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Abstract: 
Microcantilevers coated with a chemically sensitive layer are increasingly being used in chemical detection 

systems. The sensitive coating, often a polymer, absorbs specific molecules, which can be detected by 

monitoring the shift in the mechanical resonant frequency. Usually. the frequency shift resulting from molecular 

absorption is interpreted as a mass loading effect. However, mass loading is not the only effect that has an 

impact on the frequency shift; the viscoelastic properties of the sensitive coating also are affected by the 

sorption process. Sorption-induced modulus changes are typically difficult to characterize. However, it is known 

that the sorption of analyte molecules in a polymer coating results in the plasticization of the coating. In most 

cases, the polymer becomes more rubbery with increasing concentration of analyte molecules, i.e., the coating 

becomes softer with increasing loss modulus, and the storage modulus decreases. Using a new analytical model 

developed for the resonant frequency expression of a hybrid microcantilever (elastic base and viscoelastic layer), 

the effects of the modification of the storage and loss moduli of the sensitive layer on the resonant frequency 

are examined. The main conclusion of this analytical study is that, even if the sensitive coating moduli are small 

compared to the base cantilever's Young's modulus, the effect of the change in the viscoelastic coating 

properties could contribute significantly to the overall frequency shift (8-23% in the simulations depending on 

the coating thickness, with even higher contributions for other sets of problem parameters) 

SECTION I. Introduction 
The use of microcantilevers as transducers in chemical sensing systems has increased in recent years. This is due 

to the projected high sensitivity and low limit of detection (LOD). for chemical detection, the microcantilever is 

coated with a chemically sensitive layer, which absorbs the molecule of interest. The absorbed molecules then 

can be detected by monitoring the mechanical resonant frequency. Usually, the frequency shift resulting from 

molecular absorption is interpreted as a mass loading effect [1]–[2][3][4][5][6][7]. However, in the case of the 

chemically sensitive polymeric layer, mass loading is not the only effect that has an impact on the frequency 

shift; the viscoelastic properties of the sensitive coating also are affected by the sorption process. A complete 

and more accurate model of the frequency shift for a hybrid (elastic/viscoelastic) beam must take into account 

the contributions of both mass loading and the changes in the viscoelastic properties of the sensitive coating. 

The aim of this paper is to study the contributions from both the absorbed mass and this viscoelastic effect and 

to compare the relative importance of these effects. 

In Section II, a new analytical model for the resonant frequency expression of a hybrid microcantilever (elastic 

base and viscoelastic layer) is presented. In Section III, the frequency shift due to analyte sorption by the 

viscoelastic layer is analyzed. It is shown that the frequency shift is composed of three effects: mass loading 

(added mass) effect, layer elasticity effect, and a neutral-axis shift effect associated with variation in layer 

properties. Some simulations are presented in Section IV and a discussion shows that ignoring the changes in the 

viscoelastic layer properties may introduce a significant source of error. 

SECTION II. Resonant Frequency of Hybrid Microcantilever 
Because of the prevalence of polymer coatings used in resonant microcantilever sensor applications and the 

viscoelastic properties exhibited by such materials, a natural question arises: what is the impact of the coating's 

viscoelastic properties on the resonant frequency (and frequency shift) of the microcantilever sensor? In most 

previous studies, the layer properties have been ignored entirely, an assumption that usually is justified by 



considering only relatively thin, soft, layers. However, in some applications, sensitivity may be increased 

significantly by using a coating thickness which approaches that of the base layer, in which case a careful 

consideration of the coating properties is warranted. This is what provides the motivation for the analytical 

model summarized in the following. 

The theoretical model used in the present study is based on the idealized system depicted in Fig. 1. The base 

layer (often silicon) is assumed to be elastic; and the sensitive coating is taken to be viscoelastic. Using the 

results of [8], the “hybrid” (elastic/viscoelastic) beam, can be assumed to be replaced by an equivalent 

homogeneous viscoelastic beam whose complex flexural rigidity, (𝐸𝐼)∗, is given as: 

(𝐸𝐼)∗ = 𝐸1𝐼1 + 𝐸2
′ (𝜔)𝐼2 + 𝑗𝐸2

′′(𝜔)𝐼2, (1) 

where 𝐸1 is the Young's modulus of the elastic material and 𝐸2
′ + 𝑗𝐸2 ′′ is the complex Young's modulus of the 

viscoelastic sensitive layer. 𝐼1 and 𝐼2 are the moments of inertia of the elastic and viscoelastic beam layers, 

respectively: 

𝐼1 =
𝑏ℎ1

3

12
+ 𝑏ℎ1 (ℎ𝑁 − ℎ2 −

ℎ1

2
)

2
,

𝐼2 =
𝑏ℎ2

3

12
+ 𝑏ℎ2 (ℎ𝑁 −

ℎ2

2
)

2
,

 (2)(3) 

where 𝑏 is the microcantilever width, and ℎ1 and ℎ2 are the microcantilever and sensitive coating thicknesses, 

respectively. The geometric properties (2) and (3) are with respect to the equivalent fixed neutral axis of the 

hybrid cross section, whose position relative to the top of the cross section is given by: 

ℎ𝑁 =
ℎ2

2
+

ℎ1𝐸1

2

(ℎ1+ℎ2)(ℎ1𝐸1+ℎ2𝐸2
′)

(ℎ1𝐸1+ℎ2𝐸2
′)2+ℎ2

2𝐸2 ′′2 . (4) 

Note that an exact formulation of the hybrid beam problem would result in a neutral-axis position that varies 

with time; thus, (4) may be viewed as a type of “average” position of the neutral axis. This simplification not only 

results in a tractable problem, but it yields a complex-rigidity formula that is more general than other existing 

approximations for hybrid cross sections (e.g., the Oberst approximation [9], [10]), which usually require that 

the coating is relatively thin and/or soft. (Details may be found in [8].) 

 
Fig. 1. Geometry of the cantilever and its sensitive coating. 
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Using the complex flexural rigidity given by (1), the equation of motion of the harmonically excited hybrid beam, 

considering the only loss mechanism to be associated with the loss modulus of the sensitive layer, takes the 

well-known form (e.g., [9]): 

(𝐸𝐼)∗ ∂4𝑤(𝑥,𝑡)

∂𝑥4
+ 𝑚𝐿

∂2𝑤(𝑥,𝑡)

∂𝑡2
= 𝐹(𝑥)𝑒𝑗𝜛𝑡 , (5) 

where 𝑤(𝑥, 𝑡) is the transverse displacement, 𝐹(𝑥) is the arbitrary distribution of the force amplitude along the 

length of the beam, mL is the mass per unit length of the beam, and 𝜛 is the forcing frequency. Following 

standard procedures for solving (5) (e.g., [9]), an expression for the resonant frequency, 𝑓res, can be obtained: 

𝑓res +
𝜆0

2

2𝜋𝐿2
√

𝐸1𝐼1+𝐸2
′𝐼2

𝑚𝐿
, (6) 

where 𝐿 is the microcantilever length and 𝜆0 = 1.875 for the first-order mode. Note that, in many cases, the 

second term under the radical in (6) is neglected; however, here we wish to examine the importance of this 

term in detail, specifically how changes in concentration affect the frequency shift. Although the losses due to 

the environment are neglected in this study, it is expected that, when environmental losses are present, changes 

in the layer properties will cause a similar relative change in frequency. 

In the following section, expression (6) is used as a starting point to study the effect that sorption of analyte has 

on the frequency shift. In addition, the total frequency shift expression will be partitioned into three 

contributions, each having a specific physical meaning. The qualitative effect (increase or decrease) that a 

sorption-induced change in a physical parameter has on frequency shift also will be examined in Section III. 

SECTION III. Analyte Sorption into the Viscoelastic Layer 
Analyte sorption into the sensitive coating, which is usually a polymer, results in the modification of its mass but 

also its complex Young's modulus. Using the partition coefficient of the sensitive layer/analyte pair, it is possible 

to estimate the mass modification. The sorption-induced modulus changes are typically more difficult to 

characterize. However, it is known that the sorption of analyte molecules in the polymer results in the 

plasticization of the coating [11]. In most cases, the polymer becomes more rubbery with increasing 

concentration of analyte molecules (i.e., the storage modulus, 𝐸2
′ (𝜔), decreases and the loss modulus, 𝐸2

′′(𝜔), 

becomes larger). 

The frequency shift due to analyte sorption, Δ𝑓res, can be expressed in terms of the analyte-induced variations 

in the mass, the storage Young's modulus, and the moments of inertia. By taking the natural logarithm of both 

sides of (6), taking the differential of the resulting expression, and assuming that the relevant variations are 

sufficiently small so that differentials may be replaced by finite variations, the following expression for the 

relative frequency shift may be derived: 

Δ𝑓res

𝑓res
= −

Δ𝑚𝐿

2𝑚𝐿
+

𝐼2Δ𝐸2
′

2(𝐸1𝐼1+𝐸2
′𝐼2)

+
𝐸1Δ𝐼1+𝐸2

′Δ𝐼2

2(𝐸1𝐼1+𝐸2
′𝐼2)

 (7) 

The first term on the right-hand side of (7) is the well-known “mass loading effect,” and the remaining terms are 

due to the changes in the viscoelastic layer properties. The second term in (7) represents the “coating elasticity 

effect,” as it is associated only with the change in the coating's elastic storage modulus, 𝐸2
′ . Note that the second 

term does not include the effect of Δ𝐸2
′  on the position of the beam's neutral axis, as evidenced by the fact 

that 𝐼1 and 𝐼2 are held fixed in the second term. The final term corresponds to the “neutral-axis shift effect,” 

because it incorporates the effect of the changing coating properties (𝐸2
′ , 𝐸′′ 2) on the neutral axis position. This 

is reflected in the changes in 𝐼1 and 𝐼2 appearing in the third term. (Recall that these are moments of inertia of 
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the individual layer cross sections with respect to the neutral axis.) The influence of these three terms will be 

analyzed hereafter. 

A. Mass Loading Effect 
In (7) the mass loading effect, which historically has been the only effect considered in sensor applications, is 

given by the term: 

(
Δ𝑓res

𝑓res
)

𝑚𝐿

= −
Δ𝑚𝐿

2𝑚𝐿
. (8) 

Due to analyte sorption, the mass of the sensitive coating increases, thereby decreasing the resonant frequency 

of the microcantilever as indicated in (8). The expression for the mass increase can be estimated if the partition 

coefficient K of the analyte/coating pair is known: 

Δ𝑚𝐿 = 𝐾ℎ2𝑏𝐶𝐴, (9) 

where 𝐶𝐴 is the analyte concentration in the fluid environment. The partition coefficient 𝐾 represents the ratio 

of the analyte concentration in the coating to the analyte concentration in the surrounding fluid. 

B. Coating Elasticity Effect 
In (7) the second term represents the effect of the coating's storage modulus (elasticity), assuming that the 

neutral axis position remains unchanged: 

(
Δ𝑓res

𝑓res
)

𝐸2
′

=
𝐼2Δ𝐸2

′

2(𝐸1𝐼1+𝐸2
′𝐼2)

. (10) 

Due to analyte sorption, the storage modulus of the sensitive layer, 𝐸2
′ , decreases and consequently 

expression (10) shows that the resonant frequency decreases, as expected. So this effect is a cumulative effect 

with the mass loading effect. 

For a given polymer and a given analyte concentration in a fluid environment, it is very difficult to estimate 

quantitatively the modification of the Young's modulus of the polymer. However, in the simulations that will be 

presented in Section IV, a rational means for specifying a reasonable value of Δ𝐸2
′  will be outlined for a case in 

which direct experimental data is not available. 

C. Neutral-Axis Shift Effect 
In (7) the last term is due to the shift in the neutral axis position, and hence the moments of inertia, due to 

changes in the viscoelastic properties of the coating: 

(
Δ𝑓res

𝑓res
)

𝐼
=

𝐸1Δ𝐼1+𝐸2
′Δ𝐼2

2(𝐸1𝐼1+𝐸2
′𝐼2)

. (11) 

For small variations, the changes in the moments of inertia may be written as: 

Δ𝐼1 =
∂𝐼1

∂𝐸2
′ Δ𝐸2

′ +
∂𝐼1

∂𝐸′′ 2
Δ𝐸′′ 2,

Δ𝐼2 =
∂𝐼2

∂𝐸2
′ Δ𝐸2

′ +
∂𝐼2

∂𝐸′′ 2
Δ𝐸′′ 2.

 (12)(13) 

Using these expressions for Δ𝐼 1 and Δ𝐼 2 yields: 
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(
Δ𝑓res

𝑓res
)

𝐼
=

𝐸1
∂𝐼1

∂𝐸2
′ +𝐸2

′ ∂𝐼2

∂𝐸2
′

2(𝐸1𝐼1+𝐸2
′𝐼2)

Δ𝐸2
′

+
𝐸1

∂𝐼1
∂𝐸′′ 2

+𝐸2
′ ∂𝐼2

∂𝐸′′ 2

2(𝐸1𝐼1+𝐸2
′𝐼2)

Δ𝐸′′ 2,

 (14) 

which may be rewritten as: 

(
Δ𝑓res

𝑓res
)

𝐼
= 𝛼Δ𝐸2

′ + 𝛽Δ𝐸′′ 2, (15) 

with: 

𝛼 ≡
𝑏ℎ1

2ℎ2
3(ℎ1+ℎ2)2𝐸1

2𝐸2 ′′2
((ℎ1𝐸1+ℎ2𝐸2

′)2−ℎ2
2𝐸2 ′′2

)

4(𝐸1𝐼1+𝐸2
′𝐼2)((ℎ1𝐸1+ℎ2𝐸2

′)2+ℎ2
2𝐸2 ′′2

)3
,

𝛽 ≡
𝑏ℎ1

2ℎ2
4(ℎ1+ℎ2)2𝐸1

2𝐸2 ′′3
(ℎ1𝐸1+ℎ2𝐸2

′)

2(𝐸1𝐼1+𝑒2
′𝐼2)((ℎ1𝐸1+ℎ2𝐸2

′)2+ℎ2
2𝐸2 ′′2

)3
.

 (16)(17) 

As mentioned previously, due to analyte sorption, the storage Young's modulus of the sensitive layer 

decreases (Δ𝐸2
′ < 0). This results in the modification of the neutral-axis contribution to the frequency shift 

according to (15), (16) and implies that Δ𝑓res has the same sign as the expression ℎ2
2𝐸2 ′′2

− (ℎ1𝐸1 + ℎ2𝐸2
′ )2. 

Assuming that the cantilever base material is silicon and the sensitive layer is a polymer, then due to the Young's 

modulus values of these different materials, the first term of (15) is negative; consequently, the decrease in 

storage modulus causes a decrease in the resonant frequency shift. So this effect (modification of neutral axis 

position due to the decrease of the storage Young's modulus) is a cumulative effect with the mass loading effect. 

Usually, the analyte sorption also modifies the loss modulus of the coating in such a way that Δ𝐸2 ′′ > 0. 

Using (15), (17), it can be seen that the change in this physical parameter causes Δ𝑓res > 0. So, this effect 

(modification of the neutral axis position due to the increase of the storage Young's modulus) is an opposite 

effect with the mass loading effect. 

D. Qualitative Effects of Analyte Sorption on Frequency Shift 
Table I summarizes the qualitative effects of analyte sorption on frequency shift that were just discussed. These 

results are based on (8), (10), and (15), which are predicated upon the assumption of small changes in the 

relevant quantities. Table I clearly shows that, for increasing concentration of analyte (i.e., increasing the mass 

and loss modulus of the coating, decreasing the storage modulus of the coating), the resonant frequency shift 

due to the mass loading and coating elasticity effects are cumulative. Both result in a decrease in frequency. The 

neutral-axis shift effect receives a negative contribution from Δ𝐸2
′  and a positive contribution from Δ𝐸2

′′, so that 

a general qualitative conclusion cannot be drawn regarding this effect. However, as will be seen in Section IV, 

the magnitude of the neutral-axis shift effect appears to be extremely small so that it is not expected to be of 

practical significance. 

Table I Qualitative Effects of Analyte Sorption. 

Physical 

effect 

Δ𝑓𝑟𝑒𝑠 due to mass 

effect 

Δ𝑓𝑟𝑒𝑠 due to elastic 

effect 

Δ𝑓𝑟𝑒𝑠 due to neutral 

axis effect 

Δ𝑓𝑟𝑒𝑠 total 

∆𝑚𝐿  >  0 (∆𝑓𝑟𝑒𝑠)𝑚𝐿 <  0 (∆𝑓𝑟𝑒𝑠)𝐸2
′  =  0  (∆𝑓𝑟𝑒𝑠)𝐼  =  0  (∆𝑓𝑟𝑒𝑠)  <  0 

∆𝐸2
′  >  0 (∆𝑓𝑟𝑒𝑠)𝑚𝐿 =  0  (∆𝑓𝑟𝑒𝑠)𝐸2

′ <  0 (∆𝑓𝑟𝑒𝑠)𝐼 <  0 (∆𝑓𝑟𝑒𝑠)  <  0 
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∆𝐸2
′′  >  0 (∆𝑓𝑟𝑒𝑠)𝑚𝐿 =  0  (∆𝑓𝑟𝑒𝑠)𝐸2

′  =  0 (∆𝑓𝑟𝑒𝑠)𝐼 >  0 (∆𝑓𝑟𝑒𝑠) >  0 

 

SECTION IV. Simulations and Discussion 
In this section numerical results are presented to quantify the contribution of each effect to the overall 

frequency shift of a chemical sensor in gas phase, and to determine under what conditions a particular effect 

may be neglected. Another objective is to investigate the accuracy of the approximate equations (8), (10), 

and (15). 

A. Simulation Parameters 
For the simulations, the geometry of the microcantilever is given by 𝐿 = 300 𝜇𝑚,𝑏 = 50 𝜇𝑚, and ℎ1 = 4 𝜇𝑚, 

giving a nominal resonant frequency of 58 kHz. Poly(isobutylene) (PIB) and toluene are assumed here as the 

coating material and analyte, respectively. The coating thickness is taken as ℎ2 = 1𝜇m. The partition coefficient 

for toluene (in gas phase) and PIB, is assumed to be 𝐾 = 583 [12]–[13][14]. for PIB at the frequency of interest, 

the storage shear modulus is 𝐺′ = 144MPa and the loss shear modulus is 𝐺′′ = 218MPa [15]. The Poisson's 

ratio of PIB is assumed to ben 𝜈 = 0.49 [16]. 

The shear moduli are converted to Young's moduli by using the mechanics of materials relationship 

𝐺 =
𝐸

2(1+𝜈)
. (18) 

This expression results in storage and loss Young's moduli for PIB of 𝐸2
′ = 429MPa and 𝐸2 ′′ = 650MPa. 

B. Variations in Coating Properties 
The main purpose of this paper is to study the effects of analyte concentration on coating properties and, thus, 

on frequency response. Hence, it is necessary to specify an appropriate range of coating properties. 

As expressed previously, the mass change of the polymer can be estimated using (9) for a given analyte 

concentration. However, without actual experimental results on the plasticization effect, it is difficult to predict 

the change in the viscoelastic properties of a polymer due to analyte sorption. However, from recent related 

work using guided shear horizontal surface acoustic wave (SHSAW) sensors [17] changes in the shear modulus of 

PIB [18] upon exposure to different concentrations of toluene have been experimentally obtained. Due to the 

approximately linear character of the experimental data, the data may be linearized with respect to 

concentration, the results of which are summarized here in Table II. This data was obtained for a higher 

frequency device (100 MHz) and in aqueous solution of the analyte. (For this reason, the second column of data 

was generated using a partition coefficient for toluene/PIB pair in liquid phase of 𝐾 = 140 [14].) Although such 

data cannot be used directly in the present simulation for a lower-frequency microcantilever device in gas 

phase, they can serve as a guide for choosing the relative variation in the PIB properties, i.e., the percent 

change, provided that the variations in property values correspond to the same concentration in the coating. 

Table II Measured Relative Modification of the Young's Moduli of PIB for Toluene Sorption in Aqeous 

Environment Using Guided SH-SAW Sensors. 

Toluene concentration 

(g m3⁄ ) (ppm aqueous) 

Toluene concentration in 

coating (kg m3⁄ ) 

Percent variation in 

𝐸2
′ (𝜔) 

Percent variation in 

𝐸2
′′(𝜔) 

57.6(10) 8.06 -2.08 +20.8 

115(20) 16.13 -4.17 +41.7 

172(30) 24.19 -6.25 +62.5 
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230(40) 32.26 -8.33 +83.3 

288(50) 40.32 -10.42 +104.1 

 

Note that the experimental data of Table II show that the variations of a polymer's properties due to sorption 

may be significant, and this may in turn have an important effect on the performance of microcantilever devices. 

In addition, these changes may be accompanied by swelling effects. Such effects are ignored in the present 

simulation, but they easily may be incorporated by generalizing (11) to account for Δℎ2. In what follows, the 

relative variations of viscoelastic layer properties will be based on an interpolation of the linearized data in Table 

II. 

C. Effect of Mass Variation 
Using (8), the relative frequency shift due to a variation in the mass can be calculated (see Table III). Toluene 

concentrations of 10, 100, and 1000 mg/m3 in gas have been arbitrarily chosen for studying the effect of adding 

mass. The corresponding values of toluene concentrations in the coating are calculated directly using the 

partition coefficient 𝐾 = 583 in (9) and are listed in the first row of the Table III. To facilitate comparison with 

simulations associated with changing the coating properties, the same values of toluene concentration in the 

coating will be used in all the numerical results that follow. 

Table III Relative Frequency Shift Due to Mass Variation. 

Toluene concentration in coating (g m3⁄ ) 5.84 58.4 584 

Toluene concentration in gas (mg m3⁄ ) 10 100 1000 

(
∆𝑓res

𝑓res
)

𝑚𝐿

 
-2.853e 

07 

-2.853e- 

06 

-2.853e- 

05 

 

Table III shows that the relative frequency shift due to the added mass is linearly related to the concentration. 

The reason for this is twofold: (9) is linear and a linear approximation (small-variation assumption) was used in 

deriving (8). The validity of the latter has been confirmed in a separate calculation by showing that the values 

in Table III are identical to the exact theoretical values of frequency shift using (6). Although the linearity of the 

frequency shift due to mass effects is well-known in the microcantilever sensors community, Table III is included 

here because the corresponding results for the other effects (variation in coating elasticity and neutral-axis 

position) will be presented shortly for comparison purposes. 

D. Effect of Storage Modulus Variation 
The variation of the storage modulus 𝐸2

′  has two effects: first, it is responsible for the coating elasticity 

effect (10); second, it contributes to the neutral-axis shift effect (15). The results of the simulation are shown 

in Table IV. The first two rows of the table represent the specified concentrations and the corresponding 

variations in the storage modulus of the coating. The last two rows show the frequency shifts due to the coating 

elasticity and neutral-axis shift effects, respectively, caused by the change in 𝐸2
′ . [In (10) and (15), the value 

of Δ𝐸2 ′′ is taken as zero here because we are only considering the effect of Δ𝐸2 ′ in this section.] At the highest 

concentration (1000 mg/m3), the variation in 𝐸2
′  is only 0.15%. However, Table IV illustrates that these relatively 

small changes in the storage modulus lead to a frequency shift due to the coating elasticity effect (Δ𝑓res/

𝑓res)𝐸2
′  that is 9% of that due to the mass loading effect (Δ𝑓res/𝑓res)𝑚𝐿

 ' and that this value (9%) is independent 

of the concentration. Moreover, should the storage modulus of a coating material be more sensitive to analyte 

concentration than the PIB/toluene combination considered here, the coating elasticity effect could be even 

more significant relative to the mass effect. In the present case, this high sensitivity to such a small change in 
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modulus may seem surprising, until one considers that the corresponding percent change in coating mass is a 

mere 0.064%. Also illustrated in Table IV is the same linearity of results that was present due to mass variation. 

The reasons for this are: the material property data of Table II is linear with respect to concentration, and a 

linear approximation was used in deriving (10) and (15). The validity of the second approximation has been 

confirmed for the values in row 3 of Table IV by performing a separate calculation demonstrating that they are 

identical to the exact theoretical values of frequency shift due to the elasticity effect. However, for the values in 

the last row of Table IV (neutral-axis shift effect), the same cannot be said. There is approximately 50% error in 

the linear estimate at the highest concentration considered. However, because the exact values of the neutral-

axis shift effect due to Δ𝐸2
′  are still 6 to 7 orders of magnitude smaller than the mass and elasticity effects, this 

issue will not be pursued further. 

Table IV Relative Frequency Shift Due to Storage Young's Modulus Variation. 

Toluene concentration in coating (g m3⁄ ) 5.84 58.4 584 

% Variation in 𝐸2
′ (𝜔) -0.0015 -0.015 -0.15 

(
Δ𝑓𝑟𝑒𝑠

𝑓𝑟𝑒𝑠
)

𝐸2
′

 
-2.55e-8 -2.55e-7 -2.55e-6 

(
Δ𝑓𝑟𝑒𝑠

𝑓𝑟𝑒𝑠
)

𝐼

 
-5.84e-14 -5.84e-13 -5.84e-12 

 

E. Effect of Loss Modulus Variation 
The variation of the loss modulus 𝐸2 ′′ modifies the position of the neutral axis and, thus, only the last term of 

the frequency shift (7), which is isolated in (15). The numerical results are presented in Table V. Analogous 

to Tables III and IV, this table indicates the percent change in the loss modulus corresponding to the specified 

concentrations and the corresponding frequency shifts, which in this case are due only to the shifting of the 

neutral axis. At the highest concentration (1000 mg/m3), the variation in. 𝐸2 ′′ is 1.5%, which is 10 times larger 

than the corresponding variation in storage modulus. However, this change in the loss modulus yields values of 

the neutral-axis shift effect (Δ𝑓res/𝑓res)𝐼 that are negligible as was the case for changes in the storage modulus. 

Hence, the total neutral-axis shift effect appears to be negligible in comparison with the mass and coating 

elasticity effects. Moreover, because changes to the coating loss modulus affect only the neutral-axis shift 

portion of the frequency change, one may conclude that sorption-induced changes to the loss modulus do not 

appreciably affect the frequency shift of the microcantilever sensor. 

Table V Relative Frequency Shift Due to Loss Young's Modulus Variation. 

Toluene concentration in coating (g m3⁄ ) 5.84 58.4 584 

% Variation in 𝐸2
′ (𝜔) -0.0015 -0.015 -0.15 

(
Δ𝑓𝑟𝑒𝑠

𝑓𝑟𝑒𝑠
)

𝐼

 
1.94e-15 1.94e-14 1.94e-13 

 

Also illustrated in Table V is the same linearity of results that was present due to mass variation and storage 

modulus variation, and the reasons are identical to those given in the previous section. As in the previous 

section, the accuracy of the linear approximation (15) that was used to calculate the last row of Table V is 

compromised at higher concentrations, but this error will not be considered in more detail because of the 

negligible magnitude of this contribution to frequency shift. 
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F. Discussion 
Based on the results generated in the forgoing simulation, a number of potentially important observations may 

be made. 

The detailed partitioning of the frequency shift into mass, coating elasticity, and neutral-axis shift effects 

showed that the latter effect is several orders of magnitude smaller than the mass loading and coating elasticity 

effects. Therefore, this effect is expected to be negligible in most, if not all, microcantilever sensor applications. 

Of the remaining two effects, the mass loading effect was found to be dominant in the illustrative example, yet 

the coating elasticity effect also provided a significant contribution to the total frequency shift. In particular, the 

changes in the coating's storage modulus resulted in a frequency shift that was 9% of the mass loading effect, 

which means that the coating elasticity effect represents about 8% (=  0.09/1.09) of the total frequency shift. 

Another simulation performed for a thicker coating (4 μm versus 1 μm) resulted in the coating elasticity effect 

being 30% of the mass effect, or 23% of the total frequency shift. of course, for other values of problem 

parameters and other analyte/coating pairs, the importance of the change in E′2 could be even more (or less) 

important. 

At first thought, one might expect that the coating elasticity effect would be less important at smaller 

concentrations because of the smaller change in coating properties that are expected. However, this analytical 

study shows that the ratio of the coating elasticity effect to the mass loading effect is independent of 

concentration. Although it is true that coating properties change less at lower concentrations, one must 

remember that the mass loading also is proportional to the concentration of the sorbed analyte, and this is the 

reason that the relative importance of the two effects is insensitive to concentration. 

The simulations performed herein were based on linearized data relating coating properties to concentration. 

for the range of concentrations considered, this linearization matches the experimental data quite well. 

However, the experimental data at higher concentrations shows a nonlinear behavior, i.e., the coating 

properties begin to change at a higher rate at higher concentrations [17]. This observation means that, at higher 

concentrations (at least for the toluene/PIB pair considered), the coating elasticity effect would represent an 

even more significant contributor to the frequency shift than what was found in this study. 

Another implication of this study pertains to the possible experimental determination of partition coefficients of 

selective coatings using coated microcantilevers. for example, if one were to monitor the frequency shift of a 

coated cantilever for the purpose of “back-calculating” the partition coefficient of the coating material as was 

done using surface acoustic wave, an incorrect 𝐾 value would be obtained if one assumed that the frequency 

shift were due entirely to the mass loading effect. for example, if in actuality the coating elasticity effect were 

30% of the mass effect, the true 𝐾 value would be overestimated by 30%. In such a case, the back-

calculated 𝐾 value should be interpreted as an effective partition coefficient that lumps the effects of mass 

loading and coating elasticity (and perhaps other effects, such as swelling) into a single parameter. It would be 

incorrect to apply the standard, mass-based definition of partition coefficient (9) to such a quantity. 

A final point of interest is that a very accurate estimate of the reference resonant frequency (prior to analyte 

exposure) may be made by ignoring the coating entirely. This point is very well known and is often accepted in 

the calculation of the reference frequency (e.g., [19]). for the problem parameters considered in the simulation 

of this study, the resonant frequency would be underestimated by only 0.2% if the coating were ignored in the 

calculation. However, if the change in the coating elasticity (𝐸2
′ ) were ignored in calculating the frequency shift, 

the magnitude of the shift would be underestimated by a full 8%, or two orders of magnitude greater than the 

corresponding error in the reference frequency calculation. for other values of problem parameters, this error 

could be significantly more. Therefore, it is important to distinguish between the influence that the coating has 
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on the reference frequency (usually negligible) and the impact that changes in coating properties may have on 

the frequency shift (often significant). 

SECTION V. Summary 
By using a recently developed analytical model for the dynamic behavior of a two-layer hybrid 

(elastic/viscoelastic) beam, the relationship between a microcantilever sensor's resonant frequency shift caused 

by analyte sorption and the analyte concentration has been established. Sorption-induced changes in the 

properties of the selective coating have been included in the model so that their effect can be compared to the 

mass loading effect that is usually considered. The total frequency shift has been partitioned into three 

contributions: the mass loading effect, the coating elasticity effect (due to changes in the coating's storage 

modulus), and the neutral-axis shift effect (caused by changes to the coating's storage and loss moduli). 

Based on simulations performed using the model, the following observations are made: 

• The neutral-axis shift effect is negligible. Therefore, this means that any sorption-induced changes in the 

loss modulus of the coating may be ignored in calculating the frequency shift. 

• The coating elasticity effect may be significant. Simulations show that this effect can be up to 30% of the 

mass loading effect for a toluene analyte (in gas) and a PIB coating and possibly could be higher for 

other systems. 

• The mass loading and coating elasticity effects are cumulative, i.e., both cause the resonant frequency 

to decrease. 

• For a given sensor system, the ratio of the coating elasticity effect to the mass loading effect is 

independent of analyte concentration. This result will be valid over a range of concentrations in which 

the storage modulus of the coating varies linearly with concentration. At higher concentrations, 

nonlinearities in the coating properties may cause the coating elasticity effect to have an even greater 

influence on the frequency shift. 

• Even when detecting a small concentration of analyte that causes very small changes in the coating 

properties, these changes still may provide a significant contribution to the total frequency shift. 

• If a partition coefficient (𝐾) is experimentally determined by monitoring the frequency shift of a coated 

micro cantilever and extracting a 𝐾 value for the analytc/coating pair, its value may be significantly 

overestimated if only the mass loading effect is considered. The coating elasticity effect also may 

contribute significantly to the observed frequency shift, in which case it, too, should be incorporated in 

the extraction. The analytical model presented in this paper may prove useful for this purpose. 

• The common practice of ignoring the coating in calculating the reference frequency of a coated 

microcantilever is usually justified because the coating is typically much softer than the base material. 

However, the change in the coating's storage modulus caused by sorption may still have a large impact 

on the frequency shift; therefore, this effect should be considered. 

 

SECTION VI. Conclusions 
The main conclusion of this analytical study is that, even if the sensitive coating moduli are small compared to 

the base cantilever Young's modulus, the effect of the change in the viscoelastic properties (even a very small 

change) could be a significant increase in the resonant frequency shift beyond that attributed to mass loading 

only. for chemical sensor applications with detection levels in the pictogram or femtogram range, ignoring this 

effect could be a significant source of error. 
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