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Abstract: Extending Amdahl's law to identify optimal power-performance 
configurations requires considering the interactive effects of power, 
performance, and parallel overhead. 
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In the late 1960s, Gene Amdahl had the foresight to observe and predict 
one of computer science's most notable laws. At the time, Amdahl's law 
seemed somewhat discouraging to the community that was developing 
parallel systems and applications. He noted that increasing the number of 
processors working on a task resulted in two primary effects: the introduced 
parallelism sped up a portion of the task, but this had no effect on the 
remaining portion of the task.  
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Figure 1. Amdahl's law for the effects of parallelism. 

Amdahl highlighted the limitations of parallelism for making tasks run 
faster, which painted a bleak picture for the usefulness of parallel systems. 
The implication was that a task could be made faster to a point, but was 
limited by the portion of the task that was unaffected by parallelism. 

Figure 1 shows the effective speedup for a task on a parallel system with 
different portions of the task affected by parallelism. Even with a large 
amount of the task affected (95 percent), the maximum speedup for the task is 
about 20 times faster, despite the use of more than 500 processors (systems 
or cores). 

Despite these dire predictions, parallel systems proliferated, 
culminating in what we today deem the “multicore era.” In the late 1980s, 
John Gustafson articulated the reason for the continued development of such 
systems. He noted that Amdahl's law applied to fixed workloads on scalable 
systems while parallel systems were being developed to solve problems that 
were previously intractable. In other words, the workload itself grew as the 
systems scaled. Thus, performance wasn't just defined as making a task run 
faster, but as completing more tasks in a fixed amount of time while a system 
scales. 
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Energy and Amdahl 

A little over a decade ago, we started a journey that would ultimately 
bring together the performance analysis capabilities of Amdahl's law with the 
emerging notion of energy efficiency in parallel systems. The year 2000 
brought major shifts in microarchitecture design that we postulated would 
have significant impact on the highperformance servers used as building 
blocks for large parallel systems. The emergence of controllable power modes 
meant system performance would vary with energy efficiency. Systems 
emerging with additional power states-for example, turning cores on and off-
amplified the implications for parallel performance and for Amdahl's law.  

 

 
Figure 2. Power-aware speedup. 

Over the years, we've been able to demonstrate how to maintain high 
performance on parallel systems while reducing total energy consumption. 
Initially, we tried (and failed) to use Amdahl's law to explain the effects of 
power modes on performance. But, after hundreds of experiments and with 
the aid of advanced analytical models of performance, we came to understand 
the interactive effects of performance and power. 
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Power-Aware Speedup 

Amdahl's law is also called fixed load speedup because it describes a 
situation in which the workload is fixed and the amount of parallelism 
changes. Amdahl's law is simply 𝑆𝑆𝑛𝑛 = 𝑇𝑇(1)/𝑇𝑇(𝑛𝑛), where T(1) is the sequential 
time and T(n) is the parallel time on n processing elements for the same 
workload. Power-aware speedup, in the simplest case, describes the situation 
in which the workload is fixed and both the power modes and the amount of 
parallelism change. Power modes apply to different power-performance 
pairings where lower power is assumed to mean slower performance of a 
component. Strictly speaking, power-aware speedup is a generalized version 
of Amdahl's law because we can reduce it to Amdahl's law when power modes 
are fixed. 

We can describe power-aware speedup as 𝑆𝑆𝑛𝑛 = 𝑇𝑇1(𝑤𝑤,𝑓𝑓)/𝑇𝑇𝑛𝑛(𝑤𝑤,𝑓𝑓′), 
where 𝑇𝑇1(𝑤𝑤, 𝑓𝑓) is the sequential time for workload w and fixed power mode 
𝑓𝑓 and 𝑇𝑇𝑛𝑛(𝑤𝑤𝑓𝑓′) is the parallel time for workload w and variable power mode 𝑓𝑓′ 
on 𝑛𝑛 processing elements. 

Overhead? 

Though a single article doesn't provide enough room to discuss all the 
details, suffice it to say that the trick in applying power-aware speedup for 
effective analysis of power scalable systems is capturing the parameters (R. 
Ge and K.W. Cameron, “Power-Aware Speedup,” Proc. Parallel and Distributed 
Processing Symp., IEEE CS,2007:doi/0.1109/IPDPS.2007.370246). 

Of note, and critical to capturing the essence of why generalizing 
Amdahl's law for energy is important, is that all descriptions we've found in 
textbooks and the literature gloss over what turns out to be an essential link 
between Amdahl's law and power and energy. Namely, all of the 
aforementioned laws ignore the overhead of parallelism. Algorithm 
developers or programmers introduce parallel overhead when they redesign a 

http://dx.doi.org/10.1109/MC.2012.92
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the 
link in the citation at the bottom of the page. 

IEEE Computer, Vol 45, No. 3 (2012): pg. 75-77. DOI. This article is © Institute of Electrical and Electronics Engineers (IEEE) and permission has 
been granted for this version to appear in e-Publications@Marquette. Institute of Electrical and Electronics Engineers (IEEE) does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Institute of Electrical and 
Electronics Engineers (IEEE). 

6 
 

program for a parallel system. For example, data might need to be exchanged 
between parallel processes where no such communications were required in 
the sequential version. 

Our early work in energy optimization showed that during 
communication phases (particularly during parallel overhead), there were 
great opportunities for saving energy without affecting performance. For 
example, during a busy waiting cycle, the processor might have spun for a 
prolonged period waiting on communication. These phases were excellent 
times to slow down the processor to save power. 

Our initial attempts to use Amdahl's law to capture the effects of power 
changes during communication phases didn't capture the nuances of the 
overhead, so they effectively ignored active power management. 

Without considering overhead, power efficiency in parallel systems is 
fairly straightforward: using more systems consumes more power. Calculating 
a bound for energy requires multiplying nodal power by duration for 
sequential and parallel systems. Conserving energy requires minimizing for 
energy across all combinations of systems. 

Applying Amdahl's law can capture such cases. For a power scalable 
system, lowering the total power used (that is, using fixed minimal power 
states for power modes) minimizes energy use, which has an effect on power, 
performance, and then energy. 

Power efficiency becomes infinitely more interesting in a power 
scalable system with dynamic power rnanagement—that is, a system that 
dynamically matches power use to performance demand. If the goal is to 
maintain performance while minimizing energy use in a power-scalable 
system, understanding the implications of dynamic power management 
requires capturing the overhead. 
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We thus modify the power-aware speedup formula to include parallel 
overhead:  

𝑆𝑆𝑛𝑛 =
𝑇𝑇1(𝑤𝑤, 𝑓𝑓)

𝑇𝑇𝑛𝑛(𝑤𝑤, 𝑓𝑓′) + 𝑇𝑇𝑛𝑛(𝑤𝑤𝑃𝑃𝑃𝑃, 𝑓𝑓′)
, 

where 𝑇𝑇𝑛𝑛(𝑤𝑤𝑃𝑃𝑃𝑃𝑓𝑓′)   is the parallel overhead and 𝑇𝑇𝑛𝑛(𝑤𝑤𝑓𝑓′) is parallel execution 
time without overhead. 

Using a slight variation of this formula, it's possible to analyze the 
optimal configurations for energy and performance in parallel systems and 
applications. This technique can capture the effects of minimizing power using 
static configurations in the low-power state and their impact on energy and 
performance. More importantly, the model is accurate enough to capture 
active, dynamic power optimization curves where power is minimized during 
portions of the code, as in communication phases. 

Figure 2 shows the dynamic power optimization plane for multiple 
power states and highly parallel configurations. Finding the minimization 
points on the resulting plane will identify the optimal configurations for a 
given system and application. 

Amdahl's law still provides significant, useful insights to parallel 
applications and systems. The power-aware speedup model generalizes 
Amdahl's law by broadening the parameter space to consider the effects of 
active power-management strategies in power-scalable systems. In particular, 
introducing more accurate estimates of computational overhead allows us to 
truly capture the tradeoffs in performance and energy. 

The resulting strategies for identifying optimal energy-efficient 
operating modes are applicable to tools including dynamic voltage and 
frequency scaling of processors, power throttling of memory, nodal power 
management, and core power management-basically. any system with 
dynamic power configurations that correspond to performance changes. 
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