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The (1, 2)-step competition graph of a tournament 

Kitn A. S. Factor 

Man¡uette Uni11ersíty, PO Box 1881, Milwaukee, Wl 59201·1881 

Sarab K, Merz• 

University of the Pacific, Department o[ Mathematics, 9601 Pacific Ave., Stockton, CA 95211 

Abstract 

The competition graph of a ctigraph, introduced by Cohen in 1968, has been extensively studied. More 

recently, in 2000, Cho, Kim, and Nam defined t he m-step competition graph. In thi.s paper, we offer another 

generalization of the competition graph. We define the (1, 2)-step competition graph of a digraph D, denoted 

C1,2(D), as the graph on V(D) where {x, y} E E(C1,2(D)) if and only if tbere exists a vertex z # x, y , such 

that either do-y(x, z) = 1 and do-x(y, _z) ~ 2 or do-z(Y, z) = 1 and do- y(x, z) ~ 2. In this paper, 

we characterize the (1, 2)-step competition graphs of toumaments and extend our results to the (i, k)-step 

competition graph of a tournament. 

Key words: competition grapb, tournament, digraph, m-step grapb 

1. Introduction 

Competition graphs, created in connection to a biological model, have a forty year history of study. For a 

comprehensive introduction to competition graphs, see Brigham and Dutton [3] or L undgren [10]- Recent 

generalizations of competition graph'> include .k.1m and ROberts [8] and Helleloid [7]. Closely related to the 

(1,2)-step competition grapb of this paper is t he m-step competition graph introduced by Cho, Kim, and 

Nam [2J. Tbe m-step competition gmph of a digraph D is created on the vertex set of D with a.n edge { x, y} 

if there is a vertex z in D such that both an (x, z)-pat.h and a (y, z)-path of Jength m exists. 

For notatiou and tenns not defined here, see Bang-Jensen and Gutin ll]. A tournament is an oriented 

complete graph. An n-tournament is a tournament on n vertices. The vertex a.nd edge sets of graph G are 

denoted by V(G) and E(G) respectively. The vertex and are sets of digraph D are denóted by V(D) and 

A(D) respectively. We say x and y are adjacent in a digraph if (x, y) E A(D) or (y, x) E A(D). If x E V(D), 

then the outset of x is N+(x) ={y : (x, y) E A(D)}. The out-degree of x , IN+(x)l, is denoted by d+(x ) . 

• Uorr~pouding autbor: smerz@padlic.edu 
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An ( x, y )-walk is defined as a sequen ce of ares and vertí ces 

The distance from x to y, denoted díst(x, y), is defined as the rninimum number of ares in an (x, y)-walk. 

The distance from x to Ji in d.igraph D is denoted by dv(x, y). The d.igraph D - x is the dígraph obtained 

from D by removing vertex x and all ares incident with x. 

Recall tbat the competition graph of a dígraph D is obtained by using vertex set V(D) and addíng edge 

{x, y} wbenever N+(x) n N+(y) :f 0. Tbe (1, 2)-step competition graph of a dígraph D , denoted C1,2 (D), 

is a graph on V(D) where {x, y} E E(C1,2(D)) if and only if tbere exists a vertex z # x, y, sucb that either 

d0 _ 11(x, z) 5 1 and do--x('IJ, z) ~ 2 or do-z(Y, z) ::; 1 and do-11(x,.z) ::; 2. For example, all 4-tournaments 

and their (1, 2)-step competition graphs are shown in Figure l. 

It should be noted that in 1991, Hefner (Factor) et al. [6) defined tlie (i,j) competjtion graph. In that 

paper, i was the ma.xi.mum indegree and j was the maximum outdegree of vertices in the digraph. In 2008, 

Hedetnierni et al. [5) introduced (1, 2)-dornination. This was followed by Factor and Langley's introduction 

of the (1 , 2)-doroination graph [4]. Because of the si.mHaríties between our construction and those of (4] and 

[2], we refer to tbe (1, 2)-step competition grap~ of a digraph. 

(a) (b) (e) (dJ 

Figure 1: All 4-tournamnents and theil' (1, 2)-step competítíon grapbs. 

We say that x and y (1, 2)-compete provided there exists z :f x , y such that either do-11 (;¡;, z) = 1 and 

do- ,¡;(y, z) = 2 or do- :z:(Y, z) = 1 and d0 _ 11(x·, z) = 2. We sa.y tha.t x and y r.ompete provided there exists 

z € N +(x) nN+(y). Thus, {x, y} E E(C1 ,2 (D)) provided x and y compete or (1 , 2)-compete. For example, 

in Figure l(a), vertices 4 and 2 (1 ,2)-compete, but do not compete, 
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In 1998, Merz et al. (121 determined the competition graphs of tournaments. A significant result from that 

paper is that the mínimum number of edges in the competition graph of a tournament is (~) - n edges. 

Observe tba:t tbe competition graph of a digrapb D is a subgrapb of the (1, 2)-step compelition graph of 

D. It is easier for two vertices t.o be adjacent in t be (1, 2)-step competition grapb as compared to the 

competition grapb. Thus it makes sense to ssk: what is the minimum number of edges in the {1, 2)-step 

competition graph of a tournament? 

Recall tbat vertex x in a tournament is a king provided for all y, dist(x, y) ~ 2. Additionally, it is left to 

the reader to show the following result about kings. 

Remark l . 1f T is an n-tournament, n > 3, and x and y are kings with d+(x), d+(y) > 1, then {x,y} is 
an edge in C1,2(T). 

Moon [13] generalJy stated and Maurer [1 1] specifically proved that .in almost aiJ tournaments, every vertex 

is a king. Since, in an n-tournament with n > 3, there is at most one king x with á+(x) = 1, we conclude 

tbat the (1, 2)-step competition graphs of most tournaments are complete. Thus we ask: under what 

circumstances is an edge missing in tl1e (1, 2)-step competition grapb of a tournarnent? 

Digraph D is called strongly connected or strong provided there is an (x, y)-wa.lk for each pair of vertioes x 

and y. In Section 1, we consider the (1, 2)-step competition graphs of strong tournaments. In Section 2, we 

extend these resuJts to aiJ tournaments. In Section 3, we consider the (i, k)-step competition graph, where 

i > 1 and k> 2. 

2 . Stroogly connected touroameots 

We begin with a lemma. Observe in Figure l (a.), N+( t ) = {2} and {1,2} is missing from 0 1,2 (T). In a 

strong tournament, tbls ~ the o(l}y way an edge can be missing in 0 1,2 (T). 

Lemma l. Let T be a stro"g tournament. Then {x, y} rt E(C1,2(T)) if and only if N+(x) 

N+(y) = {x}. 

{y} Of' 

Proof. ( *=) Assume N+(x) ={y}. Suppose {x, y} E E(C1,2(T)). Since there is no {z} E N+(x) n N+(y), 

x and y must (1, 2)-compete. This is a contradiction, since N+(x) = {y} means that d0 _ 11 (x, z) =f 1, 2 for 

a.ll z E V(D- y). 

(=}) Conversely, assume that {x, y} rt E(Ct,2(T)). Since T is a tournament, x and y are adjacent. Without 

loss of generality, say y E N+(x) . We claim that N+(x) = {y}. Suppose oot. Let z be another vertex in 

N+(x). S.ince x and 11 do not compete for z, (z,y) E A(T). T is strongJy connected, so let w denote a 

vertex in N+(y). lf (w, z) E A(T) then (x. z), (y. w), and (w, z) E A(T) iroplies that {x, y} E E(C1.2(T)) , 
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a c.ontradiction. Thua, (z, t1.1) E A(T). But then (y,w),(x,z), and (z, w) E A(T) implies that {x,y} E 

E(C1,2(T)), a contradiction. Thus, N+(x) ={y}. • 

Figure l(b) illustrates that Lemma 1 is not the case for every tournament (consider {1,4}). From tbe 

previous proof, we can see that in any digraph D, N+(x) ={y} implies that {x, y} ft E(C1,2(D)). 

The tournament in Figure 1 (b) is called transitíve. Tournameut T is tmnsitive provided it is acyclic. If 

T is transitive, we asswne its vertices are labeled v1, ·v2, . . . , v,. so that i < j implies that (v1, v¡) E A(T). 

Thurnament T is an upset tournament provided it is obta.ined from a transitive tournament by reversing 

the ares on a single ( Vn, v1)-walk, W, so that the upset tourna.ment contains ares (V¡, v2) and ( Vn ~1 ,'Un), as 

well as the other ares reversed on W . For example, the tournament in Figure l(a) is an upset tottrnament. 

Another uaeful collection is the set of all regular tournament.'3. Tournament T , on n vertices, is regular 

provided all vertices in the tournament have the same out-degree. Thua all regular tournaments have ao 

odd nttmber of vertices. We say T is near regular provided the largest difference between the out-degrees of 

any two vertices is 1. All near regular tournaments have an even number of vertices. 

Recall that P¡ is a path on í vertices. The graph G- E(H) is obtained from G by removing the edges from 

a subgraph of G that is isomorphic to H . For example, in Figure 1, the graph shown in (a) is 1<4 - E(P3). 

Theorem 2. A grv,ph G on n ~ 5 vertices is the (1,2)-step competitüm graph of .~ome strong tournamenct 

tf and only ifG i,s Kn , Kn- E(P3) , or K"' - E(P2). 

Proof. (..:=)So long as n ~ 5, if T is regular or near regular, t hen C1,2(T) will be complete. Next, we show 

that if T is an upset tournan1ent, tben C1,2(T) = [{,.- E(P3). 

Let T be an U¡l8et n-tournament, n ~ 5, w.ith vertices v1, ·v21 • •• , Vn labeled as given by bhe definition of an 

upset tournament. In particular, ( v1, v2) and ( Vn- ¡, vn) are ares on a path P from v1 to v,., and for every 

are uot on P, j > i implies (vj, v,) E A(T). Fwthermore, label the vertíces of P as Vip vi., v,3 , .•. , Vi,..· So 

i¡ = 1, i2 = 2, im- t = n- 1, and i,,. = n. Observe that V¡ E N+(vA) ·for 3 ~ k ~ n. Thus {v3, . .. , vn} 

is a complete sttbgraph of C¡,2{T). Siuce N+(vt) = {v2} a.nd N+(v2) = {v;3 } , by Lemma 1, {111.112} and 

{v2,Vi3 } Ft E(C¡,2(T)). We claim that {v¡,vk} E E(Ot,2(T)) for 3 ~k~ n and that {v2,vk} E E(C1,2(T)) 

for 3 ~k::; n , k i= Í3. 

For the first case, Jet 3 ~k~ n and consider v1 a.nd Vk. If k :f:- i3, then v1 and vi< compete for v2 . If k= i3 

tben (v1,v2),(vk,Vi.), and (v • .,v2 ) E A(T). So v1 and Vk (1,2)-compete. Thus, {v¡,vk} E E(C1,2(T)). 

For the second case, let 2 < k ::; n where k :f:- i3. Then (112, Vi3 ), (vi3 , v1), and (vk, v1) E A(T). Thus 

{v2 ,vk} E E(Ci.2(T)). Thus C1,2(T) is Kn- E(P3). In particular, the edges missing in C1,2(T) are {v1,v2} 

and { v2, Vi3 } . 
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Fina.Uy, if T is obtained from the transitive totmtament by reversing ares (vn ,.,vl) and (v1.,v2), then v1 is 

the ouly vertex with out-degree 1 a.nd T is strong, so C1,2(T) = Kn- E(P2). 

(:::::>) To prove t be converse, let G on n ~ 5 vertíces be t;he (1,2)-step competition graph of sorne strong 

tournament T. For ea.cb x E V (T), d+(x) ~ l. Tf fo.r nll .x E V(T), d+(x) > 1, then by Lemma 1, we know 

that C1,2 (T) is complete. Since n ~ 51 it is impossible for T to ha.ve more than two vertices with outrdegree 

1 and be strongly connected. Thus, C1,2 (T) is missing at most two edges. It remains to be shown tha.t these 

missing edges, if they exist, must share an endpoint. 

Suppose not. Let {x, y} and {u, v} denote the edges missing from Cu(T) where x, y , 14, and vare distlnct. 

Without 1oss of generality, say (x, y) and (11.,v) E A(T). Then by Lemma 1, N+(x) ={y} and N+(u) = {v}. 

Thls is a contradiation since x and u must be adjacent. Thus, G i.s either Kn, K,. - E(P3), or K,. - E (P2) . 

• 
Thus, we know al} (1, 2)-step competition graphs of strongly connected toumaments on n vertiCE>.s. The 

cases n = 1, 3, 4 are easy to check. See Figure 1 for the {l, 2)-step competition graphs of all toumaments on 

4 verti.ces; only (a) is st.rong. 

3. Remaining Tournaments 

lf a tournament is not strong, then the vertices of T rn.ay be partítioned into T1 , T2, ... , Tk where each Ti is 

a maximal1y strongly connected tournament and for all i,j, if x E Ti and y E Tj, t hen (x,y) E A(T) if and 

only if i < j. Such as partitíon of T is cal1ed tbe strong decompositiort of T . 

Lenrma 3. Let T be an n-tounwment iJJÍth. .5trong decomposítion T1 , T2, ... , Tk. If {x1 y} ~ E(C1,2(T)) , 

then x, y E V(T¡.J or IV(Tk)J = 1 and C1,2(T) = K n- 1 U K1. 

Proof. Observe t hat every vertex in Ti for i < k has an are to each vertex in Tr.. Thus, the vertices of 

T¡, T2, ... 1 Tk- 1 induce a complete subgraph in C1,2(T). If IV(T.~:) I > 1 then since Tk is strong, every vertex 

x E Tk has an are to a.t least oue vertex in Tk· Thus x competes with every other vertex of T, for i < k . On 

the other hand, íf IV(Tk)l = 1, say x E Tk , then d+(x) = O, so x is isolated in C1,2(T ). • 
Theorem 4. G, a graph on n ·vertices, is the (1, 2)-step competition gmph of sorne tournament 'if and only 

if G ís one of the following grapha: 

l. K,.. , where n f 2, 3, 4, 

2. K.,._1 U K 1 , whére n > 1, 

3. Kn- E(P3) where n > 2, 

4. K,.- E(P2) where n f 1,4., m· 
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Proof. (<=) K 1 is the (1,2)-step competition graph of a 1-tonrnament. Ka- E(P3 ) i~ the (1 , 2)-step 

c.ompetition graph of the transitiva 3-tournament. K4 - E(P3 ) is the (1, 2}-step competition graph of the 

tournarnent. sbown in Figure l(a). K2 -E(P2) is the (1, 2)-step competition grapb of any 2-toumament. By 

Theorem 2, the remaining graphs in cases (1), (3), and (4) are the (1, 2)-step competition graphs of sorne 

tournaments. If T is t ransitiva on 2 or more vertices, then Gt,z(T) = Kn- 1 U K¡. Finally, the (1, 2)-step 

competition graph of a cyclic 3-toumament is K 1 U K 1 U K1• So if T , an n-toumaments with n > 3, has 

stroug decomposition T1 , T2 where T1 is any tournament and Tz is a cyclic 3-tournament, then Ct ,2 (T) is 

Kn- E(KJ). 

( =>-) It is left to the reader to verify that the ( 1, 2 )-step competition graphs of every tournament on 4 or 

fewer vertices is listed. Suppose T is a tournament on n :;:- 5 vertices. lf T is strongly conne.cted, then by 

Theorem 2, C1,2(T) is one of the graphs listed. So assume that T is not strong. Let T1, Tz, ... ,Tk be the 

strong decomposition oCT. By Lemma 3, auy missing edges in Ct,z(T) must occur in Tk· Ií IV(Tk)l = l, tben 

C1,2(T) is Kn- t UKt. Since Tk is strong, IV(Tk) l :f 2. If IV(Tk)l = 3, then Ct,2(Tk) is either K1 U Kt UKt 

(so C1,2 (T) is K,..- E(K3)) or K3 - E(Pz) (in which case, C1,2(T) is Kn- E(Pz)). If IV(Tk)l = 4, then by 

Figure l (a) and Lemma 3, C1,2(T) must be J(,.. - E(P2). Otberwise jV(T,.)I ~ 5. Then by Theorem 2 and 

LeiiUna 3, C1,2(T) must be K,.., K,. - E(Pa), or Kn - E(P2). • 

Observe that for n < 4, the maximum m1mber of edges missing in the (1, 2)-step competition g¡aph of a 

tournament on n vertices is n. Using Theorem 4, for n 2 4, we have the following. 

Corollary 5. IfT is a tov.rnament, the ma:timum nv.mber of edges missing from the (1 , 2)-step competition. 

graph of a tov.rnament on n ~ 4 ve1·ti.ces i.s n-l. 

4. The ( i, k )-step competition graph of a tournament 

We can genera.lize t he (1, 2)-step competition graph to the (i, k)-step competition graph as follows. Let 

{x, y} be an edge in the (i, k)-step competition graph, denoted C,,k(T), if for sorne z E V(T) - {x~ y}1 

dr- y(.X, z) !Si and dr-"'(y, z) !S k or dT-x(y, z) ::; í and dT- 11(x,z) 5 k. 

By making the observation that for any digraph D , i 2 1 aud k 2:. 2, E(C1,2(D)) ~ E(Ci,k(D)), the proof 

of Letnn111 l implies the following corollary. 

Corollary 6. Let T be a strongly connected tournament with i ?' 1 a1~d k:;:- 2. Edge {x, y} (j. E(Ci,k(T}) if 

and only if N+(x) ={y} or N+(y) = {x}. 
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Similarly, using the proof of Lemma 3, we make the following oonclusion. 

Corollary 7. Let T be an n-tournament with strong decompositi.on T1tT2, . . . ,T~o:.. If {x,y} rf_ E(Ci ,k(T)) , 

then x , y E V(Tk) or IV(T.~;)I = 1 and C;,k(T) = Kn-1 U K¡. 

Theorem 8. IJT ís an n~t.ournament, í ~ 1 and k~ 2, then C;,J<(T) = C1,2(T) . 

Proof. Sinc:e C1,2 (T) is a subgrapb of C;,k(T), it snffic-.es to show that E(C;,~o:.(T)) ~ E(C1,2(T)). So 

Jet {x, y} E E(C;.k(T)). Suppose {x,y} 't E(C1,2(T)) . If T is strongly connected, then by Lemma 1, 

N+(x) = {y} or N+(y) = {x}. Thís contradicts Corollary 6. So we should assume that T is not strongly 

oonnected. 

Let T., T2, ... , Tk be ·the strong decomposítion of T. By Lerruna 3, either x, y E V(T¡.) or IV(T,.)I = 1 and 

C1,2(T) = Kn UK1 . Suppose x,y E V(Tk). Then a.pplying Lemma 1 to T¡., we conclude that N+(x) ={y} 

or N+(y) = {x}. Then by Corollary 6, {x,y} ~ E(C;,k(T,.)) , a.contradictíon. 

On the other hand, suppose that IV(Tk)l = 1 and C1,2(T) = Kn-t U K1 . Every pair of vertices competes 

for the single vertex in Tx, so we know that x E V(Tk) or y E V(Tk)· Without loss of generality, sa:y 

{x} = V(T.k)· Then N+(x) = 0, so x is isolated in Ci,k(T), a. contradictiou. Thus {x,y} E E(C1•2(T)). • 

Thus, even ifwe make it easiedor vertices to compete in the tournament by increasing i and k, the (i,k)-step 

oompetition grapb. will never havé more edges than the ( l , 2)-step competition graph. 
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