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Abstract 
Intense muscle contraction induces high rates of ATP hydrolysis with resulting increases in Pi, H+, and ADP, 
factors thought to induce fatigue by interfering with steps in the cross-bridge cycle. Force inhibition is less at 
physiological temperatures; thus the role of low pH in fatigue has been questioned. Effects of pH 6.2 and 
collective effects with 30 mM Pi on the pCa-force relationship were assessed in skinned fast and slow rat skeletal 
muscle fibers at 15 and 30°C. At 30°C, pH 6.2 + 30 mM Pi significantly depressed peak force in all fiber types, 
with the greatest effect in type IIx fibers. Across fiber types, Ca2+ sensitivity was depressed by low pH and low pH 
+ high Pi, with the greater effect at 30°C. For type IIx fibers at 30°C, half-maximal activation (pCa50) was 5.36 at 
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pH 6.2 (no added Pi) and 4.98 at pH 6.2 + 30 mM Pi compared with 6.58 in the control condition (pH 7, no added 
Pi). At 30°C, n2, reflective of thick filament cooperativity, was unchanged by low cell pH but was depressed from 
5.02 to 2.46 in type IIx fibers with pH 6.2 + 30 mM Pi. With acidosis, activation thresholds of all fiber types 
required higher free Ca2+ at 15 and 30°C. With the exception of type IIx fibers, the Ca2+ required to reach 
activation threshold increased further with added Pi. In conclusion, it is clear that fatigue-inducing effects of low 
cell pH and elevated Pi at near-physiological temperatures are substantial. 
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myofilament calcium sensitivity; fatigue; cross-bridge cycle 

Introduction 
the causes of muscle fatigue are complex and not completely understood (2, 12). It is characterized by a loss of 
power as a result of declines in force and velocity and may originate from central nervous system disturbances 
or peripheral factors within the skeletal muscles (12, 18). Understanding the etiology of muscle fatigue is critical, 
as it presents limitations to exercise performance and is clinically relevant in situations such as respiratory or 
cardiac failure (18). 
 
During high-intensity exercise or a respiratory failure event, high rates of glycolysis and ATP hydrolysis result in a 
buildup of metabolites such as ADP, H+, and Pi. These metabolites are thought to depress peak force by 
interfering with key steps in the cross-bridge cycle. Low cell pH is believed to depress force by interfering with 
the low-to-high force transition step (Fig. 1, step 3) and to depress velocity by slowing the ATP hydrolysis or ADP 
release step (Fig. 1, steps 2 and 6). It is hypothesized that elevating Pi accelerates the reverse rate constant of 
force generation (Fig. 1, step 3), depressing peak force (12). High Pi conditions have been shown to not alter (7) 
or to slightly increase (30) velocity. During high-intensity contractile activity, intracellular pH can reach values as 
low as 6.2 in amphibians (37), 6.3 in rats (24), and 6.4 in humans (15), while Pi increases to 30–40 mM in humans 
(3). Experiments in single muscle fibers were initially performed at low temperatures (5–20°C), where low cell 
pH (pH 6.2) and elevated Pi (30 mM) significantly depressed peak force at saturating (maximal) Ca2+ (5, 23, 30). 
Recent temperature jump-plate technology allowed single-fiber experiments to be conducted at physiological 
temperatures (30–35°C), and the depressive effects of low cell pH and elevated Pi on peak force were less 
pronounced (5, 7, 29). 
 

 
 
Fig. 1. Schematic of the cross-bridge cycle. A, actin; M, myosin; ∗, high-force bridge. 
 
In a fatiguing event, myoplasmic free Ca2+ is not maximal, as sarcoplasmic reticulum (SR) Ca2+ release is 
depressed, in part due to Mg2+ inhibition of the ryanodine receptor and precipitation of Ca2+ with Pi in the SR (1, 
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2, 39, 40). During fatigue, the amplitude of the myoplasmic Ca2+ transient (pCa) is depressed and may reach <6.0 
(1 μM) (1). 
 
At 30°C, 30 mM Pi reduced peak force by 19% and 5% in type I and II fibers, respectively (7), while pH 6.2 
reduced peak force by 12% and 4% in type I and II fibers, respectively (19). DeBold et al. (8) showed that 
elevated (30 mM) Pi depresses force at suboptimal Ca2+ concentrations at near-physiological temperatures. The 
reduction of myofilament Ca2+ sensitivity by Pi was more pronounced at 30°C than 15°C. Similar to Pi, the 
depressive effects of low cell pH on peak force are reduced at near-physiological temperatures, leading some to 
question the role of low cell pH in fatigue (2, 29, 33, 41). However, the effects of low cell pH have yet to be 
evaluated at suboptimal Ca2+ concentrations that are characteristic of fatigue. Therefore, the first aim of this 
study was to evaluate the effects of acidosis at suboptimal Ca2+ at 15 and 30°C. 
 
While it has been shown that both metabolites individually depress myofilament Ca2+ sensitivity at 15°C (20, 25), 
the collective effects of low cell pH and elevated Pi on the pCa-force relationship are unknown. Thus a second 
aim of this study was to assess the effects of pH 6.2 + 30 mM Pi on the pCa-force relationship at cold (15°C) and 
near-physiological (30°C) temperatures. 

Methods 
Ethical Approval 
All experiments and the protocol for animal care and disposal were approved by the Marquette University 
Institutional Animal Care and Use Committee. 
 

Solutions 
Compositions of relaxing (pCa 9.0) and maximal activating (pCa 4.5) solutions were derived from a computer 
program utilizing the stability constants reported by Fabiato and Fabiato (9, 11), which include adjustments for 
temperature, pH, and ionic strength. All solutions contained (mM) 20 imidazole, 7 EGTA, 4 MgATP, and 14.5 
creatine phosphate. Pi was added as K2HPO4 to yield a total concentration of 30 mM. Although no Pi was added 
to the control (0 mM) solution, resting Pi levels are ∼0.5 and 0.7 mM in the fibers of fast and slow muscle, 
respectively, because of contamination from the hydrolysis and regeneration of ATP (30). Mg2+ was added in the 
form of MgCl2 with a specified free concentration of 1 mM. Ionic strength was adjusted to 180 mM with KCl, and 
with the solution at 15 or 30°C, pH was adjusted to 6.2 or 7.0 with KOH. Ca2+ was added as CaCl2. Various pCa 
solutions were made by mixing calculated volumes of pCa 4.5 and pCa 9.0 solutions (9, 11). 
 

Single-fiber preparation 
Male and female Sprague-Dawley rats were anesthetized with pentobarbital sodium (Nembutal; 50 mg/kg body 
wt ip), and the soleus (type I fibers), the deep region of the lateral head of the gastrocnemius (type IIa fibers), 
and the superficial region of the medial head of the gastrocnemius (type IIx fibers) were removed and placed in 
a 4°C relaxing solution. After the muscles were extracted, the rats were euthanized via a pneumothorax while 
still anesthetized. Muscles were dissected into small bundles (40–50 fibers) in relaxing solution, tied to glass 
capillary tubes, and stored in skinning solution [50% relaxing solution-50% glycerol (vol/vol)] at −20°C for ≤4 wk. 
 
On the day of experimentation, fibers were isolated and studied as previously reported (8, 19). A muscle fiber 
was placed in 4°C relaxing solution in a glass-bottom stainless steel chamber and suspended between a force 
transducer (series 400A, Cambridge Technologies) and a servomotor (model 312C high-speed length controller, 
Aurora Scientific). Two chambers were maintained at 15°C by Peltier cells, and a third chamber was heated to 
30°C by an electrically powered heating unit (42). While in relaxing solution (15°C), the fiber was briefly (30–40 
s) exposed to 0.5% Brij 58 (Sigma) to disrupt the SR (27). An inverted microscope was used to view the fiber at 
×40 magnification, and sarcomere length was adjusted to 2.5 μm (34). Sarcomere length was monitored and 
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adjusted throughout the experiment to maintain 2.5 μm. After determination of fiber length, fiber diameter was 
assessed from a digital image of the fiber obtained while it was briefly suspended in air. With use of Scion Image, 
three measurements of fiber width were made along the length of the fiber, and the average diameter was 
determined assuming a cylindrical shape (24). 
 

Determination of single-fiber force characteristics 
For determination of the pCa-force relationship, each fiber was subjected to a series of activating solutions 
ranging from pCa 7.0 to 4.5 at pH 7.0, pH 6.2, or pH 6.2 + 30 mM Pi at 15 or 30°C. For an individual fiber, the pCa-
force relationship was analyzed as described in detail elsewhere (43). Briefly, force elicited at a given pCa was 
allowed to plateau and then expressed as a fraction of peak force, i.e., submaximal force/peak force at pCa 4.5 
(Pr). Least-squares regression lines were fit to data points <50% of peak force and data points >50% of peak 
force. Activation threshold (AT), the pCa at initial force development, was defined as Ca2+ concentration, where 
log[Pr/(1 − Pr)] = −2.5 (43). Half-maximal activation (pCa50) was calculated as the mean intercept of least-squares 
regression lines with the line y = 0. The slope of the line fit to data above Pr = 0.5 was defined by n1, and the 
slope of the line fit to data below Pr = 0.5 was indicative of thick filament cooperativity and defined by n2 (8). The 
pCa-force curves in Figs. 6 and 7 were constructed with GraphPad Prism (San Diego, CA) and fitted with a four-
parameter logistic curve. 
 
Type I or IIa fibers were taken through control (pH 7 + 0 mM Pi) and experimental (pH 6.2 or pH 6.2 + 30 mM Pi) 
pCa-force curves at both temperatures. Fast type IIx fibers were not stable enough to maintain sarcomere 
uniformity through more than two pCa-force curve tests. At the onset and conclusion of each pCa-force curve 
test, peak force (pCa 4.5) at 15°C was measured. If a fiber's final peak force was <90% of the initial force, data 
for that fiber were eliminated. All fibers were exposed to the given conditions in a random order to control for 
order effects. 
 

Myosin heavy chain composition and fiber typing 
After the contractile measurements, fibers were solubilized in 10 μl of 1% SDS sample buffer and stored at 
−20°C. The myosin heavy chain (MHC) profile was obtained by running samples on 5–7.5% (wt/vol) Tris·HCl 
precast gels (Bio-Rad) and stained with the Silver Stain Plus kit (Bio-Rad). On the basis of their MHC profile, fibers 
were identified as type I, IIa, or IIx (Fig. 2). If fibers contained more than one MHC band, the fiber was typed on 
the basis of the predominant band. Such fibers (Fig. 2, lane 1) had maximal shortening velocities (Vo) and pCa-
force relationships not significantly different from fibers with a single band (i.e., 1 MHC isoform). 
 

 
 
Fig. 2. Myosin heavy chain gel (7.5%). Lane 1, fiber with a predominant type I band and minor type IIa and IIx 
bands; lanes 2, 3, and 4, type I, IIa, and IIx fibers, respectively. 
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Statistics 
Data were analyzed with Sigma Stat (San Jose, CA) using an ANOVA followed by post hoc unpaired t-tests with a 
significance level of 0.05. 
 
In a small population of type IIb fibers (n = 4), control and experimental data closely resembled data from type 
IIx fibers, such that there were no significant differences in the pCa-force relationship between type IIx and IIb 
fibers. Therefore, data from type IIb fibers are not included in the study. Additionally, there were no significant 
differences between male and female rat fibers in the pCa-force relationship in any fiber type, temperature, or 
condition, so data from both sexes were pooled. 

Results 
Temperature effects on peak force and pCa-force relationship 
Representative force traces from slow and fast fibers at various Ca2+ concentrations are shown in Figs. 3 and 4. 
The time required for a fiber to reach peak force (dp/dt) was faster at higher temperatures. Increasing 
temperature from 15 to 30°C increased peak force (Fig. 5) and the slope of the pCa-force relationship (Figs. 6 
and 7) in all fiber types at control conditions (pH 7 + 0 mM Pi). Myofibrillar Ca2+ sensitivity increased with 
increasing temperature in all fiber types, as indicated by significant increases in AT and pCa50 (Tables 1–3). The 
higher temperature elevated n2, reflective of increased thick filament cooperativity, in type I and IIa, but not IIx, 
fibers in control conditions (Tables 1–3). More Ca2+ was required to initiate force in type IIx than type I fibers in 
control conditions, as indicated by significant fiber type differences in AT at 15 and 30°C (P < 0.01). 
 

 
 
Fig. 3. Selected force records from a representative slow type I fiber at 15°C (A) and 30°C (B). Force records were 
obtained at pH 7, pH 6.2, and pH 6.2 + 30 mM Pi at pCa 4.5, 5.5, and 6.0. No force was observed at pCa 6.0 with 
pH 6.2 or pH 6.2 + 30 mM Pi conditions for either temperature. 
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Fig. 4. Selected force records from a representative fast type IIx fiber at 15°C (A) and 30°C (B). Force records 
were obtained at pH 7, pH 6.2, and pH 6.2 + 30 mM Pi at pCa 4.5, 5.5, and 6.0. No force was observed at pCa 6.0 
with pH 6.2 or pH 6.2 + 30 mM Pi conditions for either temperature. 
 



 
 
Fig. 5. Peak force (Po) elicited at pCa 4.5 for type I (A), IIa (B), and IIx (C) fibers. Values are means ± SD. 
*Significantly different from pH 7 at the same temperature, P < 0.05. †Significantly different from comparable 
condition at 15°C, P < 0.05. ‡Significantly different from pH 6.2 at the same temperature, P < 0.05. 
 



 
 
Fig. 6. Average pCa-force curves for type I (A and D), IIa (B and E), and IIx (C and F) fibers at 15°C (A–C) and 30°C 
(D–F). Each data set represents force (mean ± SE) at each Ca2+ concentration (in negative log units) from all 
fibers included in the experiment. 
 

 
 
Fig. 7. Mean normalized pCa-force curves for type I (A and D), IIa (B and E), and IIx (C and F) fibers at 15°C (A–C) 
and 30°C (D–F). Maximal isometric force (Po) normalized to the level obtained in pCa 4.5 at both temperatures in 
all conditions is plotted against pCa. Values are means ± SE. 
 
Table 1. Type I fiber force characteristics  

15°C   30°C    
pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi 

n 19 19 10 20 18 10 
pCa50 6.06 ± 0.26 5.40 ± 0.09* 5.18 ± 0.35*‡ 6.77 ± 0.11† 5.56 ± 0.09*† 5.16 ± 0.36*‡ 
AT 6.92 ± 0.20 6.08 ± 0.22* 5.75 ± 0.16*‡ 7.33 ± 0.22† 6.09 ± 0.21* 5.85 ± 0.29*‡ 
n1 2.15 ± 0.80 1.86 ± 1.29 1.84 ± 1.89 1.84 ± 1.58 2.23 ± 1.00 2.08 ± 1.29 
n2 2.99 ± 0.93 3.51 ± 1.22* 3.68 ± 3.16 4.02 ± 1.63† 4.50 ± 1.72† 3.96 ± 3.55 
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Values are means ± SD. Data were obtained from linearized Hill plots of the pCa-force curve. n, Number of fibers. 
pCa50 and activation threshold (AT) are shown in negative log units. 
*Significantly different from pH 7.0 at the same temperature, P < 0.05. 
†Significantly different from comparable condition at 15°C, P < 0.05. 
‡Significantly different from pH 6.2 at the same temperature, P < 0.05. 
 
Table 2. Type IIa fiber force characteristics  

15°C   30°C    
pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi 

n 17 9 7 7 7 7 
pCa50 5.96 ± 0.29 5.31 ± 0.13* 4.90 ± 0.25*‡ 6.73 ± 0.30† 5.49 ± 0.11*† 5.04 ± 0.31*‡ 
AT 6.90 ± 0.27 6.11 ± 0.27* 5.77 ± 0.24*‡ 7.21 ± 0.28† 5.99 ± 0.18* 5.61 ± 0.31*‡ 
n1 2.00 ± 0.87 1.69 ± 0.52 2.44 ± 1.47 1.27 ± 0.77 3.32 ± 1.59*† 2.26 ± 0.89 
n2 2.85 ± 1.13 3.59 ± 1.79 3.22 ± 1.71 5.03 ± 2.05† 5.40 ± 2.20† 4.59 ± 2.36 

Values are means ± SD. Data were obtained from linearized Hill plots of the pCa-force curve. n, Number of fibers. 
pCa50 and AT are shown in negative log units. 
*Significantly different from pH 7.0 at the same temperature, P < 0.05. 
†Significantly different from comparable condition at 15°C, P < 0.05. 
‡Significantly different from pH 6.2 at the same temperature, P < 0.05. 
 
Table 3. Type IIx fiber force characteristics  

15°C   30°C  
 

 
pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi pH 7.0 pH 6.2 pH 6.2 + 30 mM Pi 

n 17 14 10 13 11 6 
pCa50 6.16 ± 0.25 5.34 ± 0.11* 4.89 ± 0.29*‡ 6.58 ± 0.12† 5.36 ± 0.09* 4.98 ± 0.27*‡ 
AT 6.70 ± 0.18 5.87 ± 0.23* 5.81 ± 0.31* 7.03 ± 0.20† 5.97 ± 0.18* 5.89 ± 0.37* 
n1 2.11 ± 1.40 2.75 ± 1.49 2.21 ± 0.94 2.17 ± 1.30 3.50 ± 1.90* 3.22 ± 1.86 
n2 4.43 ± 2.30 5.57 ± 3.10 2.59 ± 0.94*‡ 5.02 ± 1.87 5.03 ± 3.07 2.46 ± 1.21*‡ 

 

pH and P1 effects on peak force 
At saturating Ca2+ (pCa 4.5), the depressive effects of pH 6.2 on force were less pronounced at 30°C than 15°C in 
all fiber types, such that peak force was significantly depressed in all fiber types at 15°C but only in the fast type 
IIx fibers at 30°C. In pH 6.2 + 30 mM Pi, peak force was significantly depressed from control in all fiber types at 
both temperatures, with the greatest effects in type IIx fibers at 15°C (61% force depression) and 30°C (50% 
force depression) (Fig. 5). 
 

pH and P1 effects on pCa-force relationships 
At suboptimal Ca2+, pH 6.2 and pH 6.2 + 30 mM Pi significantly reduced force in all fiber types at both 
temperatures. At 15°C and submaximal Ca2+ concentration pCa 5.5 (5 μM), low cell pH depressed force by 74% in 
slow fibers (Fig. 3A) and 86% in fast type IIx fibers (Fig. 4A) compared with control. At 30°C and pCa 5.5, pH 6.2 
depressed slow fiber force by 41% (Figs. 3B and 8) and fast type IIx fiber force by 73% (Figs. 4B and 8). In pH 6.2 
+ 30 mM Pi, no force was generated at pCa 6.0 at either temperature (Figs. 3 and 4), while at pCa 5.5, force was 
reduced by 91, 95, and 98% in type I, IIa, and IIx fibers, respectively, at 30°C compared with control (Fig. 8). 
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Fig. 8. Force at suboptimal Ca2+ concentration (pCa 5.5 or 5 μM) for all fiber types in pH 7, pH 6.2, and pH 6.2 + 
30 mM Pi at 30°C. Values are means ± SD. *Significantly different from pH 7, P < 0.05. ‡Significantly different 
from pH 6.2, P < 0.05. 
 
At pH 6.2, the pCa-force relationship in all fiber types was significantly shifted to higher free Ca2+ levels for a 
given percentage of Po, indicative of reduced myofibrillar Ca2+ sensitivity, with a greater shift at 30°C (Figs. 6 and 
7). This resulted in lower pCa50 values; for example, in type I fibers, the low pH-induced change in pCa50 was 0.66 
unit at 15°C and 1.21 units at 30°C (Fig. 9). In pH 6.2 + 30 mM Pi, the pCa-force relationship showed an even 
greater reduction in myofibrillar Ca2+ sensitivity than in low pH alone at both temperatures, with larger effects at 
30°C (pCa50 change of 0.88 unit at 15°C and 1.61 units at 30°C in type I fibers) (Fig. 9). Under low cell pH 
conditions, pCa50 was significantly lower in type IIx than type I and IIa fibers at 30°C (Tables 1–3). 
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Fig. 9. Absolute change in pCa50 from control induced by acidosis (pH 6.2), elevated Pi (30 mM), and pH 6.2 + 30 
mM Pi at 15 and 30°C for type I (A), IIa (B), and IIx (C) fibers. Values (means ± SE) are differences in mean pCa50 
values in Tables 1–3. Data for elevated (30 mM) Pi alone are from Debold et al. (8). 
 
In pH 7 and 6.2 at 15°C, n2 was significantly higher in type IIx than type I fibers. Elevating both H+ and Pi 
selectively reduced n2 in type IIx fibers (Table 3) at 15 and 30°C, such that fiber type differences seen at 15°C in 
the control condition and in pH 6.2 were no longer apparent. Fibers generated force at lower Ca2+ 
concentrations (higher AT) in type I and IIa than type IIx fibers at pH 7, and low pH increased the Ca2+ required to 
initiate force (AT) in all fiber types at both temperatures. The pH effect on AT was significantly exacerbated by 
addition of 30 mM Pi in type I and IIa, but not type IIx, fibers, which resulted in no fiber type differences in AT in 
pH 6.2 + 30 mM Pi (Tables 1–3). 
 
To better illustrate temperature effects, the pCa-force relationship was normalized to peak force for each 
condition (Fig. 7). The shift in the pCa-force curve induced by low cell pH and low pH + Pi is greater at 30°C (Fig. 
7, D–F) than 15°C (Fig. 7, A–C) in all fiber types. The reduction of myofilament Ca2+ sensitivity induced by pH and 
pH + Pi was more pronounced at higher temperatures, as quantified by the greater decrease in pCa50 (Fig. 9). The 
pH effect was significantly larger than the Pi effect (Fig. 9) (8) in all fiber types at both temperatures. The effects 
of pH 6.2 + 30 mM Pi on the change in pCa50 were additive at both temperatures in type IIx and IIa fibers but 
only at 30°C in type I fibers (Fig. 9). 

Discussion 
We have shown that low cell pH (6.2) reduces myofibrillar Ca2+ sensitivity in all fiber types, as indicated by a 
significantly depressed AT and pCa50, and the effects are greater at near-physiological temperatures. Prior to this 
study, the effects of low cell pH on force at suboptimal Ca2+ concentrations characteristic of fatigue at near-
physiological temperatures (30°C) were unknown. At 15 and 30°C, pH 6.2 + 30 mM Pi further depresses AT in 
type I and IIa fibers and pCa50 and peak force in all fiber types more than pH 6.2 or 30 mM Pi alone. Low cell pH 
did not change n2, suggesting that acidosis did not alter thick filament cooperativity; however, in combination 
with Pi, n2 was depressed in fast type IIx fibers at 15 and 30°C. These findings characterize the individual and 
collective roles of low cell pH and elevated Pi in force depression at near-physiological temperatures and 
implicate a critical role of H+ and Pi in mediating fatigue. 
 
To maximize the stability of the preparation, skinned fiber experiments have predominantly been performed at 
lower, nonphysiological temperatures (≤15°C) (4, 22, 23, 25). Under these conditions, low cell pH significantly 
depressed force at suboptimal and saturating Ca2+ concentrations (14, 19). When jump-plate technology 
emerged and fibers were set up at cold temperatures and studied at near-physiological temperatures (≥25°C), 
the depressive effects of low pH on peak force were reduced (29). This observation led to the hypothesis that 
the contribution of low pH or H+ to fatigue was minimal at physiological temperatures. However, Allen and 
Westerblad (1) showed that the amplitude of the Ca2+ transient declined with fatigue, reaching <1 μM (pCa 6.0). 
Thus fatigue is more accurately mimicked in experiments carried out at submaximal Ca2+. An important finding in 
this study was that low cell pH significantly contributed to force depression at submaximal Ca2+, with a more 
pronounced effect at near-physiological temperatures (30°C). 
 

Effects of temperature on Po and the pCa-force relationship 
Our results show that peak force increased in all fiber types with temperature. This is consistent with the report 
of Ranatunga and Wylie (32) that peak force of the rat soleus and extensor digitorum longus muscles increased 
by nearly twofold as temperature increased from 10 to 35°C. Davis and Epstein (6) proposed that a local 
unfolding within the cross-bridge secondary/tertiary structure might cause a greater force generation with rising 
temperature. Ca2+ binding to troponin C is enhanced at higher temperatures (36). Therefore, less Ca2+ was 
required to develop force, as evidenced by a temperature-sensitive increase in pCa for AT and pCa50 in all fiber 
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types. The temperature-induced shift in the pCa-force relationship toward lower free Ca2+ levels is consistent 
with previous findings in our laboratory (8) and others (21, 36) and results from a temperature-induced increase 
in myofibrillar Ca2+ sensitivity. The forward rate constant of force generation (Fig. 1, step 3) is greatly accelerated 
by increasing temperature (44). Consequently, more high-force cross bridges are formed at a given suboptimal 
Ca2+ at high (30°C) than low (15°C) temperatures. 
 
The myofibrillar Ca2+ sensitivity of force development is fiber type-dependent, with fast fibers activating at a 
higher free Ca2+ but with a greater degree of cooperative binding (12, 13). Our results confirmed this, as AT 
values are higher (less Ca2+) in slow type I than fast type IIx fibers at 15 and 30°C. Thick filament cooperativity, 
quantified by n2, is temperature-sensitive, with binding enhanced at higher temperatures (8, 35, 36). We 
observed this to be true for slow type I and fast type IIa, but not fast type IIx, fibers. DeBold et al. (8) reported 
significant increases in n2 with temperature in type I and II fibers but did not subdivide type II fibers into types IIa 
and IIx. Because type IIx fibers have a high n2 compared with type I or IIa fibers at 15°C, additional cooperative 
binding reserve may be less in type IIx fibers, making any increase with temperature difficult to detect. 
 

Effects of pH and Pi on Po 
Consistent with the findings of others (19, 29), we found that low cell pH (6.2) depresses peak force less at 
saturating Ca2+ concentrations (pCa 4.5) at higher than lower temperatures, in that low pH had no significant 
effect on peak force of type I and IIa fibers and only a modest effect on peak force of type IIx fibers at 30°C. Our 
finding that low pH depresses Po in fast type IIx fibers suggests that either the number of cross bridges or the 
force per bridge remained depressed with increasing temperature (25). Knuth et al. (19) observed no pH effect 
on peak force of fast fibers at 30°C, but fibers were not subdivided into types IIa and IIx, and the lack of a low 
pH-induced decline in force may have resulted from a high percentage of type IIa fibers. It has been proposed 
that elevated H+ inhibits the forward rate constant of force generation (Fig. 1, step 3) (12). Since acidosis and 
temperature affect this step, the effects should be additive, with temperature reducing the force-depressive 
effects of low pH. This was the case, but to a lesser extent, in type IIx fibers. 
 
In muscle fatigue, decreasing cell pH is accompanied by an increase in Pi up to 30 mM (3). Karatzaferi et al. (17) 
found that 30 mM Pi at 30°C depressed peak force by ∼25% in fast fibers, while DeBold et al. (7) observed a 19 
and 5% decline in type I and II fibers, respectively. The collective effects of low cell pH and elevated Pi on peak 
force on a given fiber type have been less studied. Potma et al. (31) showed that, at 15°C and pH 6.0 + 30 mM Pi, 
peak force was depressed by ∼63 and ∼86% in rabbit soleus and psoas fibers, respectively. Karatzaferi et al. 
reported peak force reductions of 81 and 52% at 10 and 30°C, respectively, in rabbit psoas fibers (a muscle 
composed primarily of fast fibers) exposed to pH 6.2 + 30 mM Pi. Under the same conditions, we found a 44, 41, 
and 50% reduction of peak force in type I, IIa, and IIx fibers, respectively, at 30°C, with greater declines at 15°C. 
Elevated H+ and Pi are hypothesized to depress peak force by different mechanisms, with H+ depressing the 
forward rate constant and Pi accelerating the reverse rate constant of force generation (Fig. 1, step 3); thus it 
follows that the combined effects of low cell pH and elevated Pi on peak force would be additive (22). 
 

Effects of pH and Pi on pCa-force relationship 
We demonstrate a greater rightward shift (i.e., increased Ca2+ for a given percentage of Po) in the pCa-force 
curve at 30°C than 15°C as a result of low cell pH, implicating low pH as a more critical mediator of fatigue than 
previously believed on the basis of experiments carried out at supramaximal Ca2+ concentrations (19, 29). With 
low pH or low pH + Pi, temperature does not affect pCa50, an effect not observed in control conditions, where 
temperature elevates pCa50 in all fiber types. While elevating temperature can attenuate the effects of low pH 
and Pi on Po at supramaximal Ca2+ concentrations, it does not have an effect on force at suboptimal Ca2+ 
concentrations. One possible explanation for this observation is that the inhibition of force resulting from the 
competitive inhibition by H+ of Ca2+ binding to troponin C effectively negates the increased myofibrillar Ca2+ 
sensitivity induced by increasing temperature (36, 38). 
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Early studies investigating the role of pH at suboptimal Ca2+ concentrations in skinned fibers were conducted at 
room temperature (22–23°C) or lower (10–15°C) (10, 15, 25) and a pH range of 6.2–7.4. Hermansen and Osnes 
(15) showed no significant effect of pH on the pCa-force curve at pH 6.5 vs. pH 7.0 at room temperature in 
rabbit soleus fibers, and at the same temperature, Fabiato and Fabiato (10) reported that pH 6.2 shifted pCa50 
∼0.35 unit (∼1 μM) compared with pH 7.0 in frog semitendinosus. Metzger and Moss (25) reported a similar 
0.35 pCa unit (∼1 μM) pCa50 shift from pH 7 to pH 6.2 at 15°C in rat soleus fibers. Our data show a larger H+-
induced shift in pCa50 than previously reported, with pH 6.2 shifting the pCa50 of type I fibers 1.21 units at 30°C 
and 0.66 unit (∼3 μM) at 15°C. An explanation for the differences between studies is not readily apparent but 
could relate to sample size, which was considerably larger in our study, and slight differences in temperature. At 
15°C, even small differences in temperature would result in significant changes in pCa50 (6, 36). Finally, in 
mammalian fast muscle, Palmer and Kentish (28) describe a 3.63 μM shift in pCa50 in pH 6.2 at 25°C, a value 
comparable to the 4.11 μM shift we observed in type IIx fibers at 30°C. 
 
Pi alone (30 mM) reduced pCa50 more at 30°C (0.66 unit in type I fibers) than at 15°C (0.34 unit) compared with 
control (8) (Fig. 8). Our study has shown a greater depressive effect on myofibrillar Ca2+ sensitivity induced by 
low cell pH than Pi at 15 and 30°C. A novel result of this study is that the effects of low pH + Pi on myofibrillar 
Ca2+ sensitivity are additive at both temperatures (Tables 1–3, Fig. 8). The purpose of investigating the collective 
effects of low cell pH and elevated Pi was to more closely mimic in vivo fatigue in the skinned fiber preparation. 
We chose pH 6.2 and 30 mM Pi to represent the “worst-case scenario” in fatigued muscle (3, 24). Moopanar and 
Allen (26) showed that when mouse flexor digitorum brevis fibers were fatigued using 400-ms, 100-Hz tetani at 
37°C, the Ca2+ concentration required for 50% of peak force increased by 200 nM. This is a considerably smaller 
shift than we show in skinned fibers in pH 6.2 + 30 mM Pi (∼7 μM or 1.61 pCa units at 30°C in type I fibers). With 
isolated single living fibers contracting in vitro, the diffusion (intracellular-extracellular) gradient would have 
been high; thus it seems unlikely that pH fell to 6.2 or that Pi reached 30 mM. This would in part explain the 
smaller differences in function than we show in the worst-case scenario. 
 
The rightward shift of the pCa-force curve to higher free Ca2+ levels as a result of low pH and low pH + Pi 
increased at both temperatures and in a fiber-type manner: type IIx > type IIa > type I. With high-intensity 
exercise, fast fibers depend more on glycolysis and, thus, produce more H+ and Pi than slow fibers (13). This, in 
combination with the observation that fast fibers are more sensitive to the fatiguing effects of these ions (Tables 
1–3), in part explains the increased fatigability of fast type IIx vs. slow type I fibers. 
 
Thick-filament cooperativity assessed by n2 is significantly depressed by 30 mM Pi at 15°C, but not 30°C, in fast 
fibers (8). The temperature dependence was attributed to the Pi-induced decline in the number of high-force 
cross bridges in fast fibers at 15°C, but not 30°C (8). Interestingly, pH 6.2 + 30 mM Pi depressed n2 in type IIx 
fibers at 15 and 30°C. A possible explanation for this is that the collective effects of low pH and elevated Pi 
counter the elevated temperature acceleration of the low- to high-force state (Fig. 1, step 3) and shift the 
distribution of cross bridges more to a low-force or unbound state (16). Thus the decline of n2 in the low-pH, 
high-Pi condition may have resulted from fewer bound cross bridges, which would reduce not only peak tension, 
but also the ability for one bridge to influence the binding of another. 
 
Acidosis significantly increased the amount of Ca2+ (lower pCa) required to initiate the development of force (AT) 
in all fiber types and at both temperatures. Debold et al. (8) observed a similar effect with 30 mM Pi, except in 
type II fibers at 15°C, where AT was unaltered. The more pronounced effect of low pH than high Pi on AT is likely 
due to the competitive inhibition of H+ on Ca2+ binding to troponin C (38). 
 
In this study, we determined that, at Ca2+ levels characteristic of fatigue, low pH significantly depressed force at 
low (15°C) and near-physiological (30°C) temperatures and that, in combination, low pH and elevated Pi 
significantly depressed myofibrillar Ca2+ sensitivity and Po to a greater extent than low pH or elevated Pi alone 
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(8). In fast type IIx fibers, low pH + Pi significantly depressed thick filament cooperativity, an effect primarily 
attributed to increased Pi, while low cell pH had a strong depressive effect on the Ca2+ required for initial force 
development (AT) in all fiber types. Coupled to our previous observation that maximal shortening velocity (Vo) 
and peak power are significantly depressed by low pH (19) and that peak power is significantly depressed by 
elevated Pi (7), it is clear that the fatigue-inducing effects of low cell pH and elevated Pi on cross-bridge function 
are substantial. 
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