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Abstract 

 

In an effort to probe the role of the Zn(II) sites in metallo-β-lactamase L1, 

mononuclear metal ion containing and heterobimetallic analogues of the 

enzyme were generated and characterized using kinetic and spectroscopic 

studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the 

consensus Zn1 site, was shown to be slightly active; however, this enzyme did 

not stabilize a nitrocefin-derived reaction intermediate that had been 

previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were 

essentially inactive, and NMR and EPR studies suggest that these metal ions 

bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and 

ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies 

revealed that these enzymes rapidly hydrolyze nitrocefin and that there are 

large amounts of the reaction intermediate formed during the reaction. The 

heterobimetallic analogues were reacted with nitrocefin, and the reactions 

were rapidly freeze quenched. EPR studies on these samples demonstrate 

that Co(II) is 5-coordinate in the resting state, proceeds through a 4-

coordinate species during the reaction, and is 5-coordinate in the 

enzyme−product complex. These studies demonstrate that the metal ion in 

the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 
site is crucial for stabilization of the nitrocefin-derived reaction intermediate. 

Introduction 

β-Lactam-containing compounds are the most widely used 

antibiotics, and they exert their antimicrobial activity by inhibiting the 

cross-linking of the peptidoglycan building blocks of bacterial cell 

walls.1 Ever since the introduction of these antibiotics in the clinic, 
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there has been an increasing number of bacterial strains that are 

resistant to these drugs. The most common way that bacteria become 

resistant to β-lactams is through the production of β-lactamases, 

which cleave the β-lactam bond and inactivate the drug.2 There are 

500 known β-lactamases, and these enzymes have been classified into 

four groups.3 Although groups A, C, and D exhibit different substrate 

specificities and susceptibilities to clinical inhibitors, they are similar in 

the fact that they utilize an active-site serine as a nucleophile to attack 

the β-lactam carbonyl, generating a tetrahedral intermediate.1 The 

group B enzymes, on the other hand, require 1−2 Zn(II) ions to 

hydrolyze β-lactams and thus are called metallo-β-lactamases (Mβls).4 

Mβls have been further categorized into three subgroups according to 

amino acid homology, substrate preference, and the number of Zn(II) 

ions required for full activity. The B1 subgroup, represented by CcrA, 

BcII, and IMP-1, have two metal binding sites: Zn1, which consists of 

three histidines and a bridging hydroxide to coordinate Zn(II), and 

Zn2, which consists of one histidine, one aspartate, one cysteine, the 

bridging hydroxide, and a terminally bound H2O to coordinate Zn(II). 

The B2 enzymes, represented by CphA and ImiS, bind Zn(II) at the 

consensus Zn2 site, which contains one histidine, one aspartate, one 

cysteine, and a solvent molecule to coordinate Zn(II). The B3 

enzymes, represented by L1 and FEZ, bind two Zn(II) ions, contain the 

same Zn1 site as the B1 enzymes, and utilize a Zn2 site, which consists 

of two histidines, one aspartate, one terminally bound water, and the 

bridging hydroxide. Recently, a B2/B3 hybrid, metallo-β-lactamase 

GOB from Elizabethkingia meningoseptica, binds only 1 Zn(II) in the 

Zn2 site.5 

 

There exists considerable controversy about the metal content 

of the nominally dinuclear Zn(II)-containing (B1 and B3) Mβl’s. The 

initial crystal structure of BcII showed a single Zn(II) ion in the Zn1 

site of the enzyme;6 however, subsequent structures have shown a 

dinuclear Zn(II) site in BcII.7,8 Similar conflicting data on the metal 

content of L1, IMP-1, and CcrA have not been reported; however, 

Wommer et al. used in vitro binding assays to predict that all Mβl’s are 

metal-free in vivo and become mononuclear enzymes only in the 

presence of substrate.9 Wommer et al. continued by concluding that 

dinuclear Zn(II)-containing Mβl’s are isolation artifacts. Nonetheless, 

Page and co-workers have recently reported that BcII containing only 
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one equivalent of Co(II) is inactive, and the loss of metal ion during 

catalysis is the reason for the burst kinetics exhibited by this 

enzyme.10-12 In constrast, Vila and co-workers have recently published 

that the BcII containing only one equivalent of Zn(II) is catalytically 

active13,14 and that B3 subgroup member, GOB, requires only a single 

metal ion in the Zn2 to be active, analogous to the B2 enzymes.5 

 

The metal ion binding characteristics of L1, CcrA, and BcII have 

been investigated and characterized.4,15 However, of much greater 

interest is the nature of the metal ion complement that is required for 

activity and the roles in catalysis, if any, of each of the metal ions that 

can be accommodated by these enzymes. The study of mononuclear or 

mixed-metal analogues of the enzymes provides one mechanism for 

the elucidation of the role of each metal and to indicate whether one or 

both are essential for activity. In addition, this information could be 

used to guide rational drug design efforts that use the Zn1, Zn2, or 

both sites as targets for inhibitors. 

 

In this work, we describe the preparation and characterization of 

mononuclear metal ion- and mixed-metal-containing analogues of Mβl 

L1 from Stenotrophomonas maltophilia; kinetic, spectroscopic, and 

spectrokinetic analyses of these species reveal roles for both metal 

ions in catalysis. 

Materials and Methods 

Materials  
 

Escherichia coli strains DH5α and BL21(DE3)pLysS were 

purchased from Gibco BRL (Gaithesberg, MD) and Novagen (Madison, 

WI), respectively. Plasmids pET26b(+) and pUC19 were purchased 

from Novagen. Restriction enzymes, NcoI and HindIII, 

deoxynucleotides (dNTPs), thermopol buffer, MgSO4, and T4 DNA 

ligase were obtained from New England Biolabs (Beverly, MA), 

Promega Corporation (Madison, WI), and Gibco BRL. QuikChange site-

directed mutagenesis kit was purchased from Stratagene. All 

mutagenic primers were purchased from Integrated DNA Technologies 

(IDT, Coralville, IA). Polymerase chain reaction (PCR) was performed 

using a Thermolyne Amplitron II from Barnstead (Dubuque, IA). DNA 
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purification was performed by using a Qiagen Quick Gel Extraction kit 

(Velencia, CA). The QIAGEN-tip 100 kit and protocols were used for 

large-scale plasmid purifications. A Wizard Plus Miniprep kit from 

Promega was used for small-scale plasmid DNA preparations. 

Luria−Bertani (LB) media was purchased from Invitrogen (Carlsbad, 

CA). Isopropyl-β-d-thiogalactoside (IPTG) was purchased from 

Anatrace (Maumee, OH). All buffer solutions were prepared using 

chemicals purchased from Fisher Scientific (Pittsburgh, PA). All buffers 

and growth media were made with Barnstead NANOpure, ultrapure 

water. For metal-free solutions, Chelex 100 resin (Biorad Laboratories, 

Hercules, CA) was used, and the resulting solutions were filtered 

through a 0.45-μm filter membrane (Osmonic Inc.). Dialysis tubing 

was prepared as per Sambrook et al.16 from Spectro/Por regenerated 

cellulose, molecular porous membranes with a molecular weight cutoff 

of 10,000 Da (Spectrum Corporation, Gardena, CA). A fast protein 

liquid chromatography (FPLC) system, chromatography columns, and 

resins were purchased from GE Healthcare. Nitrocefin was obtained 

from Becton Dickinson Microbiology System (Cockeysville, MD), and 

solutions of nitrocefin were prepared as previously described.17 

 

Generation of Histidine Mutants of L1 by Site-Directed 

Mutagenesis  
 

The overexpression plasmids of four His→Cys L1 mutants, 

H116C, H118C, H121C, and H196C were constructed using the L1 

overexpression plasmid pET26b(+), which yields the full-length form 

of the enzyme, and the QuikChange site-directed mutagenesis kit as 

per the instructions of the manufacturer. The following primers were 

used to generate the mutants: 

 

H116Cfor 

CGGCTGATCCTGCTCAGCTGCGCACACGCCGACCATGCC 

H116Crev 

GGCATGGTCGGCGTGTGCGCAGCTGAGCAGGATCAGCCG 

H118Cfor 
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ATCCTGCTCAGCCACGCATGCGCCGACCATGCCGGACCG 

H118Crev 

CGGTCCGGCATGGTCGGCGCATGCGTGGCTGAGCAGGAT 

H121Cfor 

CACGCACACGCCGACTGCGCCGGACCGGTGGCG 

H121Crev 

CGCCACCGGTCCGGCGCAGTCGGCGTGTGCGTG 

H196Cfor 

CACTTCATGGCGGGGTGCACCCCGGGCAGCACCGCG 

H196Crev 

CGCGGTGCTGCCCGGGGTGCACCCCGCCATGAAGTG 

H225Cfor 

GTGTTGCTGACACCGTGCCCGGGTGCCAGCAAC 

H225Crev 

GTTGCTGGCACCCGGGCACGGTGTCAGCAACAC 

 

Overexpression of His→Cys Mutants  
 

Large-scale preparations of His→Cys L1 mutants were 

conducted by using the procedure of Crowder et al.17 L1 was 

quantitated by monitoring the absorbance at 280 nm and using an 

extinction coefficient of 54,600 M−1cm−1.17 
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Preparation of 1Zn-, 1Co-, 1Fe-L1  
 

Mature L1 (M-L1) was overexpressed as previously described by 

adding 100 μM ZnCl2, CoCl2, or Fe(NH4)2(SO4)2 to the minimal 

medium.18 After protein overexpression and centrifugation to collect 

the E. coli cells, the pellet was resuspended in 300 mL of 50 mM 

Hepes, pH 6.0, and the suspension was centrifuged for 15 min 

(8200g). The resulting pellet was resuspended in 50 mM Hepes, pH 

6.0, and the cells were lysed by using a French press as previously 

described.17 The cleared supernatant (centrifugation for 25 min at 

23,400g) was loaded onto a 25 mL SP-Sepharose column that was 

equilibrated with 50 mM Hepes, pH 6.0, and bound proteins were 

eluted from the column using a linear 0−500 mM NaCl gradient in the 

same buffer. L1 typically eluted at 80−120 mM NaCl, and the fractions 

were analyzed for the presence of L1 by using SDS-PAGE, as 

previously described.17 

 

Preparation of ZnCoL1, ZnFeL1, FeFeL1, and CoCoL1 

samples  
 

The ZnFe analogue of L1 was prepared by adding 3 equiv of 

Zn(II) to as-isolated 1FeL1 or 3 equiv of Fe(II) to as-isolated 1ZnL1, 

followed by dialysis against 4 × 1 L of Chelex-treated 50 mM Hepes, 

containing 50 mM NaCl, to remove unbound metal. The ZnCo analogue 

was prepared by adding 3 equiv of Zn(II) to 1CoL1. The FeFe and 

CoCo analogues of L1 were prepared by refolding apo-L1 in the 

presence of 100 μM Fe(II) or Co(II), as recently described.18 

 

Metal Analyses  
 

The metal content of the protein samples was determined by 

using a Varian Liberty 150 inductively coupled plasma spectrometer 

with atomic emission spectroscopy detection (ICP-AES). All the 

proteins were diluted to 10 μM with 50 mM Hepes, pH 7.0. A 

calibration curve with four standards and a correlation coefficient of 

greater than 0.999 was generated using Zn(II), Fe, and Co(II) 

reference solutions from Fisher Scientific. The following emission 

wavelengths were chosen to ensure the lowest detection limits 
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possible: Zn(II), 213.856 nm, Fe, 259.940 nm, and Co(II), 238.892 

nm. 
 

1H NMR Spectroscopy  
 

1H NMR spectra were collected on a Bruker Avance 500 

spectrometer operating at 500.13 MHz, 298 K, magnetic field of 11.7 

T, recycle delay (AQ) of 41 ms, and sweep width of 400 ppm. Proton 

chemical shifts were calibrated by assigning the H2O signal the value 

of 4.70 ppm. A modified presaturation pulse sequence (zgpr) was used 

to suppress the proton signals originating from solvent. The 

presaturation pulse was as short as possible (500 ms) to avoid 

saturation of solvent-exchangeable proton signals. The concentration 

of NMR samples was generally in the range of 1.0−1.2 mM. Samples in 

D2O were prepared by performing three or more dilution/concentration 

cycles in a Centricon-10. 

 

Rapid-Freeze-Quench (RFQ) and EPR Spectroscopy  
 

L1 (0.5 mM) was reacted with 1.5 mM nitrocefin in 50 mM 

cacodylate buffer, pH 7.0, and at 3 ± 1 °C, and the reaction mixture 

was freeze-quenched for EPR spectroscopy using a system described in 

earlier work19,20 the calibrated reaction time was 10.4 ± 0.5 ms. 

Following EPR data collection, some samples were thawed by agitation 

of the sample tubes in water at 25 °C for 2 min and refrozen in liquid 

nitrogen. Low temperature EPR spectroscopy was carried out using a 

Bruker EleXsys E600 spectrometer equipped with an Oxford 

Instruments ITC503 liquid helium flow system. EPR was recorded at 

9.63 GHz (B0⊥B1) or 9.37 GHz (B0∥B1) using an ER4116DM dual-mode 

cavity, with 100 kHz magnetic field modulation. Other EPR recording 

parameters are given in the legends to figures. 

 

Steady-State Kinetics  
 

All kinetic studies were conducted on a Agilent 8453 UV−vis 

diode array spectrophotometer at 25 °C. Steady-state kinetic 

parameters, the Michaelis constant Km and the turnover number kcat, 

were determined by monitoring product formation at 485 nm using 

nitrocefin as substrate in 50 mM Chelex-treated, cacodylate buffer, pH 
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7.0. The rate of change in the absorbance at 485 nm was converted 

into the rate of change in the concentration of the product by dividing 

the absorbance (path length = 1 cm) by the extinction coefficient of 

the product 17,420 M−1 cm−1.17 

 

Stopped-Flow Kinetic Studies  
 

Stopped-flow kinetic experiments were performed on an Applied 

Photophysics SX18MV spectrophotometer equipped with a constant-

temperature circulating water bath as previously described.21-23 All 

experiments were performed in 50 mM Chelex-treated, cacodylate 

buffer, pH 7.0, at 10 °C. All the proteins were diluted with 50 mM 

Chelex-treated, cacodylate buffer to 100 μM, and the substrate was 

prepared and diluted to 100 μM in the same buffer. 

Results 

Mutations of Metal Binding Histidines  
 

Our previous attempts to prepare a mixed-metal analogue of L1 

by adding Co(II) to apo- or 1Zn-L1 were unsuccessful primarily due to 

the oxidation of Co(II) to Co(III).24 Another potential problem with 

generating a mixed-metal analogue is the reported dissociation 

constants for metal binding to the Zn1 and Zn2 sites in L1. Wommer et 

al. reported that the Zn(II) binding constants to the two sites in L1 are 

2.6 and 6 nM.9 This result suggests that the addition of different metal 

ions to apo-L1 would result in sample with mixtures of possible metal 

centers. Therefore, we attempted to prepare a mixed-metal analogue 

of L1 by weakening one of the metal binding sites through mutation of 

one of the histidine groups in each metal binding site. For example, we 

reasoned that the mutation of His116 to Cys in the Zn1 site would 

result in a mutant that binds the first added metal ion tightly to the 

Zn2 site and the second metal ion much less tightly to the Zn1 site. 

 

Five metal binding mutants of L1 (H116C, H118C, H121C, 

H160C, and H263C) were successfully prepared using nondegenerate 

oligonucleotides, the QuikChange Site Directed Mutagenesis kit, and 

polymerase chain reaction. DNA sequencing of the resulting L1 genes 

in both directions was used to confirm that only the desired mutations 
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were present. Small-scale growth cultures showed that all five mutants 

were overexpressed at levels comparable to that of wild-type L1. 

However, large-scale (4 L) overexpression and purification of these 

mutants showed that only the H116C and H121C mutants were soluble 

and could be purified. 

 

The purified mutants were analyzed for metal binding. After 

purification, the H116C mutant was shown to bind 0.33 equiv of 

Zn(II), while the H121C mutant bound 0.11 equiv of Zn(II) (Table 1). 

The mutants were incubated with a 10 fold excess of Zn(II), and the 

resulting enzymes were then exhaustively dialyzed versus Chelex-

treated buffer. Zn(II)-loaded H116C and H121C mutants were shown 

to bind 0.85 and 0.98 equiv of Zn(II), respectively (Table 1), which is 

one-half of the metal bound by recombinant wild-type L1. The as-

isolated and Zn(II)-loaded mutants were characterized by using 

steady-state kinetic studies. As-isolated H116C and H121C mutants 

exhibited kcat values of <0.01 s−1 when using nitrocefin as substrate; 

however, the Zn(II)-loaded H116C and H121C mutants exhibited kcat 

values of 0.38 and 2.3 s−1 and Km values of 20 and 72 μM, 

respectively. The inclusion of 100 μM Zn(II) in the steady-state 

kinetics assay buffer resulted in no change in the steady-state kinetic 

constants for the H116C mutant and a kcat = 33 s−1 and a Km = 99 μM 

for the H121C mutant, when using nitrocefin as the substrate. While 

we were successful in preparing analogues of L1 with differential metal 

binding affinities for the Zn1 and Zn2 sites, one of the mutants 

exhibited very little activity (H116C), and the other exhibited a Km 

value that suggested a large change in the active site of the enzyme 

(H121C). 

 

Table 1. Steady-State Kinetic Parameters and Metal Content of HXXC 

Mutants of L1 

mutant kcat(s−1) Km(μM) Zn(II)content 

H116Ca <0.01 ND 0.33 ± 0.01 

H121Ca <0.01 ND  0.11 ± 0.01 

H116Cb 0.38 ± 0.01 20 ± 1 0.85 ± 0.05 

H121Cb 2.3 ± 0.2 72 ± 25 0.98 ± 0.05 

H116Cc 0.35 ± 0.01 18 ± 1 NA 

H121Cc 33 ± 4 99 ± 15 NA 

as-isolated/wild-type L1c 41 ± 1 4 ± 1 1.90 ± 0.01 
aAs isolated. 
bAfter adding 2 equiv of Zn(II) and then dialysis. 
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cReaction with 100 μM Zn(II) in buffer; ND - not determined; NA - not applicable. 

 

Preparation and Characterization of the ZnCo-Analogue 

of L1  
 

Our initial attempts to prepare Co(II)-substituted L1 by 

biological incorporation were unsuccessful because of the oxidation of 

Co(II) to Co(III) presumably during protein purification.24 In these 

studies, the gene for L1 contained a leader sequence that directed the 

export of overexpressed L1 into the periplasm of E. coli, and our 

recent studies strongly suggest that folding and metalation of L1 

occurs in the periplasm.18 In this same study, we demonstrated that 

the removal of the leader sequence from the L1 gene resulted in the 

enzyme being folded and metallated in the cytoplasm of E. coli. 

Significantly, the metal content of the resulting enzyme could be 

affected greatly by the addition of metal ions in the growth medium. 

 

In an effort to prepare a Co(II)-substituted form of L1, we 

overexpressed L1 in minimal medium containing 100 μM CoCl2 using 

the L1 gene without the leader sequence. The resulting, purified 

enzyme (called 1Co-L1) was pink, and the color did not change up to 

two months in 4 °C. Metal analyses revealed that the protein bound 

0.9 equiv of cobalt and 0.1 equiv of Zn(II) (Table 2). Steady-state 

kinetic studies revealed that the enzyme exhibited a kcat of 11 ± 1 s−1 

and a Km of 4.3 ± 0.1 μM, when using nitrocefin as a substrate (Table 

2). These steady-state kinetic constants are different than those of 

ZnZn-L1 (kcat of 39 s−1; Km of 5.9 μM); 1Zn-L1 (kcat of 30 s−1; Km of 5.5 

μM), and CoCo-L1 (kcat of 63 s−1; Km of 20 μM) (Table 2). In addition, 

the kcat values exhibited by the mononuclear metal ion containing 

analogues are not one-half of those exhibited by the dinuclear metal 

ion-containing analogues, suggesting that the samples of mononuclear 

metal ion-containing analogues are not made up of one-half dinuclear 

metal ion-containing analogues and one-half apo-enzymes. 

 

Table 2. Steady state kinetics of different metal bound analogues of L1 

species kcat(s−1) Km(μM) metal content 

ZnZn-L1 39 ± 1 5.9 ± 0.5 2.0 ± 0.1 Zn(II) added 

1Zn-L1 30 ± 1 5.5 ± 0.7 1.0 ± 0.1 Zn(II) 

1Co-L1 11 ± 1 4.3 ± 0.1 0.9 ± 0.1 Co, 0.10 ± 0.01 Zn(II) 

1Fe-L1 2.6 ± 1 53 ± 25 0.9 ± 0.1 Fe, 0.20 ± 0.01 Zn(II) 
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species kcat(s−1) Km(μM) metal content 

CoCo-L1a 63 ± 3 20 ± 1 1.80 ± 0.20 Co 

FeFe-L1a 0 N/A 1.90 ± 0.01 Fe 

ZnCo-L1 26 ± 0.3 2.3 ± 0.1 1.0 ± 0.1 Zn(II); 1.0 ± 0.1 Co 

ZnFe-L1b 20 ± 2 3.6 ± 1 1.0 ± 0.1 Zn(II); 1.0 ± 0.1 Fe 

ZnFe-L1c 24 ± 3 4.0 ± 1 1.2 ± 0.1 Zn(II); 0.9 ± 0.1 Fe 
aData from Hu et al.26 
bFe added to Zn-L1 and then dialysis. 
cZn(II) added to Fe-L1 and then dialysis. 

 

The UV−vis difference spectrum of 1Co-L1 revealed a broad, 

weak peak between 500−650 nm (Figure 1A), which was assigned to 

ligand field transitions of high-spin Co(II), and the extinction 

coefficient at 550 nm was 130 M−1 cm−1, which suggests that the 

Co(II) is 5-coordinate.25 This spectrum is different than that of CoCo-

L1, which was prepared by adding Co(II) to TCEP (tris(2-

carboxyethyl)phosphine)-treated apo-L1, in that there is no broad 

absorbance peak between 330−360 nm corresponding to a S-to-Co(II) 

ligand-to-metal charge transfer band.26 The addition of 1 equiv of 

Zn(II) to 1Co-L1 did not change the UV−vis spectrum (Figure 1A). 

 

 
Figure 1. UV−vis and NMR spectra of 1Co-L1. (A) UV−vis difference spectrum of 1Co-

L1 prepared using biological incorporation method. The enzyme concentration was 550 
μM, and the buffer was 50 mM Hepes, pH 7.0. (B) 1H NMR spectrum of 550 μM 1Co-
L1. The asterisk signifies the peak that is solvent-exchangeable. 

The 1H NMR spectrum of 1Co-L1 showed one broad peak, which 

integrated to 2 protons, at 50 ppm, and the peak was solvent-
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exchangeable (Figure 1C). Since there are two histidines in the Zn2 

site and three histidines in the Zn1 site,27 we assign these peaks to the 

NH protons on Co(II)-bound His121 and His263, which indicates the 

Co(II) is bound to the Zn2 site in L1. The addition of 1 equiv of Zn(II) 

to 1Co-L1 did not change the NMR spectrum (Figure 1B). 

 

Previously, we reported that 1Zn-L1 could be prepared by 

addition of 1 equiv of Zn(II) to apo-L1, and this sample was 

characterized with steady-state kinetics and EXAFS spectroscopy.28 

The enzyme exhibited a kcat of 30 s−1 and a Km of 5.5 μM when using 

nitrocefin as the substrate (Table 2), but we were uncertain whether 

these constants reflected an enzyme sample that contained significant 

amount of ZnZn-L1 due to the amounts of adventitious Zn(II) found in 

buffers.9,29 The addition of Co(II) to 1Zn-L1 resulted in a pink 

coloration that immediately turned orange in less than 10 s, indicating 

oxidation of Co(II) to Co(III). On the other hand, the addition of Zn(II) 

to 1Co-L1, which was prepared by the biological incorporation method 

described above, resulted in a protein that remained pink in color. The 

ZnCo-L1 (this notation indicates Zn(II) in the Zn1 site and Co(II) in the 

Zn2 site) analogue of L1 exhibited a kcat of 26 s−1 and a Km of 2.3 μM, 

when using nitrocefin as substrate. These values are similar to those of 

1Zn-L1 and ZnZn-L1, and it is not possible with steady-state kinetics 

alone to determine if the ZnCo-L1 analogue is responsible for the 

observed activity. 

 

EPR Spectroscopy of Metal-Ion-Substituted Forms of L1  
 

EPR spectra of L1 with increasing Co(II) complement show a 

complex but sequential pattern of Co(II) binding (Figure 2A−E). A 

sample of nominally 1Co-L1 that was found to contain only 0.8 equiv 

Co(II) exhibited an EPR spectrum (Figure 2A) that contained two 

reasonably well-resolved components. A 59Co hyperfine pattern with A 

= 9.8 × 10−3 cm−1, centered at 996 G (geff = 6.89), and a derivative 

feature at 2320 G (geff = 2.97) were assigned to a rhombic species 

with greal(⊥) = 2.55 and E/D = 0.27. The second species exhibited no 

sharp resonances and was due to an axial species similar to that 

observed from Co(II) in L1 in earlier work.20 Based on previous 

reports, these signals are consistent with an equilibrium of Co(II)-H2O 

and Co(II)-OH.30-32 More typically, 1Co-L1 contained 0.9−1.0 equiv 
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Co(II), and the spectrum (Figure 2B) became less well-resolved, with 

only inflection points to suggest the presence of the distinct species 

observed at lower Co(II) complement. The spectrum of ZnCo-L1 

(Figure 2C) was very similar to that of 1Co-L1 (Figure 2B), suggesting 

that the presence of Zn(II) in either of the binding sites did not 

significantly perturb the electronic structure of Co(II) in the remaining 

sites. In contrast, the spectrum of 2Co-L1 (Figure 2D) was markedly 

different from those of 1Co-L1 and ZnCo-L1; the spectrum could not 

be simulated assuming even two distinct species, and spin-Hamiltonian 

parameters could not be assigned. EPR absorption at very low field, 

0−500 G, suggested the presence of a spin-coupled component in the 

spectrum, and this was confirmed by parallel mode EPR (Figure 2E), 

which revealed a resonance at geff ≈ 10, consistent with S′ = 2 and/or 

S′ = 3 resonances in an S′ = 0, 1, 2, 3 spin ladder due to coupling of 

two S = 3/2 Co(II) ions. 

 

 
Figure 2. EPR spectra from metal-containing species of L1. Spectra are of the 
following species of L1: (A) L1 containing 0.8 equiv Co(II) at 12 K, 25 mW; (B) 1Co-L1 
at 12 K, 2 mW; (C) ZnCo-L1 at 10 K, 2 mW; (D) CoCo-L1 at 12 K, 10 mW; (E) CoCo-
L1 at 7 K, 20 mW, B0∥B1; (F) 1Fe-L1 at 10 K, 2 mW; (G) ZnFe-L1 at 12 K, 10 mW; (H) 

FeFe-L1 at 10 K, 2 mW; (I) FeNi-L1 at 7 K, 50 mW; (J) FeCo-L1 at 10 K, 2 mW. 
Spectra are shown with arbitrary intensities. 
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Stopped-Flow Kinetic Studies on ZnCo-L1  
 

The accurate interpretation of steady-state kinetic studies on 

mixed-metal and mononuclear metal-containing analogues can be 

complicated by the presence of adventitious Zn(II) in the assay 

buffers. For example, typical steady-state kinetic studies contain 1−10 

nM L1, and the amount of adventitious Zn(II) in buffers, even those 

that have been Chelex-treated, can be between 10−100 nM.9,29 

Therefore, it is probable that steady-state kinetic assays were 

conducted with enzymes containing a mixture of possible metal 

centers. Therefore, we characterized the mixed-metal analogues and 

proteins containing only one metal ion with presteady-state kinetic 

studies at or near single-turnover conditions (∼50 μM enzyme and ∼50 

μM nitrocefin). The advantage of this approach is that the enzyme 

concentrations in these samples are at least 2 orders of magnitude 

higher than the concentration of adventitious Zn(II) in the buffer. This 

approach also allowed us to monitor the role of each metal ion in 

catalysis. 

 

1Zn-L1 was prepared as described above. The stopped-flow 

traces for 1Zn-L1 showed that substrate (absorbs at 390 nm) was 

depleted within 1.3 s (Figure 3A) and that very little intermediate 

(absorbs at 665 nm) was observed. The stopped-flow traces were 

fitted to an exponential equation, and the rate of product formation 

was 0.92 ± 0.03 s−1 (Table 3). In comparison, the stopped-flow trace 

of ZnZn-L1 showed that substrate was depleted in 0.06 s and that a 

significant amount of intermediate forms (Figure 3B). The rate of 

product formation was 17 ± 1 s−1 (Table 3), which reflects an 18-fold 

increase in activity as compared to that of 1Zn-L1. Previous EXAFS 

studies on L1 demonstrated that there is sequential binding of Zn(II) 

to apo-L1 and that the first equivalent of Zn(II) binds to the Zn1 site.28 

This result coupled with the stopped-flow traces described above 

indicates that metal ions in both of the metal binding sites are required 

for the stabilization and observation of the reaction intermediate when 

nitrocefin is used as a substrate. 
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Figure 3. Stopped-flow traces of the reaction of Zn(II)-containing L1 analogues and 
nitrocefin. Stopped-flow traces of 50 μM 1Zn-L1 (A) and ZnZn-L1 (B) analogues when 
reacted with 50 μM nitrocefin at 4 °C. The absorbance at 485 nm is due to the 
product, the absorbance at 390 nm is due to the substrate, and the absorbance at 665 
nm is due to the intermediate.54 

Table 3. Exponential Fits to the Stopped-Flow Kinetic Data 

species rate of product formation (s−1)a 

1Zn-L1 0.92 ± 0.03 

ZnZn-L1 17 ± 1 

1Co-L1 0.05 ± 0.01 

ZnCo-L1 12 ± 1 

ZnFe-L1 12 ± 1 

1Fe-L1 0.12 ± 0.02 
aRates determined by exponential fitting of the stopped-flow data in Figures 3, 4, and 
7. 

 

Stopped-flow studies were also conducted on the Co(II)-

containing samples. The stopped-flow trace for 1Co-L1 showed that 

substrate decay took over 10 s and that no intermediate formed 

(Figure 4A). The rate of product formation was 0.05 ± 0.01 s−1 (Table 

3). This result is not consistent with the steady-state kinetic results 

that showed that 1Co-L1 is very active (Table 2) and suggests that 

most of the activity observed in the steady-state kinetic studies was 

due to the ZnCo analogue of L1. The stopped-flow trace for ZnCo-L1 

(Figure 4B) showed that substrate depleted as fast as it did for ZnZn-

L1 (Figure 3B), and the rate of product formation was 12 ± 1 s−1 

(Table 3), which reflects a 240-fold increase in activity over that of 
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1Co-L1. There is a 1.4-fold decrease in the amount of intermediate 

formed for ZnCo-L1, as compared to that for ZnZn-L1; however, there 

is a 1.4-fold increase in the amount of intermediate formed for ZnCo-

L1 as compared to that for CoCo-L1 (Figure 5). The intermediate 

decays faster in the reaction with ZnZn-L1, as compared with CoCo- 

and ZnCo-L1, and the rates of intermediate decay for CoCo- and 

ZnCo-L1 are very similar. This result, along with the results described 

above, strongly indicates that cobalt binds to the Zn2 site and that the 

Zn2 site is involved in stabilizing the intermediate. 

 

 
Figure 4. Stopped-flow traces of the reaction of Co(II)-containing L1 analogues with 
nitrocefin. 50 μM 1Co- (A) and ZnCo-L1 (B) analogues were reacted with 50 μM 
nitrocefin at 4 °C. The absorbance at 485 nm is due to the product, the absorbance at 
390 nm is due to the substrate, and the absorbance at 665 nm is due to the 
intermediate. 
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Figure 5. Intermediate formation by L1 analogues. The absorbance at 665 nm arises 
from the presence of intermediate. Each reaction contained 50 μM L1 analogue and 50 
μM nitrocefin at 4 °C in 50 mM cacodylate buffer, pH 7.0. (Inset) Intermediate 
formation for ZnZn-, ZnCo-, and CoCo-L1 analogues over 200 ms. 

RFQ-EPR studies  
 

EPR spectra recorded on ZnCo-L1 during an RFQ-EPR 

experiment are shown in Figure 6. The resting signals from ZnCo-L1 

recorded at 10 K, 2 mW (Figure 6A) and at 7 K, 80 mW (Figure 6B) 

were very similar and are due to two isolated S = 3/2, MS = ±1/2 

systems. These systems are in turn due to Co(II) in either of the 

binding sites in singly occupied L1. Upon reaction with nitrocefin for 10 

ms, the color of the sample became bright blue, and the EPR spectra 

shown in Figure 6C−E were observed. At 10 K, 2 mW (Figure 6C), the 

inflections in the spectrum (1600−2000 G), due to the presence of the 

isolated rhombic species of Figure 2A, were no longer observable, and 

instead a small but distinct sharp peak at 1025 G (geff = 6.65) was 

observed. At successively higher microwave power and lower 

temperature, this signal became more prominent as other features 

were lost to saturation and rapid-passage effects (Figure 6D, E), 

characteristic of an MS = ±3/2 system and of tetrahedral Co(II). Upon 

further reaction, the sample turned red, indicating the hydrolysis of 

nitrocefin, and new EPR signals were observed (Figure 6F,G) that are 

presumably due to a product complex. These signals showed no 

evidence of an MS = ±3/2 component but were unusual in that the gz 
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feature at 2650 G (geff = 2.6) was very well-resolved, indicative of 

constrained geometry and consistent with binding of Co(II) to a more 

rigid ligand than water.32 

 

 
Figure 6. RFQ-EPR of ZnCo-L1 with nitrocefin. Spectra (A) and (B) are from resting 
ZnCo-L1. Spectra (C−E) are from ZnCo-L1 after reaction with nitrocefin for 10 ms at 

3 °C. Spectra (F) and (G) are from ZnCo-L1 after incubation with nitrocefin for 2 min 
(at which time all of the added nitrocefin has been hydrolyzed). Spectra (A), (C) and 
(F) were recorded at 10 K, 2 mW, spectra (B), (D) and (G) at 7 K, 80 mW, and 
spectrum (E) at 5 K, 126 mW. Spectra are shown with arbitrary intensities. 

Preparation and Characterization of the ZnFe-Analogue 

of L1  
 

Our ability to prepare a mixed-metal analogue of L1 by using a 

biological incorporation method led us to speculate whether a ZnFe 

analogue of L1 could also be prepared. Recently, our studies using the 

overexpression plasmid that results in L1 being folded in the cytoplasm 

allowed us to prepare an iron-containing analogue of L1.18 However, 

the FeFe-L1 analogue was catalytically inactive. In an effort to prepare 

a ZnFe analogue of L1, we overexpressed L1 in minimal medium 

containing 100 μM Fe(II). The purified enzyme was green in color, 

contained 0.9 equiv of Fe and 0.2 3 of Zn(II), and exhibited a kcat of 

2.6 s−1 and a Km of 53 μM, when using nitrocefin as the substrate. The 

addition of 0.8 equiv of Zn(II) resulted in a sample that exhibited a kcat 

of 24 s−1 and a Km of 4 μM (Table 2). 
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The EPR signal of 1Fe-L1 (Figure 2F) consisted of two types of 

signals. A rhombic S = 5/2 signal was observed with resonances at geff 

≈ 9 and ≈ 4.3, and with some structure in the g ≈ 4.3 region 

indicative of protein-bound Fe(III). The other contribution was from 

two very similar and largely overlapping signals with geff < 2 

(3400−4000 G) and indicative of an antiferromagnetically coupled 

Fe(II)−Fe(III) dinuclear site.33,34 Spin quantitation35 of these signals 

suggests that 50% of iron is from a mononuclear Fe(III) center, while 

50% is from Fe(III)Fe(II) or Fe(II)Fe(III) centers. The amount of 

signal corresponding to Fe(III)Fe(II) (or Fe(II)Fe(III)) varied among 

samples, and the amount of the antiferromagnetically coupled centers 

was greatest in the sample corresponding to Figure 2F. More typically, 

we obtained spectra that contained only ∼10% of the signal due to the 

spin-coupled center, perhaps due to oxidation of the center to the 

EPR-inactive Fe(III)Fe(III) center. Addition of Zn(II) generated ZnFe-

L1, although the EPR signal varied from sample to sample. In all cases, 

there were small but reproducible changes in the Fe(III) signal 

(perhaps indicative of formation of an Zn(II)Fe(III) center in some 

molecules), and the intensity of the Fe(II)Fe(III) signal diminished, 

sometimes by a rather modest amount, as in Figure 2G, and 

sometimes almost completely. Spin quantitation35 of the signals in 

Figure 2G were consistent with a 25−30% contribution from a spin-

coupled center and a 70−75% contribution from Fe(III) in a single 

site. Further addition of iron, to form FeFe-L1, consistently abolished 

the Fe(II)Fe(III) signal (Figure 2H), as did additions of Ni(II) (Figure 

2I) and Co(II) (Figure 2J). Additionally, marked changes in the Fe(III) 

signals in these bimetallic forms of L1 were observed. The g ≈ 9 and 

4.3 regions of the spectrum of FeFe-L1 differ from those of 1Fe-L1 and 

ZnFe-L1. Additional transitions were observed flanking the g ≈ 4.3 

region of the spectrum of FeNi-L1, indicating a narrowing of the 

distribution of E/D due to lowering of strain terms and a more 

constrained Fe(III) environment. The shape and intensity change of 

the g ≈ 9 feature suggests changes in both strains and in D. In FeCo-

L1, transitions due to Fe(III) and Co(II) in the region 800−3000 G 

could not be deconvoluted with confidence, but the very sharp nature 

of the g ≈ 4.3 resonance from Fe(III) again indicates changes in the 

zero-field splitting parameters of Fe(III). 
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In an effort to further probe which site (Zn1 or Zn2) that the Fe 

binds, we attempted to obtain a 1H NMR spectrum of this sample; 

however, no peaks were observed between −200 to +200 ppm. We 

believe that the inability to observe any peaks in this sample is due, in 

part, to the relatively slow electron spin relaxation rate (T1e) of high-

spin Fe(III) and the large size (118 kDa) of L1, both of which result in 

significant broadening of 1H NMR peaks.36 Our inability to observe 

paramagnetically shifted resonances due to the spin-coupled 

Fe(III)Fe(II) centers in the L1 samples is most likely due to the 

presence of a single bridging group (hydroxide) in this analogue and 

different relaxation properties as compared to similar centers in GLX2-

5.33 

 

The ZnFe-analogue of L1 was also prepared by adding 1 equiv 

of Fe(II) directly to 1Zn-L1, which was made by adding 1 equiv of 

Zn(II) directly to apo-L1. This sample exhibited steady-state kinetic 

constants almost identical to those of the sample described above 

(Table 2). Similar to the results on cobalt-containing samples of L1, 

the 1Fe-L1 analogue exhibited little or no activity and produced no 

intermediate (Figure 7), suggesting the steady-state kinetic data for 

this enzyme were due to small amounts of ZnFe-L1. The rate of 

product formation for 1Fe-L1 was 0.12 ± 0.02 (Table 3). The stopped-

flow traces for ZnFe-L1 showed substrate depletion occurred during 

the first 0.08 s and 2.6-fold less intermediate formed for this enzyme 

as compared to that for ZnZn-L1 (Figure 7). The rate of product 

formation for ZnFe-L1 (made by adding Zn(II) to 1Fe-L1 or by adding 

Fe(II) to 1Zn-L1) was 12 ± 1, which reflects a 100-fold increase in 

activity as compared to that for 1Fe-L1 (Table 3). 
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Figure 7. Stopped-flow traces of Fe-containing L1 analogues reacted with nitrocefin; 
50 μM 1Fe- (A), ZnFe-L1 (made by adding Fe(II) to 1Zn-L1) (B), and ZnFe-L1 (made 
by adding Zn(II) to 1Fe-L1) (C) were reacted with 50 μM nitrocefin at 4 °C. The 
absorbance at 485 nm is due to the product, the absorbance at 390 nm is due to the 
substrate, and the absorbance at 665 nm is due to the intermediate. 

RFQ-EPR Studies with FeZn-L1 and Nitrocefin  

 

As with ZnCo-L1, the EPR spectrum of ZnFe-L1 was observed to 

change upon incubation with nitrocefin for 10 ms at 3 °C (Figure 8). 

The various transitions that make up the g ≈ 4.3 line in ZnFe-L1 

(Figure 8A) are due to the mean E/D being slightly less than 1/3 and 

the strain-dependent distribution in E/D not being large enough to 

broaden out all of the transitions. Upon reaction with nitrocefin, the 

resonance positions of these partially resolved transitions change, 

indicative of a change in E/D and, hence, in the ligand field at Fe(III) 

(Figure 8B, G, H). Further change in the g ≈ 9 resonance was 

observed (Figure 8C, D), and a shoulder was observed at g ≈ 5 (1350 

G Figure 8E, F) upon reaction of ZnFe-L1 with nitrocefin. 
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Figure 8. RFQ-EPR of ZnFe-L1 with nitrocefin. Trace A shows the 500−2500 G region 
of the spectrum of resting ZnFe-L1. Trace B shows the 500−2500 G region of the 
spectrum of ZnFe-L1 upon reaction with nitrocefin for 10 ms at 3 °C (solid line) 
overlaid with that of resting ZnFe-L1 (dashed line). The inserts show more detailed 
comparisons between the spectra over particular field ranges; traces (C), (F), and (G) 

are from resting ZnFe-L1, and traces (D), (E), and (H) are from ZnFe-L1 after reaction 
with nitrocefin for 10 ms at 4 °C. 

Discussion 

Zn(II) plays an essential catalytic role in enzymes from all of the 

major classes of enzymes and a structural role in a large number of 

other proteins.37-39 Due to its valence electronic configuration of 

[Ar]3d, Zn(II) is silent to most spectroscopic techniques. Fortunately, 

Zn(II) can be substituted with Co(II), and the resulting enzymes are 

catalytically active and contain metal binding sites nearly identical to 

those of the Zn(II)-containing analogues.32,40 For mononuclear Zn(II)-

containing enzymes such as carbonic anhydrase, the Co(II)-

substituted analogue yields unambiguous results regarding the 

function of the metal site in catalysis.41 However in the case of 

dinuclear Zn(II)-containing enzymes, the interpretation of 

kinetic/spectroscopic results are more complicated due to the presence 

of up to three distinct species, [M1_], [_M2] and [M1M2], that can 

interact with substrates in distinct ways and that can display 

overlapping spectroscopic signatures. Nonetheless, previous studies on 

dinuclear metal ion-containing aminopeptidase from Aeromonas 

proteolytica demonstrated that mixed-metal ion-containing analogues 
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of the enzyme could be used to probe the role of each metal in 

catalysis/binding.31,32,42 The metal binding mode of this enzyme is 

sequential, which allowed for the preparation and characterization of 

the ZnZn, ZnCo (or CoZn), 1Zn, and 1Co analogues. For other 

enzymes such as BcII, however, the binding constants of the two 

metal binding sites are similar, leading to mixtures of enzyme 

containing mononuclear, dinuclear, and even trinuclear metal ion-

containing analogues.13,14 The interpretation of kinetic and 

spectroscopic results on such mixtures is difficult if not impossible to 

accomplish. 

 

Since the metal binding Kd1 and Kd2 for Zn(II) binding to L1 was 

reported to be 2.6 and 6.0 nM,9 respectively, we did not initially 

believe that we could prepare enzyme samples containing 1Zn-, 1Co-, 

or ZnCo-centers by simply adding the metal ion to metal-free enzyme. 

Therefore, our first attempt to prepare these analogues involved the 

use of site-directed mutagenesis. The rationale for these studies was 

to introduce a mutation in one of the metal binding sites and to 

weaken metal binding to this site. Since Asp120 is essential for 

catalysis in L1,23 we decided to substitute the metal binding histidines 

in the enzyme. Five site-directed mutants, with single point mutations, 

were generated; however surprisingly, only two of the resulting 

mutants were soluble. Fortunately, there was one HXXC mutation in 

each of the metal binding sites (H116C for Zn1 site, H121C for Zn2 

site). Steady-state kinetic studies showed that the catalytic activities 

of both mutants were low (Table 1), which is consistent with the 

observed low Zn(II) incorporation. After incubation with excess Zn(II) 

and dialysis to remove loosely bound or nonbound Zn(II), both 

mutants were shown to bind nearly 1 equiv of Zn(II), which suggests 

that the one amino acid substitution did impair metal binding as 

expected. Steady-state kinetic studies conducted in the presence of 

100 μM Zn(II) demonstrated that H121C exhibits activity (kcat = 33 ± 

3 s−1) similar to that of wild-type L1, although the mutant exhibited a 

much higher value for Km. In contrast, the H116C mutant exhibited 

almost no activity even in the presence of added Zn(II). Since His161 

is in the Zn1 site, this result suggests that the Zn1 site is important for 

catalysis; however, we cannot rule out the possibility that the point 

mutation did not alter the substrate binding site. These results also 

demonstrate that a mutation to one of the metal binding histidines 
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results in an enzyme that requires excess metal ion to saturate the 

mutated site. Since the excess metal ions would undoubtedly 

complicate subsequent spectroscopic analyses, we concluded that this 

strategy cannot be used to prepare the mixed-metal analogues of L1. 

 

Consequently, we utilized a biological incorporation strategy in 

an attempt to prepare L1 analogues containing only one equivalent of 

Co(II) and the mixed metal ion-containing analogues. Overexpression 

of L1 in minimal medium containing cobalt resulted in an enzyme that 

binds ∼0.9 equiv of Co(II). Spectroscopic studies strongly suggest that 

Co(II) is not delocalized between the two metal binding sites and that 

it binds to the consensus Zn2 site (Figures 1 and 2). A similar metal 

content is obtained when L1 is overexpressed in the presence of Zn(II) 

using this same technique. Our previous EXAFS studies28 and recent 

crystallographic studies by Dideberg43 demonstrate that Zn(II) 

preferentially binds to the Zn1 site. In agreement with the model of 

Co(II) binding to the Zn2 site and Zn(II) binding to the Zn1 site, the 

addition of 1 equiv of Zn(II) to 1Co-L1 results in an enzyme with EPR 

properties almost identical to those of 1Co-L1 (Figure 2B, C); however, 

the two analogues exhibit significantly different presteady-state kinetic 

behaviors (Figure 4). Surprisingly, a FeZn analogue of L1 can also be 

prepared by using the same strategy. EPR studies show that the 

resulting 1Fe-L1 contains a predominant ZnFe center; however, 

samples also sometimes contained some antiferromagnetically coupled 

Fe(III)Fe(II) (Figure 2G). The formation of a ZnFe center was reflected 

in differences between the Fe(III) EPR spectra of 1Fe-L1 and ZnFe-L1, 

and the narrowing of the spectrum upon incorporation of Zn(II) 

suggests increased conformational rigidity of the active site in the 

dimetallic form. While the effect of Zn(II) on the EPR signal was quite 

subtle, much more dramatic effects were observed with Ni(II) and 

Co(II). In both cases a significant reduction in the structural 

microheterogeneity of the Fe(III) environment was revealed by EPR, 

giving rise to resolved E/D < 1/3 transitions with Ni(II) and a very 

sharp E/D = 1/3 g = 4.3 line with Co(II). Interestingly, no spin−spin 

exchange coupling was detected in FeCo-L1. Both metal ions in L1 are 

required for maximum catalytic activity. Thus, the binding of the 

second metal ion fine-tunes the electronic structure of the first ion via 

a structural, rather than electronic, mechanism. We were unable to 

obtain 1H NMR spectra of the Fe-containing analogues of L1 due to the 
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relatively slow T1e of Fe(III)44 and presumably due to the low 

concentration of Fe(II)Fe(III) in the sample. Nonetheless, we 

hypothesize that Fe(III) is binding to the Zn2 site since the H−H−D 

motif is a common Fe(III) binding site in biology.45 Fe(II) can bind at 

the Zn1 site, but the addition of Zn(II) to 1Fe-L1 results in a reduction 

of the signal corresponding to the mixed-valent, dinuclear iron center 

(Figure 2G). The ZnFe analogue can be prepared either by adding Fe 

to 1Zn-L1 or Zn(II) to 1Fe-L1, since the resulting enzymes exhibit the 

same steady-state and presteady-state kinetic characteristics (Table 2 

and Figure 7). Taken together, these results demonstrate that mixed-

metal analogues of L1 can be generated and used in mechanistic 

studies to probe the role of each metal in catalysis. 

 

Stopped-flow kinetic studies on 1Zn-, 1Co-, ZnZn-, and ZnCo-L1 

were used to probe the role of the metal ions. 1Zn-L1, with Zn(II) in 

the Zn1 site, exhibited some activity (ZnZn-L1 is 18-fold more active 

than 1Zn-L1, Table 3); however, very little intermediate was detected 

in these studies (Figure 3). On the other hand, 1Co-L1, with Co(II) in 

the Zn2 site, is almost completely inactive (ZnZn-L1 is 340-fold more 

active than 1Co-L1, Table 3). It is likely that the small activity 

exhibited by 1Co-L1 in the stopped-flow studies (0.29% as compared 

to that by ZnZn-L1) is due to small amounts of Zn(II) in 1Co-L1 

preparations (Table 1) and in the buffer (estimated to be 100 nM, 

which is 0.2% of the concentration of enzyme in the stopped-flow 

studies). The 1Fe-L1 analogue was >140-fold less active than ZnZn-L1 

(Figures 4 and 7; Table 3), and this higher activity, as compared to 

that of 1Co-L1, is mostly due to the higher amounts of Zn(II) in the 

1Fe-L1 samples (Table 2). We cannot unambiguously rule out that one 

of the Fe-containing analogues of L1 is active, although our studies 

indicate that FeFe-L1 is inactive (Table 2).18 These results indicate that 

both metal ions are required to detect intermediate in the reaction of 

nitrocefin with the ZnCo- and ZnFe-analogues of L1 (Figures 3, 4, 5, 

and 7). These results also indicate that an analogue of L1 with metal 

(Co(II) or Fe) only in the Zn2 site is inactive. In contrast, an analogue 

of L1 with Zn(II) in the Zn1 site does exhibit some activity, albeit very 

small (compare rates of product formation for 1Zn-L1 with those of 

1Co-L1 and 1Fe-L1; Table 3), and this analogue does allow for the 

formation of a small (4%) amount of intermediate (Figure 3A). Taken 

together, these results demonstrate that both metal ions in L1 are 
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required for maximum catalytic activity. The Zn1 site “prefers” Zn(II) 

over any other metal ion, and the role of this metal ion is presumably 

to provide the reactive nucleophile during catalysis. L1 analogues with 

metal ion only in the Zn2 are not catalytically active. The Zn2 site can 

bind a number of metal ions including Co(II) and Fe(III)/Fe(II). The 

role of this site is to stabilize the reaction intermediate during 

catalysis. This result is consistent with previous suggestions on CcrA46 

and on model complex-catalyzed hydrolysis of nitrocefin.47,48 It is not 

absolutely essential to have the Zn2 filled in order that L1 be active 

since 1Zn-L1 does exhibit some catalytic activity. Based on previous 

studies on CcrA,46,49,50 the roles of the metal ions are most like the 

same in the subgroup 3A β-lactamase. The results presented above 

cannot necessarily be applied to BcII, since there is considerable 

controversy presently, regarding whether the mononuclear Zn(II)-

containing enzyme is active.10,12-14 In addition, Vila and co-workers 

have reported that no ring-opened, nitrogen anionic intermediate is 

observed when BcII is reacted with nitrocefin.51 

 

The successful preparation of a heterometallic analogue of L1 

that contained a paramagnetic metal ion in one metal binding site 

allowed us to directly probe the reaction mechanism of L1 with RFQ 

EPR studies. The EPR spectrum of ZnCo-L1 was consistent with Co(II) 

being 5-coordinate in the resting form of the enzyme (Figure 6A and 

B). Within 10 ms reaction time, a 4-coordinate tetrahedral 

intermediate, not seen at all in any of the resting spectra from Co(II)-

containing L1, was formed. This species decayed as substrate was 

exhausted, and a higher coordination product complex remained. This 

result confirms our previous work that showed that substrate, 

intermediate, and product coordinate the metal ion(s) in L1.20 RFQ-EPR 

of ZnFe-L1 also showed catalytically competent changes in the EPR 

spectrum, here due to Fe(III). 

 

On the basis of all of the data on L1 presented to date, we are in 

position to propose a reaction mechanism of nitrocefin hydrolysis by L1 

(Figure 9). When nitrocefin binds, the terminally bound water molecule 

on Zn2 releases, and the β-lactam carbonyl interacts with the metal ion 

in the Zn1 site while the nitrogen lone pair on the nitrogen of the β-

lactam interacts with Zn2.27,52 The binding of substrate results in the 

loss of the Zn2-bridging hydroxide bond, thereby generating a 4-
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coordinate metal ion in the Zn2 site and the reactive nucleophile that is 

directed for attack by Asp120.23 The resulting, very short-lived 

tetrahedral species is converted to the ring-opened, nitrogen anionic 

intermediate after the loss of the β-lactam bond. At this time it is not 

clear if one metal ion or both are involved in the stabilization of the 

intermediate, but the data in this work clearly show that the metal ion 

in the Zn2 site is essential for stabilization. The breakdown of the 

intermediate involves a protonation, which likely occurs during the 

concerted formation of a new bridging water/hydroxide. Our previous 

kinetic studies strongly suggested that Asp120 plays a role in orienting 

the acidic proton on the solvent molecule for protonation of 

intermediate.23 When other substrates are used, there is evidence that 

the reaction intermediate does not accumulate,53 suggesting that ring-

opening and protonation of the β-lactam nitrogen is concerted. 

Regardless of substrate, the EP complex is in equilibrium with the 

resting enzyme, and in both cases, the coordination number at the Zn2 

site is 5. 

 

 
Figure 9. Proposed reaction mechanism of L1 for the hydrolysis of nitrocefin. 

The successful preparation of mononuclear metal ion-containing 

and heterometallic analogues of L1 has allowed us for the first time to 

probe the roles of the metal ions in this enzyme. It is clear that the 

metal ion in the Zn1 site is essential for activity and that the most 

active form of the enzyme requires both metal ions. The metal ion in 

the Zn2 site appears to be involved in the stabilization of a reaction 
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intermediate and possibly in orienting the β-lactam nitrogen for 

protonation. These results demonstrate that potential inhibitors can be 

designed to target the Zn1 site only or both sites, although compounds 

that bind to the Zn2 site and that block the Zn1 site may also be 

effective inhibitors. 
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