme kcat (s–1) Km (mM) kcat/Km (mM–1 s–1) 

WT 10.9 ± 0.3 0.11 ± 0.01 99 

R427S 4.2 ± 0.2 0.16 ± 0.02 26 

R427K 3.4 ± 0.2 0.29 ± 0.04 12 

R472S 2.0 ± 0.2 1.0 ± 0.2 2 

R472K 1.9 ± 0.2 0.7 ± 0.2 3 
aAssay conditions: 100 mM Tris-HCl (pH7.8), 30°C, 20 mM NaHCO3, 5 mM MgCl2, saturated concentrations of 

acetyl CoA (see Materials and Methods), and 0.02–1.5 mM MgATP. The reported errors are standard errors of 

the parameters calculated from the nonlinear regression fit of the data to the Michaelis-Menten equation. 

Effect of Mutations at Arg427 and Arg472 on the Activation of Pyruvate Carboxylation 

by Free Mg2+ 
Figure 6 and Table 4 show the effect of free Mg2+ on the initial rates of the wild-type and Arg427/Arg472 RePC 

mutant catalyzed carboxylation of pyruvate in the presence of saturating concentrations of acetyl CoA. 

Mutations of Arg427 have small effects on the Ka for Mg2+, with observed Ka values that were 2-fold and 8-fold 

(R427S and R427K, respectively) greater than the wild-type Ka. The mutation of Arg472 has a more pronounced 

effect on the Ka for Mg2+ with 30- and 37-fold increases (R472S and R472K, respectively), relative to the wild-

type enzyme. 



 

Figure 6. Activation of the wild-type RePC (■), R427S (●), R427K (○), R472S (▲), and R472K (▽) RePC mutant-

catalyzed carboxylation of pyruvate by Mg2+ in the presence of saturating concentrations of acetyl CoA. Solid 

lines represent nonlinear regression fits of the data to eq 2. 

Table 4. Mg2+ Activation of the Pyruvate Carboxylation Reactiona 

enzyme Ka Mg
2+ (mM) 

WT 0.11 ± 0.02 

R427S 0.20 ± 0.04  

R427K 0.90 ± 0.22 

R472S 3.3 ± 0.8 

R472K 4.1 ± 1.0 
aAssay conditions: 100 mM Tris-HCl (pH7.8), 30°C, 20 mM NaHCO3, 1 mM MgATP, saturating concentrations of 

acetyl CoA (see Materials and Methods), and 0.115–12 mM free Mg2+. The reported errors are standard errors 

of the values of the parameters estimated from the nonlinear regression fits of the data shown in Figure 6 to 

eq 2. 

Effect of Mutations at Arg427 and Arg472 on the Reactions That Are Catalyzed in the BC 

Domain of RePC 

A Bicarbonate-Dependent ATP Cleavage 
The activity of the bicarbonate-dependent ATP cleavage reaction was determined for the wild-type and 

mutant RePC enzymes in the presence and absence of saturating concentrations of acetyl CoA. As shown in 

Table 5, in the presence of acetyl-CoA, the ATP-cleavage activities of R427S, R427K, R472S, and R472K are 1.1%, 

0.4%, 0.6%, and 0.6%, respectively, of the wild-type enzyme activity. In the absence of acetyl-CoA, the 

bicarbonate-dependent ATPase activities of R427S, R427K, R472S, and R472K are 5.8%, 0.8%, 1.2%, 0.9%, 

respectively, of the activity of wild-type enzyme activity. 

Table 5. Effects of Acetyl CoA on the Rates of the Bicarbonate-Dependent MgATP Cleavage Reactiona 



enzyme kcat (s–1) (saturating acetyl CoA) % kcat (s–1) (no acetyl CoA) % 

WT 1.6 ± 0.1 100 0.19 ± 0.02 100 

R427S 0.017 ± 0.001 1.1 0.011 ± 0.001 7.5 

R427K 0.0064 ± 0.0002 0.4 0.0016 ± 0.0003 0.8 

R472S 0.0090 ± 0.0005 0.6 0.0023 ± 0.0007 1.2 

R472K 0.009 ± 0.002 0.6 0.0017 ± 0.0005 0.9 
aAssay conditions: 100 mM Tris-HCl (pH 7.8), 30 °C, 20 mM NaHCO3, 6 mM MgCl2, 1 mM ATP, in the absence or 

presence of saturating concentrations of acetyl CoA (see Materials and Methods). The reported errors are 

standard deviation of the means of three separate determinations of the apparent kcat values. 

B Phosphorylation of ADP by Carbamoyl Phosphate 
Using carbamoyl phosphate, a stable substrate analogue of carboxyphosphate, the effects of the Arg427 and 

Arg472 mutations on the partial reverse reaction of the BC domain can be assessed by measuring the catalytic 

formation of MgATP.(24) To determine whether the mutations of Arg427 and Arg472 affect this part of the 

reaction in the BC domain active site, the rates of ADP phosphorylation by carbamoyl phosphate was 

determined for all the mutant enzyme forms in the presence and absence of acetyl CoA (Table 6). In the 

presence of acetyl CoA, the activities of R427S, R427K, R472S, and R472K were determined to be 17%, 21%, 5%, 

8%, respectively, of the wild-type enzyme activity. In the absence of acetyl CoA, both the wild-type and R427S 

enzyme showed a similar reduction in ADP phosphorylation activity compared to that determined in the 

presence of acetyl CoA. Interestingly, the R427K, R472S, and R472K mutants all exhibited a slightly increased 

activity in the absence of acetyl CoA. 

Table 6. Effects of Acetyl CoA on Rates of MgADP Phosphorylation by Carbamoyl Phosphatea 

enzyme kcat (s–1) (saturating acetyl CoA) % kcat (s–1) (no acetyl CoA) % 

WT 0.27 ± 0.01 100 0.19 ± 0.01 100 

R427S 0.048 ± 0.002 17 0.032 ± 0.003 17 

R427K 0.056 ± 0.006 21 0.077 ± 0.008 41 

R472S 0.015 ± 0.001 5 0.026 ± 0.001 14 

R472K 0.021 ± 0.001 8 0.039 ± 0.002 21 
aAssay conditions: 100 mM Tris-HCl (pH7.8), 30°C, 8 mM MgCl2,2 mM ADP, 10 mM carbamoyl phosphate, 

saturating concentrations of acetyl CoA (see Materials and Methods). The reported errors are standard 

deviation of the means of three separate determinations of the apparent kcat values. 

C Carboxylation of Free Biotin 
The steady-state measurement of ATP-cleavage involves both ATP-cleavage and the carboxylation of biotin. To 

further clarify the role of acetyl CoA in the BC domain reaction, the rate of free biotin carboxylation was 

measured for the wild-type enzyme and the mutants (Table 7). The mutants exhibited rates of biotin 

carboxylation that were 2–6% of the wild-type enzymatic activity. The rates for the Arg472 mutants were 30–

50% of those determined with the Arg427 mutants. These results indicate that the incorporated mutations have 

reduced the ability of the enzyme to form carboxybiotin, with mutations at Arg472 having significantly larger 

effects than mutation of Arg427 (p < 0.01 in paired t tests). 

Table 7. Rate of Biotin Carboxylationa 

enzyme kcat (s–1) % 

WT 1.47 ± 0.03 100 

R427S 0.094 ± 0.001 6 

R427K 0.081 ± 0.001 6 

R472S 0.034 ± 0.001 2 



R472K 0.046 ± 0.001 3 
a Assay conditions: 100 mM Tris-HCl (pH7.8), 30°C, 20 mM NaHCO3, 10 μCi/mL NaH14CO3, 6 mM MgCl2, 1 mM 

ATP, 10 mM biotin, saturating concentrations of acetyl CoA (see Materials and Methods). The reported errors 

are the standard errors of the estimates of the kcat from the linear regression analysis of the time-courses of 

carboxybiotin formation. 

Effect of Mutations at Arg427 and Arg472 on the Inhibition of Pyruvate Carboxylation by l-Aspartate 
The effects of mutations at Arg427 and Arg472 on the inhibition of RePC-catalyzed carboxylation of pyruvate 

by l-aspartate in the absence of acetyl CoA were examined (Figure 7, Table 8). The Arg427 and Arg472 mutations 

had little effect on the apparent Ki for l-Aspartate (values of Ki for the mutants were not significantly different 

from that of the wild-type enzyme – t test; p > 0.2). Similarly, the residual activities of the mutants were not 

significantly different from that determined with the wild-type enzyme (t test; p > 0.2), with the exception of the 

R427K mutant. The residual activity at saturating concentrations of l-aspartate for the R427K-catalyzed reaction 

was determined to be 2-fold greater than the residual activity of the wild-type enzyme and thus, significantly 

different (t test; p < 0.01). 

 
Figure 7. Inhibition of pyruvate carboxylation activity by l-aspartate in the absence of acetyl CoA catalyzed by 

wild-type RePC (■), R427S (●), R427K (○), R472S (▲), and R472K (▽) RePC mutants. Solid lines represent 

nonlinear regression fits of the data to eq 3. 

Table 8. Inhibition of Pyruvate Carboxylation Activity by l-Aspartatea 

enzyme apparent Ki (mM) % residual activity at saturating aspartate 

WT 5.0 ± 0.6 16 ± 3 

R427S 7 ± 1 16 ± 4 

R427K 4.5 ± 0.6 36 ± 2 

R472S 7 ± 1 12 ± 5 

R472K 7 ± 1 21 ± 4 
aAssay conditions: 100 mM Tris-HCl (pH7.8), 30°C, 20 mM NaHCO3, 1 mM MgATP, 5 mM MgCl2, l-aspartate (0–60 

mM). The reported errors are standard errors of the values of the parameters determined from the nonlinear 

regression fit of the data in Figure 7 to eq 3. 

Discussion 
Analytical ultracentrifugation sedimentation velocity experiments showed that mutation of Arg427 and Arg472 

to Ser or Arg427 to Lys had little effect on the stability of the enzymic tetramer. In contrast, destabilization of 

the tetrameric structure was observed with the R472K mutant, although it is unclear as to why this fairly 

conservative mutation would affect the stability of the tetramer. While it is possible that the subsaturating 



concentrations of acetyl CoA (100 μM) used in these experiments may not afford complete protection against 

subunit dissociation due to dilution of the enzyme,(3) it would be expected that similar destabilization of the 

tetrameric enzyme would be observed with the R472S mutant. On the basis of the determined Ka for acetyl CoA 

for the R472S (∼1650 μM) and R472K (∼2040 μM) RePC mutants, the concentration of acetyl CoA in the 

ultracentrifugation experiments would result in only 0.1% and 0.07% saturation of the enzymes, respectively, 

suggesting that this is unlikely to be a factor in the differential stabilization of the tetramer. 

The location of Arg472 in the crystal structure of RePC with ethyl CoA in the allosteric domain is such that this 

residue does not appear to be involved in any direct intersubunit interactions. In fact, in the presence or 

absence of ethyl CoA, Arg472 appears to be within interacting distance with only one residue, Glu1027. Since 

the mutation of Arg472 to Ser would most likely disrupt this interaction while it would be retained in the Lys 

variant, this interaction is presumably contributing little, if any, to the overall stabilization of the tetramer. One 

purely speculative possibility that cannot be dismissed is that new residue interactions are formed in the R472K 

mutant which induces the observed destabilization. 

The proposed importance of Arg427 and Arg472 to the proper binding and orientation of the allosteric activator 

is supported by the inhibitory effect mutations of these residues have on the activation of the pyruvate 

carboxylation reaction by acetyl CoA. In the structure of the RePC holoenzyme, Arg427 forms a weak hydrogen 

bond with the 3′-phosphate group of ethyl CoA (3.3 Å between the δ-N of Arg427 and the oxygen of the 3′-

phosphate, Figure 2b) while Arg472 forms strong hydrogen bonds with the 5′-α-phosphate of ethyl CoA (2.6 Å 

between the δ-N of Arg472 and one nonbridging oxygens; 2.6 Å between the ω-N of Arg472 and the other 

nonbridging oxygen, Figure 8). Compared to the interactions with Arg427, the stronger interactions established 

between Arg472 and ethyl CoA reasonably explains why the binding of acetyl CoA is more severely affected in 

the Arg472 RePC mutants resulting in significant increases in the apparent Ka for acetyl CoA. 

 
Figure 8. Part of the allosteric binding site for acetyl CoA in RePC showing the contacts of Arg427 and Arg472 

with the acetyl CoA analogue, ethyl CoA, and adjacent residues. 

The Lys mutations of both Arg427 and Arg472 exhibited a more pronounced effect on acetyl CoA binding as 

compared to the respective Ser mutations. These differential effects most likely arise from the precise 

positioning of a constellation of residues surrounding acetyl CoA in the allosteric domain. Through the ω-amino 

group, Arg427 interacts with the carbonyl oxygens of Arg424, Glu425, and Phe426, and Arg472 interacts with 

the side chain carboxyl group of Glu1027 (Figure 8a). Thus, Arg472 and Arg427 allow for the precise and specific 

positioning of these residues leading to the specific positioning and orientation of the bound acetyl CoA. When 

either of the Arg residues are replaced by Ser, the residue–residue and residue-CoA interactions are likely to be 

lost and the positioning and orientation of the bound acetyl CoA will be determined by any remaining 

interactions. Replacement of either Arg residue with a Lys could potentially allow for interactions with acetyl 



CoA, but would not allow for interactions with surrounding residues in the binding pocket. This could lead to the 

improper positioning of the acetyl CoA in the allosteric site and increased observed Ka values, with the effect 

being more severe in the case of the R427K mutant. 

With the exception of the R427K mutant, the RePC mutants exhibited Hill coefficients for the activation of the 

pyruvate carboxylation reaction by acetyl CoA similar to that determined for the wild-type enzyme, suggesting 

that the cooperative mechanism by which acetyl CoA binds to the enzyme still occurs. In the case of R427K 

however, the Hill coefficient was much lower than that for the wild-type enzyme, suggesting that interactions 

leading to the cooperative binding of acetyl CoA may have been lost due to the improper positioning of acetyl 

CoA in the allosteric site. Since mutation of Arg472 does not affect the cooperative binding of acetyl CoA, this 

suggests that other interactions are important for this facet of activator binding, e.g., the interactions of acetyl 

CoA with Asp47 and/or Asn1055 shown in Figure 2b. The interaction with Asp47 is the most likely candidate 

since this residue comes from an adjacent subunit in the enzyme tetramer and could thus potentially form key 

intersubunit interactions required to transmit the allosteric effects of acetyl CoA binding. Further, mutation of 

Arg427 increased the catalytic rates of the acetyl CoA-independent carboxylation of pyruvate (k°cat) by 2.2–5.6 

fold, while mutation of Arg472 resulted in k°cat values that were not significantly different from the wild-type 

enzyme. This suggests that one or more of interactions between Arg427 and the surrounding residues observed 

in the absence of the allosteric effector(15) are involved in constraining the structure of the enzyme in a less 

active conformation. 

The effects of mutation of Arg427 and Arg472 on the Km for MgATP and the activation of pyruvate carboxylation 

by free Mg2+ may have influenced the kcat measurements with acetyl CoA at fixed concentrations of MgATP (1 

mM) and free Mg2+ (5 mM). Theoretical values of kcat at saturating concentrations of MgATP and Mg2+ were 

calculated using the determined values of Km and Ka for R427S, R427K, R472S, and R472K, these are 5.2 s–1, 5.2 s–

1, 8.5 s–1, and 10.8 s–1 respectively. Comparing these calculated values to the kcat of the wild-type enzyme (10.6 s–

1) the decreased values of kcat measured for the R472S and R472K mutants (Table 2) could be possibly be 

attributed to nonsaturating concentrations of MgATP and free Mg2+. On the other hand, the decreased values 

of kcat measured for the Arg427 mutants were only partly caused by the increases in the Km for MgATP and 

the Ka for free Mg2+. Even at saturating concentrations of these reaction components, the rate of pyruvate 

carboxylation for R427S- and R427K-catalyzed reactions is 50% of that for wild-type RePC, indicating that the 

mutation of Arg427 slows a rate-limiting step in the reaction. Presteady state studies on pyruvate 

carboxylases(26, 27) have provided evidence that acetyl CoA enhances the rate of both ATP-cleavage and biotin 

binding to the BC domain active site. Branson and Attwood(26) concluded that biotin binding was likely to be 

rate-limiting in the pyruvate carboxylation reaction. Thus, the mutation of Arg427 is likely to affect this step. 

On the basis of the current kinetic analysis, mutations of Arg427 and Arg472 primarily affect reactions in the BC 

domain. This is confirmed by the marked reduction in the rates of bicarbonate-dependent ATP-cleavage, 

phosphorylation of ADP by carbamoyl phosphate and biotin carboxylation observed in the mutant catalyzed 

reactions. The effects on the steady-state rates of ATP-cleavage and biotin carboxylation are much greater than 

on the rates of ADP phosphorylation. It is unlikely that the observed rate reductions in these reactions can be 

solely attributable to changes in the Km for MgATP and the Ka for free Mg2+ since it has been established that 

the Km for MgATP in the bicarbonate-dependent ATP cleavage reaction is 5-fold lower than it is for the pyruvate 

carboxylation reaction and that free Mg2+ has a lower stimulatory effect on ATP-cleavage as the concentration of 

MgATP approaches saturation.(8) In addition, the concentration of free Mg2+ (8 mM) used for determining the 

rate of ADP phosphorylation will likely minimize any effects attributable to the increased Ka for Mg2+. While 

biotin is involved in the steady-state ATP-cleavage reaction, it does not directly participate in the ADP 

phosphorylation reaction but has been clearly shown to enhance the rate of the ADP phosphorylation reaction 

in PC.(24) The larger effects of the mutations on the bicarbonate-dependent ATP-cleavage reaction compared to 



those on the kcat values for pyruvate carboxylation can also be explained in terms of the effects on biotin binding 

since Branson and Attwood(26) and Branson et al.(27) noted that the biotin binding step was more rate-limiting 

in the bicarbonate-dependent ATP-cleavage reaction than in the pyruvate carboxylation reaction. 

Arg427 and Arg472 are approximately 40 Å and 47 Å from the ATP-binding site in the BC domain and are most 

likely not directly influencing the positioning of catalytically important residues in the BC domain active site. In 

fact, based on the RePC holoenzyme structure(21) the presence or absence of ethyl CoA had no effect on the 

positions of the catalytically important residues Glu218, Lys 245, Arg301, and Glu305(7) relative to ATP-γ-S. 

Therefore, it is probable that the interactions between Arg427 and Arg472, acetyl CoA and nearby residues in 

the allosteric domain promote the binding of biotin at the BC domain active site. In the first structure of RePC to 

be determined(14) the asymmetric enzymic tetramer contained only one pair of subunits on one face of the 

tetramer optimally configured for intersubunit catalysis. Only this pair of subunits had ethyl CoA bound at the 

allosteric sites. While it was initially assumed that the binding of acetyl CoA to these subunits induced the 

asymmetrical arrangement of the tetramer, Lietzan et al.(15) showed that RePC crystallized as an asymmetrical 

tetramer in the absence of an allosteric activator. These differences in the positions of amino acid residues in 

subunits that have an activator bound at the allosteric site compared to subunits that do not are difficult to 

interpret as it is not clear whether the inherent asymmetry of the tetramer has caused the changes or the 

binding of the allosteric activator. Unfortunately, parts of the structure of RePC determined in the absence of 

allosteric activator are poorly defined, including the polypeptide region containing Arg427 and Arg472. This 

makes a comparison of the positions and interactions of Arg427 and Arg472 between this structure and that 

with an allosteric activator bound impossible. To fully understand the roles of Arg427 and Arg472 in the 

allosteric action of acetyl CoA it will be necessary to produce a well-resolved structure of RePC determined in 

the absence of allosteric activators. 

The lack of effect the mutations of Arg427 and Arg472 on the Ki for l-aspartate indicates that these residues are 

most likely not involved in the binding of l-aspartate. In fact, the only observed effect on l-aspartate inhibition 

was seen with the R427K mutant, which is proposed to promote the adoption of a more catalytically active state 

of the tetrameric enzyme thereby leading to enhanced acetyl CoA-independent activity and reduced 

cooperativity. For this reason, l-aspartate may have less inhibitory effect on this mutant, even at saturating 

concentrations. 

In this work we have shown that both Arg427 and Arg472 are important for the binding of the allosteric 

activator and, as predicted from the structure of RePC, Arg472 plays the most important role in this process. 

Unexpectedly, we found that the more conservative mutation of the Arg to Lys at both positions resulted in 

greater detrimental effects on acetyl CoA binding than less conservative mutations to Ser. We have proposed 

that while the Lys mutants are still capable of interacting with acetyl CoA, the positioning of the Lys residues via 

interactions with proximal amino acid residues are lost, leading to the improper positioning of acetyl CoA. In the 

Ser mutants, the direct interaction with acetyl CoA is lost, leaving the positioning of the bound acetyl CoA to be 

determined by secondary interactions with other amino acid residues. The effects of mutation of Arg427 and 

Arg472 are not restricted solely to acetyl CoA binding. Major effects on reactions occurring in the BC domain 

active site suggest that Mg2+ binding, ATP-cleavage and biotin carboxylation are also affected by mutations 

incorporated in the allosteric domain. We propose that the mutations produce these effects in the BC domain by 

interfering with the binding of biotin in this active site. Arg427 and Arg472 do not appear to be directly in the 

binding of the allosteric inhibitor l-aspartate. 
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