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On semigroups with lower semimodular lattice of subsemigroups.

Peter R. Jones

January 11, 2010

Abstract

The question of which semigroups have lower semimodular lattice of subsemigroups
has been open since the early 1960’s, when the corresponding question was answered for
modularity and for upper semimodularity. We provide a characterization of such semigroups
in the language of principal factors. Since it is easily seen (and has long been known)
that semigroups for which Green’s relation J is trivial have this property, a description
in such terms is natural. In the case of periodic semigroups — a case that turns out to
include all eventually regular semigroups — the characterization becomes quite explicit and
yields interesting consequences. In the general case, it remains an open question whether
there exists a simple, but not completely simple, semigroup with this property. Any such
semigroup must at least be idempotent-free and D-trivial.

1 Introduction.

The lattice L(S) of subsemigroups of a semigroup S has been a topic of intense study since the
1960’s [11]. Those semigroups for which this lattice satisfies common lattice-theoretic properties
such as distributivity, modularity and upper semimodularity were determined in the early years
of that decade. As noted in [11, §5.14], little is known — or at least little is published — about
lower semimodularity in this context, other than that an apparently diverse array of semigroups
do have subsemigroup lattices with this property. To this author’s mind, the fact that these
include the free semigroups, free commutative semigroups, nilpotent semigroups, etc, is strong
motivation for a general study.

Such a study is the purpose of this paper. In Theorem 1.1 below, we characterize the
semigroups whose lattice of subsemigroups is lower semimodular in terms of their principal
factors and certain relations between them. That Green’s relations, in particular the relation
J , should play a central role to this study is to us self-evident, for the feature common to the
known examples, other than groups, is that J is trivial. It is almost a triviality (see Lemma 1.3)
that any such semigroup has the property that we study.

In the case of periodic semigroups, the theorem simplifies considerably (Theorem 5.3) to
provide a description that can readily be used to test a given semigroup for the property under
consideration. This restriction is not as narrow as might appear, since any regular semigroup
with lower semimodular subsemigroup lattice is necessarily periodic, for instance. Within the
class of periodic semigroups, we identify some further special cases of importance. These allow
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us, for instance, to determine all the semigroup varieties in which every member has lower
semimodular subsemigroup lattice. In a related topic (also motivated by the examples cited
above), we determine the varieties for which all the relatively free semigroups have this same
property.

In the general situation, the key difficulty lies in the case of [0-] simple semigroups. In that
case, the main theorem reduces to a simply stated criterion for lower semimodularity of the
subsemigroup lattice. We show that such semigroups must be D-trivial, idempotent-free and
non-cancellative, and conjecture that in fact there are no such semigroups at all. However this
remains an open question.

Naturally, this study must consider subsemigroup lattices of groups. It is easily seen that
if G is a group and L(G) is lower semimodular, then G is periodic and so L(G) is simply the
subgroup lattice of G (with the empty subsemigroup adjoined). Although the finite groups with
this property were determined by Ito in 1953 (see [10, Theorem 5.3.11]), a complete description
is not known even in the periodic case. However, if L(S) is lower semimodular for a semigroup
S, there is essentially no interaction between the nontrivial subgroups of S and the rest of the
semigroup (see Corollary 1.2(ii)).

One might wonder why so little progress has previously been made in the study of lower
semimodularity, while so much is known about semigroups whose subsemigroup lattice is upper
semimodular, modular, distributive, etc. (See [11, Chapter 2].) In §5.1, we address this issue
by showing that upper semimodularity (and thus modularity) imposes a succession of condi-
tions on the underlying semigroup, very few of which are satisfied by semigroups with lower
semimodular subsemigroup lattice, as we demonstrate by a number of examples. Not least of
these is periodicity; another critical distinction relates to the five-element Brandt semigroup
B2: L(B2) is lower semimodular but not upper semimodular; yet another is that the semilat-
tices with upper semimodular subsemigroup lattice must be chains. There are several further
distinctions of this type.

Sections 3 and 4 are devoted to a proof of the main general theorem and its elaboration.
In Section 5 we specialize to periodic semigroups; prove that within that context the property
that the lattice of subsemigroups is lower semimodular is preserved under quotients; determine
the varieties of semigroups, all of whose members have that property; and the varieties all of
whose relatively free semigroups have that property; and consider upper semimodularity and
modularity, as described above. In Section 6 we specialize to simple and 0-simple semigroups.
The final section of the paper contains a series of examples demonstrating the independence
and non-vacuousness of the hypotheses in this theorem and its specializations.

If X is a subset of a semigroup, then 〈X〉 denotes the subsemigroup that it generates.

THEOREM 1.1 A semigroup S has lower semimodular lattice L(S) of subsemigroups if and
only if

(I) each non-null principal factor of S is either:

(a) a group with lower semimodular subgroup lattice or a singular band; such a semi-
group with zero adjoined; or, up to isomorphism, the five-element combinatorial
Brandt semigroup B2; or
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(b) a D-trivial, idempotent-free [0-] simple semigroup;

(II) for any nontrivial subgroup of S, with identity e, say, if ea ∈ He for some a ∈ S, then
either e ∈ 〈a〉 or e = ea;

(III) for each element x of S that does not belong to a nontrivial subgroup of S,

(a) if x = xab for some a, b ∈ S, then either x ∈ 〈a, b〉 or x = xa; and dually,

(b) if the associated principal factor is null and x = bxa for some a, b ∈ S, then either
x ∈ 〈a, b〉 or x = xa,

(c) if the associated principal factor is of type I(b) and x = a0xa1x · · ·xan for some
a0, . . . , an ∈ S1 and n ≥ 1, then either x ∈ 〈a0, a1, . . . , an〉 or n = 1 and x = xa1.

The role of subgroups in such semigroups is elaborated in the next result.

COROLLARY 1.2 Let S be a semigroup such that L(S) is lower semimodular.

(i) If S contains a nontrivial H-class, then it is an (isolated) subgroup;

(ii) if e is the identity element of a nontrivial subgroup, then for all a ∈ S such that e 6∈ 〈a〉,
and for all x ∈ He, either xa = ea and ax = ae, or xa = ax = x. In particular, if e, f are
the identity elements of nontrivial subgroups and f > e, then Hfe = eHf = {e}.

We conclude this section with some background material. Further background, on simple
and 0-simple semigroups, follows.

A lattice L is lower semimodular if for all a, b ∈ L, the covering relation a ∨ b � b implies
a � a ∧ b. It is easily seen that an equivalent property is that the relation a � b implies
a ∧ c � b ∧ c for all c ∈ L. Upper semimodularity is defined dually. Each of these properties is
inherited by interval sublattices and direct products. A lattice L is modular if for all a, b ∈ L
and x ≤ b, (a ∨ x) ∧ b = (a ∧ b) ∨ x. A finite lattice is modular if and only if it is both
lower and upper semimodular, but this is not true for lattices in general. Little other lattice
theory is required in the sequel, but the reader may refer to [13] for a comprehensive study of
semimodularity and related topics.

For background on subsemigroup lattices in general, see the monograph [11]. Denote by
L(S) the lattice of subsemigroups of a semigroup S. Its least element is always the empty
subsemigroup.

For general semigroup theory, and especially ideals and Green’s relations, see the mono-
graphs of Clifford and Preston [1, 2]. Denote by ES the set of idempotents of a semigroup
S. A semigroup without zero is idempotent-free if ES = ∅. A semigroup with zero is called
idempotent-free if ES = {0}. A semigroup with zero is nil if for each a ∈ S, an = 0 for some
n ≥ 1; and nilpotent if Sn = {0} for some n ≥ 1. In the case n = 2, S is a null (or zero)
semigroup. A singular band is a semigroup that is either a left zero or a right zero semigroup.
We call a subgroup that comprises an entire J -class of a semigroup isolated .

As remarked above, it was noted in [11, §5.14] that a description of the semigroups with
lower semimodular subsemigroup lattice is unknown, and a diverse collection of semigroups that
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have this property was cited. Their common feature is that they are J -trivial , that is, Green’s
relation J is trivial. That any J -trivial semigroup has this lattice-theoretic property is almost
obvious, as shown in the next lemma. More generally, we shall see that Green’s relations play a
fundamental role in the sequel. Along with the term J -trivial, we shall encounter the D-trivial
semigroups and the combinatorial semigroups: those that are H-trivial (sometimes also called
aperiodic).

LEMMA 1.3 Let S be any semigroup and U, V ∈ L(S).

1. Suppose U � V in L(S). Then U − V is contained in a single J -class of S.

2. If V ⊂ U and |U − V | = 1, then U ∩W � V ∩W for all W ∈ L(S).

3. Any J -trivial semigroup has lower semimodular lattice of subsemigroups.

4. All nilsemigroups, semilattices, free semigroups and free commutative semigroups are J -
trivial.

5. [11, §3.1] For any cyclic semigroup S = 〈a〉 that is not a group, L(S) satisfies the single
covering property, that is, there exists a unique maximal subsemigroup, namely S − {a}.

Proof. To prove 1, suppose that x, y ∈ U − V . Since U � V , U = V ∨ 〈y〉. Thus any
expression for x as a product of elements of V with instances of y involves at least one y, and
so Jx ≤ Jy. Similarly, Jy ≤ Jx. The proof of 2 is obvious, and 3 follows immediately from 1
and 2. The statements in 4 are well known and easily proved. �

With every covering U � V there is therefore associated a unique J -class. We shall show
that whenever L(S) is lower semimodular, if U � V then |U − V | = 1 unless the associated
J -class is an (isolated) group, in which case a covering is induced in its subgroup lattice.

While the following result will not be used directly in the sequel, it demonstrates that a
wide range of semigroups with lower semimodular subsemigroup lattices may be constructed
from the special cases exhibited above and later in this paper. Recall from [11] that a partition
of a semigroup S into subsemigroups {Sα}α∈Y is a U -partition if ab ∈ 〈a〉 ∪ 〈b〉 whenever a and
b belong to distinct components. If the partition induces a band congruence on S, then it is
a U -band of the subsemigroups. In particular this holds when S a U -chain, or ordinal sum, of
the subsemigroups: the indexing set Y is a chain and ab = ba = b whenever a ∈ Sα, b ∈ Sβ and
α > β.

RESULT 1.4 [11, Theorem 3.6] Every direct decomposition of L(S) corresponds to a U -
partition of S into subsemigroups {Sα}α∈Y , in which case L(S) ∼= Πα∈Y L(Sα). In that event,
if each L(Sα) is lower semimodular, then so is L(S).

Finally, the following elaboration of a well known property of periodic semigroups will be
used on occasion. We include a proof for completeness.
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LEMMA 1.5 Let S be a periodic semigroup. Suppose x 6= y ∈ S and x R y, y = xa, x = yb,
say. Then there exist mutually inverse elements u, v ∈ 〈a, b〉 such that y = xu, x = yv.

Proof. Let g = (ab)n be the idempotent power of ab. Then u = ga and v = b(ab)n−1g
satisfy the stipulations. �

2 Background on principal factors and [0-] simple semigroups.

In view of Lemma 1.3, it is clear that the nature of the J -classes will play a major role in the
study of lower semimodularity. This is best viewed through the associated principal factors, the
definition and basic properties of which we now summarize. We refer the reader to [1, Chapter
2] for further general information on principal factors and on simple and 0-simple semigroups.

If J is a J -class of a semigroup S, then it generates the principal ideal S1JS1, which in
turn contains the (possibly empty) ideal I(J) = S1JS1 − J . The associated principal factor
PF (J) is the Rees quotient S1JS1/I(J) (with the understanding that if I(J) is empty, then
the quotient is S1JS1 itself, in which case J is the kernel of S, that is, its minimum ideal).
The principal factors of any semigroup either are null or are [0-] simple: either 0-simple or (in
the case where I(J) is empty) simple.

We review the definition and properties of completely 0-simple semigroups, following [1,
Section 2.7]. Deleting reference to the zero yields the corresponding definition and properties
of completely simple semigroups that we shall need. Although we will not make use of the
Rees representation of such semigroups, all of these properties may easily be seen in terms of
that representation, for readers so inclined. A 0-simple semigroup S is completely 0-simple if
it contains an idempotent that is 0-minimal in the natural partial order on ES ; equivalently,
S contains a 0-minimal left ideal and a 0-minimal right ideal. In that case, S is the union of
its 0-minimal left ideals, and dually; and S is 0-bisimple and regular. In fact, for any nonzero
element a of S, S1a = La ∪ {0} and aS1 = Ra ∪ {0}.

From the description of the nonzero principal left and right ideals above, it follows that for
any nonzero elements a, b of S, if ab 6= 0, then ab ∈ Ra ∩Lb. Thus 〈a, b〉 is contained within the
union of the four H-classes Ha, Hb, Ra ∩ Lb, Rb ∩ La and {0}. According to [1, Theorem 2.17],
ab is nonzero if and only if the H-class Rb ∩ La contains an idempotent. Thus if a2 6= 0, Ha

contains an idempotent; in that event, Ha is necessarily a subgroup [1, Theorem 2.52].
If eachR-class and each L-class of S contains a unique idempotent, then S is an inverse semi-

group, called a Brandt semigroup. See [1, Section 3.4]. If a Brandt semigroup is combinatorial,
it is uniquely determined by its cardinality. Denote by Bn the combinatorial Brandt semigroup
with n nonzero idempotents. A presentation for B2 is 〈a, b | a = aba, b = bab, a2 = b2 = 0〉.

Finally, we observe that a completely simple semigroup is the union of its maximal sub-
groups. Hence any combinatorial, completely simple semigroup is a rectangular band.

We now turn to the more complex situation of [0-] simple semigroups that are not completely
[0-] simple. If such a semigroup contains a nonzero idempotent, then it contains a pair of
comparable such idempotents. This leads to an important result of O. Anderson, regarding the
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key role played by the bicyclic semigroup. Before stating this result, we review the definition
and properties of this semigroup and of four semigroups studied by the author in [5]. Three
of these play a similar role in [0-] simple, idempotent-free semigroups to that played by the
bicyclic semigroup in [0-] simple semigroups with [nonzero] idempotents.

First, for specificity, we let G denote the infinite cyclic group, which may be presented as a
monoid by 〈a, b | ab = ba = 1〉. We may write a−1 for b, as usual.

The bicyclic semigroup B may be defined by the monoid presentation 〈a, b | ab = 1〉. Each
nonidentity element of B is uniquely expressible as a nonempty product of the form bnam,
where m,n are nonnegative integers.

The semigroup A is defined by the semigroup presentation 〈a, b | a(ab) = a〉. According to
[5, Theorem 2.7], each element of A is uniquely expressible as a nonempty product of the form

vslam, v ∈ Y ∗, l ≥ 0,m ≥ 0,

where s = ab and Y = {b, sb, s2b, . . .}. Here Y ∗ denotes the free monoid on Y (and Y + will
denote the free semigroup on Y ). Although A is not itself simple, the ideal generated by a
is simple, right cancellative and L-trivial but not R-trivial (since it is clear that a and a2 are
distinct R-related elements in that ideal).

The dual of A will be denoted Ad and presented as 〈a, b | (ab)b = b〉.
The semigroup C, introduced by L. Rédei[8], is defined by the semigroup presentation

〈a, b | a(ab) = a, (ab)b = b〉. According to [5, Result 2.1], each element of C is uniquely
expressible as a nonempty product of the form

bnslam, l,m, n ≥ 0,

where s = ab. This time C itself is a simple semigroup without idempotents, within which
a R a2 and b L b2.

The semigroup D, defined by the semigroup presentation 〈a, b | a(ab)nb = ab,∀n ≥ 1〉, was
introduced by the author in [5, Example 6.6]. According to [5, Proposition 6.7], each element
of A is uniquely expressible as a nonempty product of the form

vslu, v ∈ Y ∗, l ≥ 0, u ∈ X∗,

where s = ab, Y = {b, sb, s2b, . . .} and X = {a, as, as2, . . .}. The ideal generated by ab is a
D-trivial simple, idempotent-free semigroup, the kernel of D. In every proper idempotent-free
quotient of D, the image of this kernel is D-nontrivial.

From the relations defining each of the semigroups above, it is clear that there are canonical
homomorphisms

A
↗ ↘

D C → B → G.
↘ ↗

Ad
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In terms of the canonical form for elements of D, under the sequence passing through A,

vslu→ vsla`(u) → b`(v)sla`(u) → b`(v)a`(u) → a`(u)−`(v),

where `(w) denotes the length of a word w. The expressions in A, C, B and G then also
represent elements of the respective semigroups canonically. (It follows easily that D is the
pullback of the appropriate section of this diagram, although this information is not used in
the sequel.)

We shall show in the next section that none of the semigroups G,A,Ad, B or C has lower
semimodular subsemigroup lattice. Thus the next result plays a critical role in the sequel. (The
semigroup D does not play such an important role. It will be shown in the final section of the
paper that L(D) is not lower semimodular.) As usual, when we write “contains X”, where X
denotes a specific semigroup, we mean “contains a subsemigroup isomorphic to X”.

RESULT 2.1 1. [1, Theorem 2.54] Any [0-] simple semigroup that contains a nonzero
idempotent, but is not completely [0-] simple, contains B;

2. [5, Theorem 4.2] Any idempotent-free [0-] simple semigroup that contains distinct R-
related elements contains either C or A; any idempotent-free [0-] simple semigroup that
contains distinct L-related elements contains either C or Ad.

The following result and its dual play a subtle but important role in the sequel.

RESULT 2.2 [5, Proposition 4.1] A [0-] simple, idempotent-free semigroup is R-trivial if and
only if the equation x = xy has no nonzero solution x.

3 Necessity.

Throughout this section, S will be a semigroup with lower semimodular subsemigroup lattice.
The numerals I, II and III will refer to the hypotheses of Theorem 1.1. Our first, elementary,
result points to the need to describe the [0-] simple semigroups with this property.

LEMMA 3.1 For every principal factor of S, L(P ) is lower semimodular.

Proof. If J is any J -class of S, then it is easily observed that L(PF (J)) is isomorphic with
the interval sublattice [I(J), S1JS1] of L(S).

Refer to the previous section for the definitions of, and canonical forms in, A,Ad, B,C and
G.

PROPOSITION 3.2 The subsemigroup lattice of the infinite cyclic group G is not lower
semimodular. Hence a group has lower semimodular subsemigroup lattice if and only if it is
periodic and has lower semimodular subgroup lattice.
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Proof. Let M = G− 〈a〉 = 〈b〉 ∪ {1}. Then since for any i > 1, aibi−1 = a, G �M . By lower
semimodularity, 〈a〉 � 〈a〉 ∩M = ∅, which is clearly impossible. �

PROPOSITION 3.3 The subsemigroup lattice of the bicyclic semigroup B is not lower semi-
modular.

Proof. Let x, y ∈ B, x = bkal, y = bk
′
al

′
and suppose xy ∈ 〈a〉. Now if l ≥ k′, then

xy = bkal−k
′+l′ ; and if l ≤ k′, then xy = bk+k

′−lal
′
. Hence k must equal zero, that is, x ∈ 〈a〉.

Hence M = B − 〈a〉 < B.
Again, aibi−1 = a for any i > 1, so M ≺ B and lower semimodularity leads once more to

〈a〉 � 〈a〉 ∩M = ∅, which is once more clearly impossible. �

PROPOSITION 3.4 The subsemigroup lattices of A,Ad and C are not lower semimodular.

Proof. Clearly we only need to consider A and C. The argument follows that for B: we will
show that A − 〈a〉 is a maximal subsemigroup of A, from which lower semimodularity implies
the contradiction 〈a〉 � ∅; then we prove the corresponding statement for C.

First let x = vslam, y = v′sl
′
am

′
be elements of A, as described in §2. Suppose xy ∈ 〈a〉.

Then by mapping onto B, we obtain (b`(v)am)(b`(v
′)am

′
) ∈ 〈a〉 in B. As noted in the proof of

Proposition 3.3, this requires that `(v) = 0, that is, v is empty. We again must consider the
various cases for the product xy. Observe that since asn = a, asnb = s for all n ≥ 1. Hence if
v′ ∈ Y +, a`(v

′)v′ = s so that, for any v′, a`(v
′)+1(v′sl

′
am

′
) = am

′+1.

(i) If m > `(v′) then xy = slam−`(v
′)+m′

.
(ii) If m = `(v′) 6= 0, then xy = sl+l

′+1am
′
.

(iii) If m = `(v′) = 0, then xy = sl+l
′
am

′
.

(iv) If m < `(v′), then xy = wsl
′
am

′
, where w ∈ Y + is the product of sl with the terminal

segment of v′ of length `(v′)−m.

In cases (ii), (iii) and (iv), xy 6∈ 〈a〉. (In case (iii), l > 0, since both v and v′ are empty.) In
case (i) it is clear that in order for xy ∈ 〈a〉, l must be zero, so that x ∈ 〈a〉.

Thus A − 〈a〉 < A. Now for any m > 1, ambm−1 = a(am−1bm−1) = as = a, and so
A− 〈a〉 ≺ A.

Next suppose that x = bkslam, y = bk
′
sl

′
am

′ ∈ C, in canonical form, and that xy ∈ 〈a〉.
Under the canonical homomorphism A → C, the preimage in A of the subsemigroup 〈a〉 of C
is again 〈a〉. Hence by interpreting x and y as elements of A, we obtain that C−〈a〉 < C, from
the corresponding result for A. That C − 〈a〉 ≺ C also follows from the same calculation as for
A. �

Applying Result 2.1, these two propositions immediately yield the following.

COROLLARY 3.5 Suppose S is [0-] simple. If S contains a [nonzero] idempotent, then S is
completely [0-] simple. If S is idempotent-free, then S is D-trivial.
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PROPOSITION 3.6 If S is completely [0-] simple, then either S is combinatorial or it is a
(periodic) group [with adjoined zero]. Hence any nontrivial subgroup of S is isolated. If S is
completely simple and combinatorial, then it is a singular band.

Proof. First consider the completely 0-simple case and suppose S is not a group with
adjoined zero. Again we refer the reader to Section 2. Let e ∈ ES . Then there exists b 6∈ H0

e .
Without loss of generality we may assume b ∈ Re. Now HeHb = Hb; if Hb is a subgroup
then HbHb = Hb and HbHe = He; and otherwise HbHb = HbHe = {0}. Hence the subset
T = He∪Hb∪{0} is a subsemigroup of S. From HeHb = Hb it is immediate that T � He∪{0}.
Hence from lower semimodularity, H0

b � H0
b ∩ H0

e = {0}. But H0
b contains a two-element

subsemigroup — either {0, b} if Hb is not a subgroup, or {0, f} if Hb is a subgroup with identity
f . Hence |He| = |Hb| = 1, as required.

In the completely simple case, it is clear that L(S0) is the direct product of L(S) with a
two-element lattice and is therefore once more lower semimodular, so the conclusion in the first
statement of the proposition follows from the previous paragraph. If S is combinatorial, then it
is a rectangular band. If it is not a singular band, then there exist x, y such that {x, y, xy, yx}
forms a subband U , say, the union of the two right zero subsemigroups N = {x, xy} and
P = {y, yx}. Now U � N (since yx = y ·x and y = yx ·xy). Lower semimodularity then would
imply that P � P ∩N = ∅, contradicting the inclusions ∅ ⊂ {y} ⊂ P . �

In view of Lemma 3.1, Corollary 3.5, Proposition 3.6 and the facts stated in Section 1,
only an analysis of the combinatorial, completely 0-simple case remains in order to complete
the proof of necessity of I. Conducting that analysis requires that we first prove III(a). First,
however, we prove necessity of II.

LEMMA 3.7 Suppose e ∈ ES, a ∈ S and ea H e. Then either ea = e or e ∈ 〈a〉.

Proof. By the preceding corollary and proposition, He is trivial unless it constitutes an
isolated subgroup, so we shall assume the latter. Put y = ea and suppose y 6= e. By Proposi-
tion 3.2, He is periodic and so e ∈ 〈y〉. Since He is isolated, Hea

n, anHe ⊆ He for all n > 0.
Now yan = yean = y(ea)n = yn+1 and dually, so 〈a, y〉 = 〈a〉 ∪ 〈y〉. Further, for any n > 0,
e ∈ 〈yn〉 and so y ∈ 〈a, yn〉, that is, 〈a, y〉 � 〈a〉. By lower semimodularity, 〈y〉 � 〈a〉 ∩ 〈y〉.
Since y 6= e, 〈e〉 ∩ 〈y〉 6= ∅, and so e ∈ 〈a〉, completing the proof. �

The key to the proof of III is knowledge of the maximal subsemigroups of two-generated
semigroups with lower semimodular subsemigroup lattice.

LEMMA 3.8 Suppose S = 〈x, y〉, x 6= y. If neither x nor y belongs to a nontrivial subgroup,
then either S−{x} < S or S−{y} < S. Hence any maximal subsemigroup of S contains either
x or y.

Proof. By Zorn’s Lemma, there exists a subsemigroup M of S, maximal such that x ∈
M,y 6∈M . Clearly S �M . If |S −M | = 1, then M = S −{y} and so S −{y} < S. Otherwise,
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choose z ∈ S −M, z 6= y. By Lemma 1.3, z J y. Note that z 6∈ 〈y〉 for, in the event that
y is nonidempotent, then by lower semimodularity, 〈y〉 � 〈y〉 ∩M and by the single covering
property of L(〈y〉), yi ∈ M for all i ≥ 2. Since S = 〈x, y〉, Jz ≤ Jx. Hence Jy ≤ Jx. Similarly,
either S − {x} < S or Jx ≤ Jy.

Suppose, then, that neither S − {x} < S nor S − {y} < S. Then Jx = Jy and this J -class
is the maximum J -class of S. In fact, since all relevant products lie in this J -class, we may
pass to the associated principal factor and, without loss of generality, assume that S is [0]-
simple (clearly being non-null). By Corollary 3.5, S is therefore either a completely [0-] simple
semigroup or a D-trivial, idempotent-free [0-] simple semigroup. But the latter case is ruled
out by [5, Corollary 5.2], according to which no finitely generated, idempotent-free [0-] simple
semigroup is D-trivial.

If S is completely simple, then from the last statement of Proposition 3.6, S is the singular
band {x, y}, with the obvious contradiction S − {x} = {y} < S.

In the final, combinatorial, completely [0-] simple case, we refer the reader once more
to §2. Now x, y cannot be R- or L-related, for S will not then be regular, so S comprises
the union of the four singleton H-classes Hx, Hy, Rx ∩ Ly and Ry ∩ Lx with {0}. Since
Rx∩Ly ⊂ xS1y, the product xy is nonzero and therefore is the unique element in that H-class;
similarly, Ry ∩Lx = {yx}. Thus S = {x, y, xy, yx, 0}. Moreover from xy, yx 6= 0 it follows that
yx, xy, respectively, are idempotents. Now from S − {y} 6< S, y can be expressed as a product
of elements from {x, xy, yx}, a product that must start with yx and end with xy. But then
x2 6= 0, so that Hx is a subgroup and x is idempotent. Similarly, y is idempotent, yielding that
S is a rectangular band, again a contradiction. This completes the proof in this case. �

Now we can we prove necessity of III. Suppose x does not belong to any nontrivial subgroup
of S. To prove III(a), suppose x = xab but xa 6= x. Put T = 〈a, b, x〉. Then by Zorn’s lemma,
there exists a subsemigroup M , maximal such that a, b ∈M,x 6∈M . Clearly T �M . Note that
since x = (xa)b, xa 6∈ M . Thus, similarly to the argument used in the last lemma, xa 6∈ 〈x〉.
Also, xa again belongs to no nontrivial subgroup of S, since Jx = Jxa in S and so this J -class
cannot consist of an isolated group. Thus, x 6∈ 〈xa〉, as well. Put U = 〈x, xa〉. By lower
semimodularity, U � U ∩M , contradicting Lemma 3.8.

To prove III(b), suppose x = bxa and that x 6= xa. The proof is almost identical to that of
the previous case. (Note that the conclusion holds in the case of completely [0-] simple principal
factors as well, and that this also covers the exceptional case in III(c), where n = 1).

To prove III(c) for n > 1, suppose x = a0xa1 · · ·xan, with ai ∈ S1, 0 ≤ i ≤ n, but
x 6∈ 〈a0, a1, . . . , an〉. The proof is similar to the two previous ones. Put T = 〈a0, a1, . . . , an, x〉.
Then there exists a subsemigroup M , maximal such that a0, a1, . . . , an ∈ M,x 6∈ M . Clearly
T �M and hence 〈x〉 � 〈x〉 ∩M . By Lemma 1.3(5) and D-triviality, xi ∈M for all i > 1. Let
y = xa1 · · ·xan. Clearly y J x in S. Moreover, by hypothesis, n > 1 and so a1 · · ·xan J x. By
Result 2.2, no equation of the form x = xz can hold in S, whence y 6= x. Since x = a0y, y 6∈M ,
and so y 6∈ 〈x〉. Similarly, x 6∈ 〈y〉. Now put U = 〈x, y〉. By lower semimodularity, U � U ∩M ,
again contradicting Lemma 3.8. �
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Finally, we complete the proof of necessity of I(a) and thereby of necessity in Theorem 1.1.
The given formulation allows some simplification in verifying that specific examples satisfy (I).

PROPOSITION 3.9 If T is combinatorial, completely 0-simple, and satisfies III(a), then
either T is a singular band with zero adjoined or T ∼= B2.

Proof. Suppose that T contains distinct R-related idempotents e, f . In this situation,
〈e, f〉 = {e, f}. Now if T = Rf ∪ {0}, then Rf is a right zero subsemigroup. Otherwise, there
exists an element x, say, in Lf , distinct from f . Now x = xf = (xe)f , where xe ∈ Rx ∩ Le, so
that xe 6= x. But x 6∈ 〈e, f〉, contradicting III(a).

In conjunction with the dual of the previous paragraph, it follows that if T is not a singular
band with zero adjoined, then T is inverse. Suppose T contains three distinct nonzero idempo-
tents, e, f, g. Again, refer to the discussion of products within completely 0-simple semigroups
in Section 2. Let x ∈ Re ∩Lg, a ∈ Rg ∩Lf , b ∈ Rf ∩Lg. Then since g ∈ Lx ∩Ra, xa ∈ Rx ∩Lf ,
whence xa 6= x. Similarly, since f ∈ Lxa ∩ Rb, (xa)b ∈ Rxa ∩ Lb = Hx. Thus x = xab. But
〈a, b〉 = {a, b, f, g, 0}. This also contradicts III(a). Hence T ∼= B2. �

Before proving Corollary 1.2, we prove some useful technical results. The first of these will
permit III(a) to be replaced by a weakened version (cf the statement of Theorem 5.3(3)).

LEMMA 3.10 In any semigroup T satisfying I, III(a) holds whenever ab ∈ Jx (or whenever
ba ∈ Jx, in the dual statement).

Proof. Let x ∈ T , assume that x does not belong to a nontrivial subgroup of T and that
x = xab for some a, b ∈ T , ab ∈ Jx. (The dual result is proved similarly.) Since x, ab ∈ Jx, the
associated principal factor cannot be null; by Result 2.2, nor can I(b) hold. Thus by I, either
Jx is a singular band or PF (Jx) ∼= B2. If Jx is right zero, then x = x(ab) = ab. If it is left zero,
then since xa R x, x = xa.

So suppose PF (Jx) ∼= B2. Note that from x = xab we obtain x = x(aba)(bab), where
aba, bab are mutually inverse members of Jx and x(aba) = xa. Without generality, then, we
may assume that a, b themselves are mutually inverse members of Jx. Now if a 6= b, then
the four elements a, b, ab, ba are distinct and thus comprise Jx. If a = b, then this element is
idempotent and x = xab = xa. �

From the next lemma, we shall deduce both part (i) of Corollary 1.2 (in fact a slightly
stronger statement) and, in Lemma 5.2, a simplification of Theorem 1.1 under a certain finite-
ness condition.

LEMMA 3.11 Suppose that a semigroup T satisfies III(a), that x = bxa for some a, b ∈ T
and that the associated principal factor is null. If x R xa in T , then x = xa.

Proof. From x R xa, we obtain x = xac for some c ∈ T . Observe that bx = bxac = xc;
thus bnx = xcn for all n ≥ 1. It follows that for any m,n ≥ 1, xcman = bmxan, with value x
when m = n, xcm−n when m > n, or xan−m when n > m.
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Suppose that x 6= xa. By III(a), x ∈ 〈a, c〉. We shall prove that for any w ∈ 〈a, c〉,
bk(xw)a` = x for some k, ` ≥ 0, so that xw J x. With w = x, this contradicts the assumption
that PF (Jx) is null.

We prove the assertion by induction on the minimum number of alternations of a’s and c’s
in any expression for w as a product in 〈a, c〉. In the basis case, where there are no alternations,
either w = c` for some ` ≥ 1, in which case (xw)a` = x, or w = ak for some k ≥ 1, in which
case bk(xw) = x. Otherwise, express w as a product with the miminum number of alternations
and suppose the assertion is true for products with fewer alternations. If w begins with c, then
w = cmanu, where u may be empty. As noted above, either xw = xu or xw = xcm−nu or
xw = xan−mu. In any event, the respective terms u, cm−nu and an−mu each have fewer alter-
nations and so the induction hypothesis applies. If w begins with a, then w = amcnu, similarly,
and now bm(xw) = xcnu. The induction hypothesis once more yields the desired conclusion.�

COROLLARY 3.12 Suppose x, y belong to a J -class of S whose associated principal factor
is null. If x R y and Lx ≤ Ly in S, then x = y. Hence any nontrivial H-class of S is a
subgroup.

Proof. Given such x, y, suppose x 6= y. Then y = xa and x = by for some a, b ∈ S, so that
the hypotheses of the lemma are satisfied and the contradiction x = y is obtained. Now sup-
pose H is a nontrivial H-class of S. Then by the first statement of the corollary, the associated
principal factor is non-null. Thus the conclusion is clear from I. �

We now prove part (ii) of Corollary 1.2.

LEMMA 3.13 If e is the identity element of a nontrivial subgroup of S, then for all a ∈ S such
that e 6∈ 〈a〉, and for all x ∈ He, either xa = ea and ax = ae, or xa = ax = x. In particular,
if e, f are the identity elements of nontrivial subgroups and f > e, then Hfe = eHf = {e} (so
that xa = ax = x for all x ∈ He, a ∈ Hf ).

Proof. First suppose xa ∈ He. Since He is isolated, ea, ae and ax also belong to He. By
II, ea = e, so xa = x. Dually, ax = x. Now the final statement of the lemma also follows
immediately.

Next suppose xa 6∈ He. If xa belongs to a nontrivial subgroup, with identity element f ,
say, then since xa = fxa, fx ∈ Hf (recalling that Hf is isolated). By II, fx = f and therefore
xa = fxa = fa. Now since e L x, ea L xa and, since Hf is isolated, ea ∈ Hf . Hence ea = fa,
similarly.

If xa does not belong to a nontrivial subgroup, then we may apply the dual statement in
III(a) to the equation xa = xx−1(xa), where x−1 is the inverse of x in He. Since 〈x, x−1〉 ⊆ He,
xa = x−1xa = ea. The dual case follows similarly. �
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4 Sufficiency.

The proof is divided into two parts. Throughout this section S satisfies the hypotheses of
Theorem 1.1. Suppose that U � V in L(S). We use Lemma 1.3(1) without comment and once
more refer the reader to §2 for calculations in completely [0-] semigroups.

LEMMA 4.1 1. If U − V is not contained within a subgroup of S, then |U − V | = 1.

2. If U − V is contained within the subgroup H of S, then U ∩H � V ∩H in L(H).

Proof. (1) By hypothesis, if U − V is not contained within a subgroup of S, then the
associated principal factor P is either (i) a combinatorial completely [0-] simple semigroup, (ii)
null, or (iii) a D-trivial, idempotent-free [0-] simple semigroup.

We first observe that III(b) is always satisfied in case (i). For if x = bxa then [xa 6= 0 in P
and] Rxa ≤ Rx, so that Rxa = Rx; and from x = b(xa) it follows that Lx ≤ Lxa, so Lxa = Lx.
Since P is combinatorial, xa = x.

Returning to the proof itself, suppose on the contrary that U −V contains distinct elements
x and y. Since U � V , x ∈ V ∨ 〈y〉 and so x = a0ya1 · · · yan for some n ≥ 1 and ai ∈ V 1,
0 ≤ i ≤ n. Similarly, y = b0xb1 · · ·xbm for some m ≥ 1 and bj ∈ V 1, 0 ≤ j ≤ m. Substituting
for y in the equation for x yields an equation x = a0b0x · · ·xbman.

In case (i), if m > 1 temporarily put z = xb1 · · · bm−1x = x. Then [z 6= 0 in P and] Rz ≤ Rx,
Lz ≤ Lx so, similarly to the above, z = x. In other words, we may without loss of generality
assume that m = 1 and that, similarly, n = 1. In case (ii), necessarily m = n = 1: for instance
if m > 1, then y = (b0x)(b1 · · ·xbm), a [nonzero] product in P of [nonzero] elements. In case
(iii), from III(c) it follows that x ∈ 〈a0, . . . , an, b0, . . . , bm〉 ⊆ V , contradicting the assumption,
unless once more m = n = 1.

In any case we obtain x = a0b0xb1a1. Given that x 6∈ V , from III(b) or III(c), as appropri-
ate, we obtain x = a0b0x = xa1b1. Suppose a1b1 6= 1. Then by III(a), x = xa1. If a0b0 6= 1,
then by a dual argument, x = a0x: but then y = a0xa1 = x, a contradiction. But if a0b0 = 1,
then y = xa1 = x also. If a0b0 6= 1, then a similar contradiction is reached.

(2) Denote by e the identity element of H. By hypothesis, H is isolated, that is, an entire
D=J -class of S. Let Y be a subgroup of H such that V ∩H ⊂ Y ⊆ U ∩H. We will show that
Y = (V ∨ Y ) ∩H. Since V ⊂ V ∨ Y ⊆ U , V ∨ Y = U and Y = U ∩H as required.

Let x ∈ (V ∨Y )∩H. So x = v0y1v1 · · · ynvn for some n ≥ 1, y1, . . . , yn ∈ Y and v0, . . . , vn ∈
V 1.

If e ∈ V , then since x = exe and yi = eyie for each i, we may replace each vi ∈ V 1 by
evie ∈ (V ∩H)1, whence x ∈ (V ∩H) ∨ Y = Y .

Otherwise, consider the product ynvn, which lies in H since the subgroup is isolated. Sup-
pose vn ∈ V (that is, vn 6= 1). Then evn = (y−1

n yn)vn ∈ H and so by II, evn = e, whence
ynvn = yn. Thus if n > 1, xy−1

n = v0y1 · · · yn−1vn−1. Repeating this argument leads to
xy−1

n · · · y−1
1 = v0y1y

−1
1 = v0e. Finally, II being self-dual, v0e = e and so x = y1 · · · yn ∈ Y , as

required. �
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Now let W ∈ L(S). In the first case above, it is clear that U ∩ W � V ∩ W . In the
second case, suppose there are distinct elements x, y of (U ∩W ) − (V ∩W ). Then x, y ∈ H
and U ∩ H � V ∩ H. By lower semimodularity of L(H), U ∩W ∩ H � V ∩W ∩ H. Thus
y ∈ (V ∩W ∩H) ∨ 〈x〉 ⊆ (V ∩W ) ∨ 〈x〉; similarly x ∈ (V ∩W ) ∨ 〈y〉. Hence U ∩W � V ∩W ,
completing the proof of sufficiency in Theorem 1.1. �

5 Periodic semigroups and regular semigroups.

Theorem 1.1 simplifies considerably in the case of periodic semigroups, not least because any
[0-] simple periodic semigroup is necessarily completely [0-] simple [1, Corollary 2.56], so that
hypotheses I(b) and III(c) of the theorem may be omitted. Periodicity is not as restrictive an
assumption as might first appear. Recall, firstly, that by Proposition 3.2, any group whose
subsemigroup lattice is lower semimodular is periodic. As we now show, this property extends
to all eventually regular semigroups: semigroups in which each element has a power that is a
regular element of the semigroup. (The term π-regular is also commonly used.) Along with
regular semigroups, this class includes all epigroups (also termed group-bound semigroups):
semigroups in which each element has a power that belongs to a subgroup.

PROPOSITION 5.1 If L(S) is lower semimodular then

1. for any regular element a of S, if an is again regular for some n > 1, then an belongs to
a subgroup of S and a therefore has finite order;

2. if S is eventually regular, it is periodic;

3. if S is regular, it is orthodox — that is, the product of idempotents is again an idempotent
— and a2 belongs to a subgroup for every a ∈ S.

Proof. Let a ∈ S and suppose a is regular. From I of Theorem 1.1, the only case in which
a does not already belong to a subgroup is when its principal factor is isomorphic to B2. We
may assume that Da = {a, b, e, f}, with ab = e 6= f = ba. Suppose an is also regular, for
some n > 1. Similarly, an then belongs to a subgroup unless, possibly, its principal factor is
again isomorphic to B2, so that its D-class consists of two distinct R-classes (and two distinct
L-classes). But anb R an since anba = an, and so either anb = an or anb ∈ ES . In the former
case, an = anba = an+1; in the latter case, a2n−1 = (anb)(anb)a = (anb)a = an. Thus in either
case, an belongs to a subgroup. That a has finite order follows from periodicity of the subgroups
of S.

Now suppose S is eventually regular and let a ∈ S. Then ak is regular for some k ≥ 1. If
(ak)2 is not regular, then one of its powers is regular. In any event, some proper power of ak is
regular, whence ak has finite order, by the first part of the proposition.

Finally, if S is regular, clearly a2 belongs to a subgroup for every a ∈ S. Note that each
principal factor is either a group or a singular band, each possibly with adjoined zero, or is
isomorphic to B2. Each of these is orthodox, whence so is S, using the result of Hall [4, Lemma
1] that, in any semigroup, a regular element that is a product of idempotents is a product of
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idempotents in Da. �

The argument cited in the last paragraph demonstrates that, under those hypotheses, if a
product of idempotents is regular, then it is idempotent. The idempotent-generated, periodic
J -trivial semigroup 〈e, f | e2 = e, f2 = f, fe = 0〉 demonstrates that, in general, ES need not
be a subsemigroup when L(S) is lower semimodular.

Following [2, §6.6] a semigroup T is said to be right stable if whenever x = bxa, for some
a, b ∈ T , then x R bx. Observe that since xa = b(xa)a, it then also follows that xa R b(xa) = x.
By [2, Lemma 6.42], a semigroup is right stable if and only if the R-classes contained in any
given J -class of S satisfy the minimum condition. In particular, any J -trivial semigroup is right
stable. Left stability is defined dually, and stability is the conjunction of the two properties. It
is easily seen that any periodic semigroup is stable (cf [2, Exercise 6.2]).

LEMMA 5.2 In any left or right stable semigroup, and thus in any periodic semigroup, (i)
there are no principal factors of type I(b), and (ii) III(b) follows from I and III(a).

Proof. (i) Suppose, without loss of generality, that T is right stable and that J is a J -class
whose associated principal factor P is [0]-simple. Then P is D-trivial and idempotent-free.
Given x ∈ J , by [0-] simplicity there exist a, b ∈ J such that x = bxa. As noted above, right
stability implies that x R xa in T , say x = (xa)t, t ∈ T 1. But since at ∈ J , the equation
x = x(at) contradicts Result 2.2.

(ii) Suppose x = bxa, with PF (Jx) null. As noted above, right stability implies that x R xa.
Then x = xa by Lemma 3.11. The dual of the lemma yields the same conclusion if T is left
stable. �

Example 7.6 demonstrates that, in general, III(b) is independent of the other hypotheses of
Theorem 1.1.

Under stability, therefore, I(b), III(b) and III(c) may be omitted entirely from Theorem 1.1.
However, under periodicity II and III may be re-expressed in ways that warrant a separate ex-
position and lead to structural consequences that do not hold in stable semigroups, as examples
in §7 show. We note that although assuming regularity only appears to entail deletion of the
adjective “non-null” in (1), there are yet more structural consequences (cf Proposition 5.1 and
the comments following Corollary 5.4), which we will not pursue here.

THEOREM 5.3 For a periodic semigroup S, L(S) is lower semimodular if and only if

(1) each non-null principal factor of S is either a group with lower semimodular subgroup lattice
or a singular band; such a semigroup with zero adjoined; or, up to isomorphism, B2;

(2) if e < f ∈ ES and both He and Hf are nontrivial, then eHf = Hfe = {e};

(3) for each element x of S that does not belong to a nontrivial subgroup of S, if x = xab
for some mutually inverse elements a, b ∈ S [such that ab 6∈ Jx], then either x ∈ 〈a, b〉 or
x = xa; and dually.
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Proof. Necessity of (1) is a consequence of Lemma 5.2; (2) is contained in Corollary 1.2(ii);
and (3) is a special case of III(a).

For sufficiency, we first deduce II. Suppose ea ∈ He, where He is nontrivial and thus isolated.
By periodicity, 〈a〉 has a group kernel Hf , where f = an, say. Now since He is isolated, ef ∈ He

and thus ef = e; similarly, fe = e. So e ≤ f . If f = e then e ∈ 〈a〉. Otherwise, by assumption,
eHf = {e}. But an+1 ∈ Hf and so ea = efa = ean+1 = e.

To prove III(a), suppose x = xab. By Lemma 1.5, without loss of generality we may assume
that a and b are mutually inverse. Thus III(a) follows from (3). That the alternative reading
in (3) also suffices follows from Lemma 3.10. Finally, III(b) then follows from Lemma 5.2. �

The presence, or otherwise, of the semigroup B2 as a principal factor plays a critical role in
the structure of such semigroups, as we now show.

COROLLARY 5.4 Suppose J is a nontrivial, irregular J -class of a periodic semigroup for
which L(S) lower semimodular. Then |J | = 4, J consists of two R-classes and two L-classes,
and in fact J = {x, xa, bx, bxa} for some mutually inverse elements a, b such that PF (Ja) ∼= B2,
x ∈ 〈a, b〉, and x = x(ab) = (ab)x. In general, for any such pair a, b, every irregular J -class of
〈a, b〉 has precisely four elements.

Proof. Let x ∈ J and suppose y ∈ Rx, y 6= x. By Lemma 1.5, there exist mutually inverse
elements a, b of S such that y = xa, x = yb. Since x = xab and x 6= xa, then by (3) of
Theorem 5.3, x ∈ 〈a, b〉. Since Jx is irregular, x 6∈ Ja and thus Ja is not a subsemigroup of S.
By (1), PF (Ja) ∼= B2.

Consider for the moment any element x that belongs to any irregular J -class of 〈a, b〉.
Write x as a word in a and b. If x begins in b, then since b = bab, x = bax, where ax L x. By
replacing x by ax, if necessary, we may presume that x begins in a, so that x = abx and bx L x.
Now bx 6= x, for otherwise x = bx = ax and x ∈ 〈a, b〉 together yield x2 = x, contradicting
irregularity of J . Similarly, we may presume that x ends in b, so that x = xab, x R xa and
x 6= xa. Then bx L x implies bxa L xa and bxa 6= xa. Hence |Jx| ≥ 4.

Returning to the first paragraph, we obtain that J contains at least the four distinct elements
specified in the statement of the corollary, presuming we modify the choice of x as in the previous
paragraph.

It remains to prove that Rx = {x, y}, since the dual statement will follow similarly. Suppose,
then, that there exists a third element z, say, in Rx. Similarly to the above, z = xc, x = zd
for some mutually inverse elements c, d in S. Let g = ab, h = cd. By periodicity, there is an
idempotent power f = (gh)n, and since x = xg = xh, x = xf . Note that since f2 = f and
g R a, f R fg R fa. Also f = fh R fc. Dually we obtain bf L f and df L f . As above,
since x = x(fa)(bf), x 6= x(fa) = xa and Jf 6= J , it is necessarily the case that PF (Jf ) ∼= B2.
However, from |{f, fa, fc}| ≤ 2 we obtain the contradiction |{x, xa, xc}| ≤ 2.

The final statement now follows from the second paragraph of the proof. �

Example 7.2 demonstrates that the situation described in the corollary can occur. In fact,
the structure of the semigroups 〈a, b〉 that arise in this corollary may be described more com-
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pletely, but we will not pursue the details here.
The situation in which the semigroup has no principal factors isomorphic to B2 arises

sufficiently frequently that it deserves separate discussion. In that case, by Theorem 5.3, every
regular D-class is a subsemigroup. According to [12, Theorem 3.16], a periodic semigroup has
this property if and only if it is decomposable as a semilattice of archimedean subsemigroups.
A semigroup S is archimedean if for all a, b ∈ S, an ∈ SbS for some n ≥ 1, equivalently, if it
is a nilextension of a completely simple semigroup (that is, an ideal extension of a completely
simple semigroup — its kernel — by a nilsemigroup). Refer to [12, §1] for a broader review of
such decompositions in the context of epigroups.

COROLLARY 5.5 For a periodic semigroup S in which no principal factor is isomorphic to
B2, L(S) is lower semimodular if and only if

1. each irregular J -class of S (equivalently, each non-null principal factor) is trivial;

2. each regular J -class of S is either a group with lower semimodular subgroup lattice or a
singular band;

3. if e < f in ES, then ea = ae = e for all a ∈ Df .

Proof. Necessity of 1 is immediate from Corollary 5.4; 2 is immediate from Theorem 5.3.
To prove necessity of 3, consider first the case that He is a nontrivial (and therefore isolated)

subgroup. Clearly e 6∈ 〈a〉. If Hf is also a nontrivial subgroup, then the conclusion is immediate
from (2) of Theorem 5.3. If Jf is right zero, then ae = a(fe) = (af)e = fe = e and so
(ea)2 = ea, whence ea = a as well. If Jf is left zero, a dual argument applies.

Next suppose Je is right zero. If Jf is either a group or right zero, then f = fab for some
b ∈ Jf , so e = eab. Again e 6∈ 〈a, b〉, so by (3) of the cited theorem, e = ea. If Jf is left zero,
then ea = efa = ef = e in any event. Since Je is left zero, ae = e as well. The argument when
Je is left zero is dual.

To prove the converse, we need only derive (3) of Theorem 5.3 from properties 1 - 3, since
(2) is immediate from property 3. So suppose x = xab, where a, b are mutually inverse. Note
that x R xa so that x = xa is obvious if Jx is either left zero or irregular (using property 1 in
the latter case). The remaining case is where Jx is right zero. If Jx = Ja, then x = xab = b;
otherwise since (ab)x = x, x < ab and, by property 3, x = xa. �

Example 7.1 shows that, without the hypothesis of periodicity, the first property in Corol-
lary 5.5 need not hold, even for stable semigroups. Note also that in the statement of this
corollary, the phrase “then either x ∈ 〈a, b〉 or” need never be invoked. Example 7.2 demon-
strates (cf Corollary 5.4) that this is not true in general for periodic semigroups. In a slightly
different direction, (3) in Corollary 5.5 does not hold for periodic semigroups in general, as
demonstrated by Example 7.4.

Specializations of Corollary 5.5 to various subclasses of semigroups, such as to completely
regular semigroups, result in very simple characterizations of lower semimodularity. Looking
ahead to the following subsection, we note two particular cases. Recall that every band is a
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semilattice of rectangular bands (its J -classes); and that every archimedean semigroup is a
nilextension of a completely simple semigroup, which is its kernel.

COROLLARY 5.6 (1) The subsemigroup lattice of a band is lower semimodular if and only
if it is a semilattice of singular bands, with the property that whenever one idempotent is below
another, then it is below every idempotent in the component of the latter.

(2) The subsemigroup lattice of an archimedean semigroup is lower semimodular if and
only if its kernel is either a singular band or a periodic group whose subgroup lattice is lower
semimodular.

We remark that (1) does not imply that given two components, one below the other, every
idempotent in the lower is below every idempotent in the higher, as the following example
demonstrates.

EXAMPLE 5.7 Let the band B be the union of the right zero semigroup {e, f} with the one-
element semigroup {g}, satisfying eg = fg = e (and ge = e, gf = f). Then e < g but f 6< g.
By the corollary, L(B) is lower semimodular.

5.1 Modularity.

Since every modular lattice is lower semimodular, the class of semigroups whose subsemigroup
lattice is modular should be identifiable in terms of Theorem 1.1. A description of such semi-
groups (and those whose lattice belongs to some subvariety of modular lattices, likewise) may
be found in [11, §6]. Modularity imposes far stronger restrictions on the underlying semigroup
than does lower semimodularity. The purpose of this section is to demonstrate that to derive
modularity from lower semimodularity requires a sequence of steps little different from a proof
that begins from scratch. It is upper semimodularity that is responsible for the additional
restrictions.

In addition to the definition of U -band of semigroups near the end of §1 and the terminology
reviewed prior to Corollary 5.5, we need the following. A semigroup S is a U -semigroup if
ab ∈ 〈a〉 ∪ 〈b〉 for all a, b ∈ S. A semigroup is unipotent if it contains a unique idempotent. If
such a semigroup is periodic, then it is a nilextension of its group kernel (and so archimedean).

RESULT 5.8 [11, §5] For a semigroup S, L(S) is upper semimodular if and only if (a) S is
periodic, (b) S is a U -chain of archimedean subsemigroups and (c) each of those archimedean
subsemigroups has upper semimodular lattice of subsemigroups.

An archimedean semigroup T , with completely simple kernel K and nil quotient Q, has
upper semimodular lattice of subsemigroups if and only if (d) T is a singular band of unipotent
semigroups, (e) the maximal subgroups of T are periodic, with upper semimodular subgroup
lattices, and (f) Q is a nilpotent U -semigroup.

[11, §6] For a semigroup S, L(S) is modular if and only if L(S) is upper semimodular and
each archimedean component has the same property. For an archimedean semigroup T , L(T ) is
modular if and only if if L(T ) is upper semimodular, the maximal subgroups of T have modular
subgroup lattices and, in addition, the decomposition (d) is a U -band decomposition.
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It is clear that (a) and (b) do not hold in the lower semimodular case. In fact, (b) fails in
more than way. As observed in the previous section, it implies the absence of principal factors
isomorphic to B2. In the absence of such principal factors, consider the case of bands. Property
(b) above implies that, under upper semimodularity, (1) B is a chain of its rectangular band
components (which by (d) must again be singular bands) and (2) given two components, every
idempotent in the lower is below every idempotent in the higher. Example 5.7 exhibits a three-
element band B for which L(B) is lower semimodular but for which the latter criterion is not
satisfied. The former condition fails in the lower semimodular case, since every semilattice is
J -trivial.

Next consider an archimedean semigroup T , with K and Q as above. According to Corol-
lary 5.6, L(T ) is lower semimodular if and only if K is either a periodic group (with lower
semimodular subgroup lattice) or a singular band, Q being an arbitrary nilsemigroup. However
(f) imposes stringent restrictions on the quotient semigroup. The statement (d) asserts that
if e, f ∈ EK , then KeKf ⊆ Kef . Consider R3,1 = 〈a, e | e2 = e = ae, ea2 = a2〉. Here R3,1

is the extension of the three-element right zero semigroup {e, ea, a2} by the two-element zero
semigroup {a, 0}. Thus L(R3,1) is lower semimodular. But e ∈ Ke and a ∈ Ka2 , while ea ∈ Kea,
so L(R3,1) is not upper semimodular.

Note that according to Result 5.8, a completely simple semigroup S has upper semimodular
subsemigroup lattice if and only if S is a right group or left group (with maximal subgroups
having subgroup lattice with the same property).

The only necessary condition imposed by modularity, above and beyond those imposed by
upper semimodularity and the obvious condition on the subgroups, is that an archimedean
semigroup T must be a U -band of its unipotent components, that is, if a ∈ Ke, b ∈ Kf , where
e 6= f ∈ EK , then ab ∈ 〈a〉 ∪ 〈b〉. In conjunction with upper semimodularity, this follows from
lower semimodularity. For, given such a, b, then by lower semimodularity K is a singular band.
If ab ∈ K, then since, by (d) KeKf ⊆ Kef , ab ∈ K ∩ (Ke∪Kf ) = {e, f} ⊆ 〈a〉∪ 〈b〉. Otherwise,
ab 6= 0, regarded as a product in Q, and therefore belongs to 〈a〉 ∪ 〈b〉 by (f). This paragraph
proves the following result.

PROPOSITION 5.9 The lattice L(S) is modular if and only if it is both lower and upper
semimodular and the subgroup lattice of every subgroup of S is modular.

5.2 Homomorphic images.

Since every free semigroup has lower semimodular subsemigroup lattice, this property is not
in general inherited by homomorphic images. However for periodic semigroups the situation is
different.

THEOREM 5.10 Lower semimodularity of the lattice of subsemigroups is inherited by homo-
morphic images within the class of periodic semigroups.

Proof. Suppose S is periodic, with L(S) lower semimodular, and let φ : S → T be a
surjective homomorphism. We will show that (1), (2) and (3) of Theorem 5.3 are satisfied.
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LEMMA 5.11 Under the assumptions just stated, for each nontrivial subgroup of T , with
idempotent f say, there is a unique subgroup of S that maps onto Hf , and the idempotent e of
that subgroup is the minimum idempotent that maps onto f . Hence L(Hf ) is lower semimodular
and T satisfies (2).

Proof. Since S is periodic, there is some idempotent g that maps to f ; further, if y ∈
Hf , y 6= f and xφ = y, then for some n ≥ 1, e = (gx)n ∈ ES and ex = e(gx) ∈ He. Now eφ = f
and (ex)φ = y, so He is nontrivial. Let h be any idempotent of S such that hφ = f . Then
(he)φ = f, (hex)φ = y, so he 6= h(ex). According to Corollary 1.2(ii), ex = h(ex) and so, since
He is isolated, h ≥ e. Since this argument was independent of the choice of y in Hf , Heφ = Hf

and He is the unique subgroup with that property.
By the correspondence theorem, the subgroup lattice of Hf is isomorphic to an interval

sublattice of the subgroup lattice of He and is therefore again lower semimodular.
Finally, suppose that f < h in ET , where Hf and Hh are nontrivial subgroups. Let e, g be

the minimum idempotents that map onto f, h, as above, so that Heφ = Hf , Hgφ = Hh. Since
for some n ≥ 1, (ege)n is an idempotent that again maps to f , e < g. Hence eHg = Hge = e
and so fHh = Hhf = f as required. �

To complete the proof, we make use of properties of congruences and Green’s relations on
eventually regular semigroups, proved by P.M. Edwards [3], that generalized earlier results of
Hall on regular semigroups. For completeness, we include direct proofs for the special cases we
need.

To prove (3), suppose x, a, b ∈ T , where x does not belong to a nontrivial subgroup, x = xab
and a, b are mutually inverse. Then there exist mutually inverse elements c, d of S such that
cφ = a, dφ = b. (Suppose uφ = a, vφ = b. Let e = (uv)n be the idempotent power of uv. Put
c = eu and d = v(uv)n−1e.) Put e = cd ∈ ES and let y ∈ S map to x. Then (ye)φ = x and
ye = (ye)cd. Applying (3) to S, either ye ∈ 〈c, d〉 or ye = (ye)c, yielding (3) for T .

To prove (1), let f ∈ ET and suppose that Jf (= Df ) is neither a nontrivial subgroup nor a
singular band. Then there exists g ∈ ET , g 6∈ Lf ∪ Rf . Let a ∈ Rf ∩ Lg, so a has an inverse
b ∈ Lf ∩Rg. As above, there exist mutually inverse elements c, d ∈ S such that cφ = a, dφ = b.
Since cd and dc are then D-related idempotents of S that are neither L- nor R-related, the
principal factor associated with Jc is isomorphic to B2. As a consequence, a, b 6∈ ET . Suppose
that y ∈ Rf . Then there exist g ∈ ES and u, v ∈ Rg such that gφ = f, uφ = a, vφ = y. (Let
z be the inverse of y and choose mutually inverse elements s, t ∈ S such that sφ = y, tφ = z.
With k = cd, ` = st ∈ ES , where kφ = ab = f = yz = `φ, let g = (k`)n be the idempotent
power of k`, u = gc and v = gs.) Again, the principal factor associated with Jg is isomorphic
to B2 and so |Rg| = 2. Hence y = a or y = f and the principal factor associated with Jf is also
isomorphic with B2. �
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5.3 Varieties.

Theorem 5.10 naturally leads to consideration of varieties of semigroups all of whose members
have the property that their subsemigroup lattices are lower semimodular. We call such a
variety LSM . It was noted in [11] that free semigroups and free commutative semigroups have
lower semimodular subsemigroup lattices. The connection with LSM varieties is provided by
Theorem 5.12 below. First we provide some terminology and well known background that will
used throughout this section. In this context, a useful reference is [9].

A variety that contains all commutative semigroups is often termed overcommutative. More
broadly, a variety that contains all semilattices is often termed regular (and otherwise irregular).
A variety is periodic if it satisfies some periodic identity xn = xn+k, where n, k ≥ 1. We recall
some elementary facts about semigroup varieties. Every variety is either overcommutative or
periodic. A variety is irregular if and only if it (is periodic and) consists of nilextensions of
completely simple semigroups.

THEOREM 5.12 Let V be a variety of semigroups. Then L(F ) is lower semimodular for
every (relatively) free semigroup F ∈ V if and only if either V is overcommutative or V is a
periodic LSM variety.

Proof. It is no doubt well known that the relatively free semigroups in any overcommutative
are J -trivial, but we include a proof for completeness. Let V be such a variety. We shall prove
that V is periodic, contradicting the dichotomy stated above. It suffices to prove the statement
for the relatively free semigroup F over the countably infinite set X. If F is not J -trivial, then
there exist distinct w, z ∈ F such that w = szt, z = pwq, where s, t, p, q ∈ F 1. Thus w = uwv
for some u, v ∈ F 1, not both 1. Interpreting each of w, u, v as a word over X, this equation
becomes an identity satisfied in V. Now map each variable to a new variable x, yielding an
identity of the form xn = xkxnx` satisfied in V, with k + n+ ` > n.

If V is periodic and L(F ) is lower semimodular for every (relatively) free semigroup F ∈ V,
then the same is true of every member of V, by Theorem 5.10. �

One class of obvious examples of LSM varieties comprises the J -trivial ones: those that
consist entirely of J -trivial semigroups.

PROPOSITION 5.13 The following are equivalent for a variety V of semigroups:

1. V is J -trivial;

2. V consists of semilattices of nilsemigroups;

3. V satisfies the identities xn = xn+1, (xy)n = (yx)n, for some n ≥ 1;

4. V consists of semigroups in which every regular J -class is trivial.

Proof. Suppose V is J -trivial. Then it is periodic (since it is not overcommutative). Now
V does not contain B2, so by [9], V consists of semilattices of archimedean semigroups. Each
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component is a nilextension of a completely simple semigroup and each of the latter must be
trivial.

Suppose next that V consists of semilattices of nilsemigroups. Then V is periodic and so
satisfies xn = xn+k for some n, k ≥ 1; further, V contains no nontrivial groups and so k = 1.
For any x, y ∈ S, (xy)n and (yx)n are idempotents that lie in the same nilsemigroup component,
and are therefore equal.

Next, if V satisfies the given identities then for any S ∈ V, J=D and for any D-related
idempotents e, f ∈ S, e = xy, f = yx for some x, y ∈ S, whence e = f . Thus every regular
J -class is a group which, further, is trivial.

Finally, a variety satisfying (iv) is clearly periodic, and (i) follows from the well known fact
that a periodic semigroup is J -trivial if its regular J -classes are trivial. (Suppose there exist
distinct R-related elements x, y. Then by Lemma 1.5 there exist mutually inverse elements a, b
of S such that y = xa, x = yb. Assuming Ja is trivial yields the contradiction x = xab = xa = b.
Thus R is trivial and, dually, L is trivial.) �

LEMMA 5.14 If a variety V is LSM then:

(i) V does not contain B2;

(ii) if V contains a nontrivial semigroup from any one of the classes of semilattices, groups,
left zero semigroups or right zero semigroups, then it contains nontrivial semigroups from
only one of those classes;

(iii) V is periodic.

Proof. (i) This follows from Example 7.3(d). (ii) This follows from (a)—(c) of the same
example. (iii) According to the remarks above, if V is not periodic, then it contains all com-
mutative semigroups. But this contradicts (ii). �

THEOREM 5.15 Every LSM variety of semigroups is periodic. The regular LSM varieties
are precisely the (regular) J -trivial varieties described above. The irregular LSM varieties are
(a) the variety of left zero semigroups; (b) the variety of right zero semigroups; (c) the periodic
group varieties all of whose members have lower semimodular subgroup lattice; and (d) varieties
comprising nilextensions of members of a variety of type (a), (b) or (c).

Proof. Let V be an LSM variety. The first statement is Lemma 5.14(iii). In conjunction
with (i) of that lemma, it follows that we may apply Corollary 5.5. Further, if V contains a
nontrivial semilattice, then in conjunction with (ii) of the same lemma, it then follows that V
is J -trivial.

Otherwise, V consists of nilextensions of completely simple semigroups. The completely
simple members of V form a subvariety of V and then Lemma 5.14(ii) yields the specified
classification. The converse follows from Theorem 5.3. �

The author is not aware of a structural description of the LSM group varieties. It is known
that the product of two finite groups with lower semimodular subgroup lattices retains that
property [10, Corollary 5.3.12].
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6 0-simple and simple semigroups.

As remarked in the introduction, the author does not know whether there exists a simple, or
a 0-simple, semigroup S that is not completely 0-simple yet has lower semimodular lattice of
subsemigroups. The criterion to be satisfied is remarkably simple: it must be D-trivial (thus
idempotent-free and satisfying no equation of the form xy = x or xy = y) and satisfy III(c),
without the necessity for the exceptional case when n = 1. That is, whenever an element
x satisfies an equation of the form x = a0xa1x · · ·xan, for some a0, . . . , an ∈ S1 (necessarily
a0, an ∈ S) and n ≥ 1, then x ∈ 〈a0, a1, . . . , an〉.

We should note that in the more general (and as yet hypothetical) situation of a [0-] simple
principal factor within a larger semigroup, III(a) and the exceptional case in III(c) must also
be verified in the situations that a, b, and a0, a1, respectively, lie in a higher J -class of S.

We will focus here on the case of simple semigroups. Any idempotent-free semigroup that
satisfies no equation of the form xy = x or xy = y can be embedded in a simple, D-trivial
semigroup [6]. Moreover, any cancellative semigroup without idempotents (which necessarily
satisfies the condition on equations) can be embedded in a cancellative semigroup of that type
[1]. Thus such semigroups are plentiful. Concrete examples are harder to find in the literature,
however. Anderson (see [1, §2.1]) showed how to construct cancellative examples from the
positive parts of ordered fields. However, none of these may serve the desired purpose, as we
now show.

COROLLARY 6.1 If a left or right cancellative, simple semigroup has lower semimodular
lattice of subsemigroups, then it is a group or a singular band.

Proof. Assume throughout that the given semigroup S is right cancellative, the alternative
argument being a dual one. If S is completely simple, then it is a left group, that is, the direct
product of a left zero semigroup and a group [1]. The conclusion follows from Theorem 1.1.
Otherwise, S is D-trivial and so idempotent-free. By simplicity, for any x ∈ S, x = ax3b for
some a, b ∈ S. Rewriting this equation as x = (ax)x(xb), then by the criterion stated above,
x ∈ 〈ax, xb〉. Since x 6∈ xS and x 6∈ Sx, x = (ax)iu(xb)j , where i, j ≥ 1 and either u = 1 or
u ∈ (xb)S(ax), u = xvx, say.

From x = (ax)x(xb) it follows that x = (ax)jx(xb)j whence, by right cancellativity,
(ax)jx = (ax)iu. If u = 1, then necessarily j < i, since (ax)i 6∈ (ax)iS. But by cancelling
x we obtain (ax)j = (ax)i−1a ∈ (ax)jS, a contradiction. If u = xvx, then cancelling x yields
(ax)j = (ax)ixv and, similarly, j > i. But then, substituting (ax)j−ix(xb)j−i for x in (ax)ixv
yields (ax)j ∈ (ax)jS and, once more, a contradiction is obtained. �

The proof may be amended in the 0-simple case to cover the case that S is 0-cancellative
(that is, all nonzero elements may cancelled). For semigroups in general, cancellativity does
not conflict with lower semimodularity: for instance free semigroups have both properties.
The author conjectures that there does exist a cancellative semigroup having a nontrivial null
principal factor and lower semimodular subsemigroup lattice. None of the examples in the next
section that have nontrivial null principal factors are left or right cancellative, however.
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Recall from §2 that simple semigroups that are not D-trivial were removed from consider-
ation by identifying one of the subsemigroups A,Ad, B,C in each, and proving that no such
semigroup has lower semimodular subsemigroup lattice. Unfortunately, the author knows of no
analogous theorem in the D-trivial case.

However, we may attempt to proceed as follows. In any semigroup S, each element x of
a nontrivial J -class satisfies an equation of the form x = axb. If S is simple, D-trivial and
idempotent-free then x 6= ax, xb. Under III(c), therefore, x ∈ 〈a, b〉. Moreover, since x = anxbn,
T = x ∈ 〈an, bn〉, for every n ≥ 1. Thus T satisfies a set of equations of the form x = wn(an, bn),
n = 1, 2, . . .. (Of course, it must satisfy many further equations, either generated in a similar
manner from lower semimodularity or already present in S itself.) Note that T will not itself
be simple since, as observed in §2, no finitely generated simple semigroup is D-trivial.

The following lemma provides a constraint on such a subsemigroup T , which we will then
apply to eliminate a previously known example from consideration. First, recall from §2 that
G denotes the infinite cyclic group, presented as a monoid by G = 〈a, b | ab = ba = 1〉.
Alternatively, a semigroup presentation is G = 〈a, b | a(ab) = (ba)a = a, (ab)b = b(ba) = b〉.
Thus for any semigroup T = 〈a, b〉, the congruence σ generated by the latter set of relations
yields a cyclic quotient group H, in which a and b are mutually inverse.

LEMMA 6.2 Suppose a semigroup T = 〈a, b〉 satisfies no equation of the form xy = y or
xy = x. Let H = T/σ, where σ is the cyclic group congruence defined above. Suppose that
|H| 6= 1. Then if T satisfies an equation x = axb, it does not satisfy the criterion stated in
III(b) (and in III(c) in the case n = 1).

Proof. Suppose, to the contrary, that T satisfies the criterion stated in III(b). Since T is
idempotent-free, no principal factor is regular, and so the principal factor associated with Jx is
either null or [0-] simple (and so D-trivial). Now for each n ≥ 1, x = anxbn and so x ∈ 〈an, bn〉.
Hence xσ ∈

⋂
n≥1〈(aσ)n, (bσ)n〉 = {1}. So xσ = 1. However the element ax of T also satisfies

the equation ax = a(ax)b, and so (ax)σ = 1, similarly, yielding aσ = 1 and thus triviality of
H, contradicting the assumption. �

One of the simplest candidates for such a set of equations is x = anbn, n = 1, 2, . . ., each a
consequence, of course, of ab = a(ab)b.

PROPOSITION 6.3 Let T = 〈a, b | ab = a(ab)b〉. Then L(T ) is not lower semimodular. The
principal factor associated with Jab is an infinite null semigroup; T has no simple or 0-simple
principal factors.

Proof. Clearly the given relation is a consequence of the relations defining G, so T/σ ∼= G.
Now any words u, v in the free semigroup on {a, b} that are equal as elements of T must begin
with the same letter, end with the same letter, and contain the same number of alternations
of a’s and b’s. So no equation xy = x or xy = y can hold. Hence, by the lemma, L(T ) is not
lower semimodular. The J -class of ab consists of the elements anb, abn, n ≥ 1 and is null, since
any product contains the alternation ba. Clearly, no equation of the form y = uy2v can hold in
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T . Since in any simple or 0-simple semigroup, some element is J -related to its square, no such
principal factor can occur. �

In any [0-] simple semigroup, there is at least one nonzero element x such that all powers of
x are nonzero, so that for each i ≥ 1, an equation of the form x = uix

ivi holds. In combination
with the previous discussion, setting x = ab, each ui = a and each vi = b yields perhaps the next
simplest semigroup to consider in this context, the semigroup D = 〈a, b | a(ab)nb = ab,∀n ≥ 1〉
introduced in §2.

PROPOSITION 6.4 The lattice L(D) is not lower semimodular. In fact, the subsemigroup
lattice of the simple, D-trivial and noncancellative kernel K = Jab of D is not lower semimod-
ular.

Proof. Observe first that, similarly to the previous example, the map a → a, b → b ex-
tends to a surjective morphism D → G that induces σ. When restricted to the kernel K,
ax→ a and xb→ b, where once again we put x = ab, so the restriction is also surjective. Thus
K/σ ≡ G. The equation x = (ax)x(xb) holds in K, whence the result follows from Lemma 6.2.�

Lemma 6.2 also provides an alternative method of proving that the cancellative semigroups
constructed by Anderson from ordered fields, cited above, do not have lower semimodular
subsemigroup lattices.

7 Examples.

In this final section we present a series of examples, primarily demonstrating the independence
of the hypotheses in Theorem 1.1, also demonstrating that the alternative outcomes stated
in some of those hypotheses are each necessary and demonstrating that the hypotheses are
satisfied nonvacuously. We shall also consider Theorem 5.3 in the same context.

Note first that all the completely simple semigroups that appear as principal factors in I(a)
do have lower semimodular subsemigroup lattices. In fact, the subsemigroup lattice of a singular
band is distributive. That L(B2) is lower semimodular is immediate from Theorem 5.3, using
the alternative reading of (3). Recall that we do not know whether there exists a semigroup in
which I(b) and III(c) are satisfied nonvacuously. Subsequent statements will always be relative
to that open question.

Result 1.4 allows semigroups to be constructed with all possible combinations of non-null
principal factors, according to I. This remains true under the restriction of periodicity as in
Theorem 5.3. Note, however, that by Corollary 5.5, if L(S) is lower semimodular for a periodic
semigroup without principal factors isomorphic to B2, then it has no nontrivial null principal
factors. The following example demonstrates that the absence of B2 does not imply triviality
of null principal factors in general, even under the assumption of stability.

EXAMPLE 7.1 Let S = 〈a, b | b2 = b2ab = bab2, b3 = 0, a2 = 0〉. Then S has exactly one
nontrivial J -class, namely Jb2 = {b2, b2a, ab2, ab2a}. The associated principal factor is a null
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semigroup comprising two distinct nonzero R-classes and two distinct nonzero L-classes. The
semigroup S is stable but not periodic, and L(S) is lower semimodular.

Proof. From the relations it is clear that if a product of generators contains b2 and is
nonzero, then it reduces to one of the four forms exhibited in the description of Jb2 . Clearly,
b2 R b2a L ab2a R ab2.

Denoting by ρ the congruence on the free semigroup on {a, b} induced by the given relations,
it is straightforward to check that {(ba)ib2(ab)j : i, j ≥ 0} = b2ρ. It follows that the four words
listed above represent distinct elements of S (since equality of any two of them would lead to
a relation of the form b2 = ub3v); and that the associated principal factor is null.

The other nonzero elements of S are then of the form (ab)n or (ba)n, for n ≥ 1, or b(ab)n or
(ab)na, for n ≥ 0, all of which are distinct and constitute singleton J -classes.

Clearly S satisfies I and II. Now setting x = b2 first, suppose x = xuv for some u, v ∈ S,
with xu 6= x. Then, as above, u = (ab)ia, v = b(ab)j , for some i, j ≥ 0. Now b2 = (ba)jb2(ab)j =
b(ab)jb(ab)j = v2 ∈ 〈u, v〉. Similar arguments apply to x = b2a, x = ab2 and x = ab2a. Thus S
satisfies III(a). Any semigroup all of whose J -classes are finite is stable (see §5). By Proposi-
tion 5.2, S satisfies III(b). Hence L(S) is lower semimodular. �

It should be noted that, with somewhat more difficulty, an example similar to the last one
may be constructed in which the only nontrivial J -class consists of one two-element R-class (cf
Corollary 5.4).

The next example demonstrates that, without the assumption on the lack of principal
factors of the form B2, periodic semigroups may indeed have nontrivial null principal factors
(cf Corollary 5.4). It also demonstrates that if S is periodic but not regular then, in contrast
to Proposition 5.1, the square of a regular element need not belong to a subgroup. Since the
arguments are similar to, but simpler than, those of the previous example, we omit the details.

EXAMPLE 7.2 Let S = 〈a, b | aba = a, bab = b, b3 = a2 = 0〉. Then S has two nonzero
J -classes, namely Ja = {a, b, ab, ba} and Jb2 = {b2, b2a, ab2, ab2a}. The principal factor for the
former is isomorphic to B2; the principal factor for the latter is a null semigroup containing
four distinct nonzero H-classes. The lattice L(S) is lower semimodular.

That Theorem 5.3(2) (and therefore also II) is independent of the other hypotheses is easily
seen by consideration of the product of a two-element semilattice with a two-element group.
We collect some similar results together, as follows.

EXAMPLE 7.3 In each of the following cases, the lattice of subsemigroups is not lower semi-
modular: (a) the product of a nontrivial semilattice and either a nontrivial group or a nontrivial
singular band; (b) the product of a nontrivial group and a nontrivial singular band; (c) the prod-
uct of a nontrivial left zero semigroup and a nontrivial right zero semigroup; (d) the product of
two copies of B2.

Proof. In (a), II (or Corollary 1.2(ii)) is contradicted in the first case, and III(a) (or Corol-
lary 5.5(3)) in the second case. In (b),(c) and (d), I(a) is contradicted. (Note that B2 × B2
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contains a copy of B4.) �

The necessary condition Corollary 5.5(3) states that for periodic semigroups with no princi-
pal factor B2, whenever e, f are idempotents such that e < f , then ea = ae = e for all a ∈ Df .
The next example demonstrates that this does not extend to periodic semigroups in general
(cf Theorem 5.3(2) and Corollary 1.2(ii)). It also demonstrates that the phrase “or e ∈ 〈a〉”
cannot be removed from II.

EXAMPLE 7.4 For any n ≥ 2, let Mn be the inverse semigroup presented, as such, by
〈a | a2 = a2+n〉. (See, for instance, [7, Chapter IX].) Then the kernel K of Mn is the cyclic
group Ha2 of order n, with identity element e = an, and Mn/K ∼= B2. Then Mn satisfies
the hypotheses of Theorem 5.3: (1), since the subgroup lattice of a cyclic group is distribu-
tive; (2), vacuously; and (3), vacuously, using the alternative reading. Hence L(Mn) is lower
semimodular. Note that e < aa−1 but ea 6= e (cf Corollary 5.5(3)).

Turning now to III(a) (or Theorem 5.3(3)), Example 7.3(a) demonstrates that this is not
even a consequence of the assumption that each nontrivial principal factor be a singular band.
Our next example does the same under the assumption that each nontrivial principal factor be
isomorphic to B2.

EXAMPLE 7.5 Let E be the semilattice consisting of two chains e1 > e2 > 0 and f1 > f2 > 0,
amalgamated at 0; and let S be the inverse semigroup of isomorphisms between principal ideals
of E (the “Munn semigroup” on E). Let a : Ee1 ∼= Ef1, with inverse b, and let g : Ee1 ∼=
Ee1. Then the nonzero J -classes of S are Ja = {a, b, ab, ba} and Jga = {ga, bg, g, bga}; the
corresponding principal factors are each isomorphic to B2. Note that g = gab. However g 6= ga
and since a2 = b2 = 0, g 6∈ 〈a, b〉 = {a, b, ba, ab, 0}. Hence L(S) is not lower semimodular.

Observe that in Corollary 5.5, the alternative conclusion “then either x ∈ 〈a, b〉” does not
appear. Example 7.2 demonstrates that this phrase cannot be removed from Theorem 5.3(3)
(or from III(a)) in general. Adjoining an identity element to that semigroup then demonstrates
that the alternative “or x = xa” also cannot be removed.

Turning next to III(b), we recall from Lemma 5.2 that this is a consequence of the other
hypotheses in the case of left or right stable semigroups. We now provide an example demon-
strating that this is not true in general.

EXAMPLE 7.6 The semigroup S = 〈a, x, b | x = bxa, ab = ba = 0〉 satisfies all the hypotheses
of Theorem 1.1 except III(b).

Proof. From the given relations, it is clear that any nonzero product of generators can
contain at most one instance of x; thus the only nonzero elements of S other than x itself
are of the form an, bn, bnx and xan, for n ≥ 1. It is easily verified that these elements are
distinct. The elements of 〈a, b〉 form singleton J -classes; the remaining elements constitute Jx,
the associated principal factor being null.
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Then I, II, III(a) and III(c) are satisfied either trivially or vacuously. (For III(a), this is
an immediate consequence of the easily verified observation that S satisfies no equation of the
form u = uv or u = vu, for nonzero u.) �

The next example demonstrates that the alternative conclusion “x ∈ 〈a, b〉” in III(b) cannot
be removed (and thus that III(b) is not satisfied vacuously). By adjoining an identity element
to this example, we see that the alternative “or x = xa” also cannot be removed in general.

EXAMPLE 7.7 Let F denote the free semigroup on {a, b}. Let

W = {bk+ta(i+1)kbkak+t−i : t ≥ 0, k ≥ 1, 0 ≤ i < k}

and let T be the semigroup generated by {a, b}, subject to all the relations w1 = w2, w1, w2 ∈W ,
together with the relations aw = wb = 0, w ∈W . Let x be the image in T of some (any) element
of W . Then

(i) T contains exactly one nontrivial J -class, namely Jx, which consists of the distinct
elements x, bnx, xan, n ≥ 1.

(ii) The principal factor associated with Jx is null.
(iii) If y 6= 0, then the equation y = dyc is satisfied only if y ∈ Jx and d = bn, c = an, for

some n ≥ 0.
(iv) The equation yc = y, c 6= 1, is satisfied in T only if y = 0.
(v) For every y ∈ Jx, y ∈ 〈an, bn〉 for every n ≥ 1. In conjunction with (iii), T therefore

satisfies III(b).
(vi) Hence L(T ) is lower semimodular.

Proof. By introducing an auxiliary variable x, the relations may more conveniently be
expressed as the union of the sets of relations

x = bkakbkak = bka2kbkak−1 = · · · = bka(k−1)kbka,

for positive integers k, together with the relations x = bxa and ax = xb = 0.
Throughout, a and b will denote both the generators of F and their images in T . Then the

use of x as a variable, above, is consistent with its use in the statement of the Example, as an
element of T . Denote by ρ the congruence on F induced by the given relations; and denote by
Z the set of words corresponding to 0. Let w ∈ W . Observe first that bnwanρw for all n ≥ 0.
In terms of T , bnxan = x, and so bnx, xan ∈ Jx for all n ≥ 0.

Secondly, if vwu 6∈ Z for some u, v ∈ F 1, then since aw,wb ∈ Z, v = bm and u = an,
for some m,n ≥ 0. In addition, if m = n then vwu ρw; if m > n, then vwu ρ bm−nw; and
if m < n, then vwu ρwan−m. In terms of T , therefore, Jx = {x, bmx, xan : m,n ≥ 1}; and
(〈b〉1W 〈a〉1)ρ = Jx.

Since ax = xb = 0, (ii) holds.
Now since bkakbkak ∈ W , x ∈ 〈ak, bk〉, for all k ≥ 1. Similarly, since bka(i+1)kbkak−i ∈ W ,

xai ∈ 〈ak, bk〉, for all k ≥ 1 and for all i, 0 ≤ i < k. For i ≥ k, by writing i = qk + r we obtain
that xai ∈ 〈ak, bk〉, for all k ≥ 1 and for all i ≥ 0. For 0 ≤ i < k we may write bix = bkxak−i,
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and so bix ∈ 〈ak, bk〉 for all k ≥ 1. Similarly, this in fact holds for all i ≥ 0. Thus the first
statement of (v) holds.

Clearly J0 = {0}. We next show that if s ∈ F , s 6∈ Z and s 6∈ 〈b〉1W 〈a〉1, then sρ = {s}. For
if sρt for some t ∈ F, t 6= s, then t results from a sequence of elementary transitions of the form
vw1u → vw2u, where v, u ∈ F 1, w1, w2 ∈ W . In particular, s = vw1u and, since s 6∈ Z, this
contradicts the second assumption on s, according to the first statement in the third paragraph
of the proof.

Hence if y ∈ T , y 6= 0 and y 6∈ Jx, the equation y = dyc in T cannot hold for any d, c ∈ T 1,
not both 1. For if y = sρ then s ρ vsu for some v, u ∈ F 1, not both empty, a contradiction. It
immediately follows that Jx is the only nontrivial J -class of T .

To prove (iii) and (iv), suppose y ∈ T and y = dyc, where d ∈ T 1 and c ∈ T . As noted
in the previous paragraph, y ∈ Jx. Thus d = bm and c = an for some m ≥ 0, n ≥ 1. Now
y = bixaj , for some i, j ≥ 0, and x = bjyai = bmxan. In (iv), we may take m = 0; in (iii),
m ≥ 1 and if m 6= n, we obtain x = xa|n−m|.

Thus the proof of (iii) and (iv) will be completed once we have shown that the equation
x = xan cannot hold for n ≥ 1. In fact, by arguments similar to those in the previous paragraph,
this will also demonstrate that the elements of Jx listed in (i) are distinct. Now from the form
of the words in W it may be verified that if bmanbpaq ∈ W , then m − q = n/p − 1. It follows
that baban+1 6∈ W . Note that (baban+1)ρ = xan. That x 6= xan will then follow from the fact
that W comprises an entire ρ-class of F , as we now prove.

It suffices to show that for any w ∈W , any elementary transition w = vw1u→ vw2u, where
v, u ∈ F 1, w1, w2 ∈ W , results in another element of W . As above, necessarily v = bm, u = an

for some m,n ≥ 0. We will show that m = n, whence vw2u = bnw2a
n ∈ W , as shown in the

first paragraph of the proof. Now since w,w1 ∈ W , there exist t ≥ 0, k ≥ 1, 0 ≤ i < k such
that w = bk+ta(i+1)kbkak+t−i, and s ≥ 0, ` ≥ 1, 0 ≤ j < ` such that w1 = b`+sa(j+1)`b`a`+s−j .
By matching exponents of the second occurrence of b be obtain k = `; similarly, from the
first occurrence of a we therefore also obtain i = j; from the first occurrence of b we obtain
k+t = `+s+m and so t = s+m; and from the second occurrence of a that k+t−i = `+s−j+n,
so that t = s+ n. Hence m = n, as required.

That L(T ) is lower semimodular now follows from Theorem 1.1. �

A final observation on the complexity of this example is in order. In the same notation, the
simplest instance of III(b) that must be satisfied there is x = bxa; and the simplest solution
exhibited in the example is x = baba. It can be shown that no example of this type can be
constructed in which such a solution takes the form x = bman or x = ambn.

We conclude with a result that enables the construction of further, complex examples.

PROPOSITION 7.8 Let T be an ideal extension of a periodic semigroup S by a periodic,
J -trivial semigroup Q (so that T is again periodic). If L(S) is lower semimodular, so is L(T ).

Proof. We apply Theorem 5.3. Since (2) and (3) involve only multiplication by regular
elements, it suffices to show that if distinct elements x and y of S are J -related in the extension
T then they are J -related in S, for then the principal factors will retain the requisite properties.
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By periodicity and duality, it suffices to show this is true when x R y in T . But by Lemma 1.5
there exist inverse elements s, t of T such that y = xs, x = yt. If s, t 6∈ S, then t = s = s2,
yielding x = y. Thus s, t ∈ S and x R y in S, as required. �

With rather more difficulty, it may be shown that the conclusion remains true without the
restriction of periodicity on S. Without periodicity of Q, however, the conclusion is false.

EXAMPLE 7.9 Let S = {r, s} ∪ {0} be a null semigroup and let F = 〈a〉 be infinite cyclic.
Define a product on T = S ∪ F by putting ar = as = 0 and ra = s, sa = r; extending these
actions to F in the obvious way; and retaining the products in S and F . Then T is an ideal
extension of S by Q = F 0, with the properties that S is periodic, L(S) is lower semimodular
(in fact, distributive) and Q is J -trivial. But L(T ) is not lower semimodular since r = ra2,
r 6∈ 〈a〉, but r 6= ra, contradicting III(a). �

The author thanks the referee for several suggestions that have improved the paper’s expo-
sition.
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