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The (1,2)-step competition graph of a tournament

Kim A. S. Factor
Marquette University, PO Box 1881, Muwaukee, WI 55201-1881

Sarah K. Merz*
[niversity of the Pacific, Department of Mathematics, 5601 Pacific Ave., Stockton, CA 95211

Abstract

The competition graph of a digraph, introduced by Cohen in 1968, has been extensively studied. More
recently, in 2000, Cho, Kim, and Namn defined the m-step competition graph. In this paper, we offer another
generalization of the competition graph. We define ihe (1, 2)-step competition graph of a digraph D, denoted
C) 2(D), as the graph on V(D) where {x,y} € E(C12(D)) if and only if there exists a vertex z # .y, such
that either dp_y(z,2) = 1 and dp_.(y,2) < 2 or dp_(y,2) = 1 and dp_,(z,2) < 2. In this paper,
we characterize the (1,2)-step competition graphs of tournaments and extend our results to the (i, k)-step
competition graph of a tournament.
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1. Introduction

Competition graphs, created in connection to a biological model, have a forty year history of study. For a
comprehensive introduction to competition graphs, see Brigham and Dutton [3] or Lundgren [10]. Recent
generalizations of competition graphs include Kim and Roberts [8] and Helleloid [7]. Closely related to the
(1,2)-step competition graph of this paper is the m-step competition graph introeduced by Cho, Kim, and
Nam [2]. The m-step competition graph of a digraph D is created on the vertex set of D with an edge {2.y}
if there is a vertex z in D such that both an (z, z)-path and a (v, z)-path of length m exists.

For notation and termns not defined here, see Bang-Jensen and Gutin [1]. A fournament is an oriented
complete graph. An n-towrnament is a tournament on n vertices. The vertex and edge sets of graph G are
denoted by V(G) and E(G) respectively. The vertex and arc sets of digraph D are denoted by V(D) and
A(D) respectively. We say = and y are adjacent in a digraph if (2, y) € A(D) or (y,x) € A(D). If z € V(D),
then the outset of z is N*(z) = {y : (z,y) € A(D)}. The out-degree of z, [N*(z)], is denoted by d*(z).
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An (z,y)-walk is defined as a sequence of arcs and vertices

z, (z,v1), w1, (U1,02), 2, 0 V=1 (Vk—1, Uk ), Uk (VK 1), ¥

The distance from z to y, denoted dist(z,y), is defined as the minimum number of arcs in an (x, y)-walk.
The distance from z to y in digraph D is denoted by dp(=z,%). The digraph D — z is the digraph obtained

from D by removing vertex x and all arcs incident with 2.

Recall that the competition graph of a digraph D is obtained by using vertex set V(D) and adding edge
{z,y} whenever N*(z) N NT(y) # 0. The (1,2)-step competition graph of a digraph D, denoted C) 2(D),
is a graph on V(D) where {z,y} € E(C, (D)) if and only if there exists a vertex z 3 , y, such that either
dp_y(2,2) <1 and dp_,(y,2) < 2o0r dp_:(y,2) < 1 and dp_y(z,z) < 2. For example, all 4-tournaments

and their (1, 2)-step competition graphs are shown in Figure 1.

It should be noted that in 1991, Hefuer (Factor) et al. [6] defined the (i,j) competition graph. In that
paper, ¢ was the maximum indegree and j was the maximum outdegree of vertices in the digraph. In 2008,
Hedetniemi et al. [5] introduced (1, 2)-domination. This was followed by Factor and Langley’s introduction
of the (1, 2)-domination graph [4]. Because of the similarities between our construction and those of [4] and
[2], we refer to the (1,2)-step competition graph of a digraph.
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Figure 1: All 4-tournamnents and their (1,2)-step competition graphs.

We say that = and y (1,2)-compete provided there exists z # z,y such that either dp_,(r,z) = 1 and
dp-z(y,z) =2 or dp-z(y,2z) = 1 and dp_y(z,2) = 2. We say that = and y compete provided there exists
z € Nt (z)N N*(y). Thus, {z,y} € E(Cy2(D)) provided = and y compete or (1,2)-compete. For example,

in Figure 1(a), vertices 4 and 2 (1,2)-compete, but do not compete,
2



In 1998, Merz et al. [12| determined the competition graphs of tournaments. A significant result from that
paper is that the minimum number of edges in the competition graph of a tournament is (}) — n edges.
Observe that the competition graph of a digraph D is a subgraph of the (1,2)-step competition graph of
D. It is easier for two vertices to be adjacent in the (1,2)-step competition graph as compared to the
competition graph. Thus it makes sense to ask: what is the minimum number of edges in the (1, 2)-step
competition graph of a tournament?

Recall that vertex @ in a tournament is a king provided for all y, dist(z,y) < 2. Additionally, it is left to
the reader to show the following result about kings.

Remark 1. If T' is an n-tournament, n > 3, and z and y are kings with d*(z), d*(y) > 1, then {z,y} is
an edge in C (7).

Moon [13] generally stated and Maurer [11] specifically proved that in almost all tournaments, every vertex
is a king. Since, in an n-tournament with n > 3, there is at most one king z with d*(z) = 1, we conclude
that the (I,2)-step competition graphs of most tournaments are complete. Thus we ask: under what

circumstances is an edge missing in the (1, 2)-step competition graph of a tournament?

Digraph D is called strongly connected or strong provided there is an (z, y)-walk for each pair of vertices
and y. In Section 1, we consider the (1,2)-step competition graphs of strong tournaments. In Section 2, we
extend these results to all tournaments. In Section 3. we consider the (i, k)-step competition graph, where
i>1land k> 2

2. Strongly connected tournaments

We begin with a lemma. Observe in Figure 1(a), N*(1) = {2} and {1,2} is missing from Cy2(T). In a
strong tournament, this is the only way an edge can be missing in € »(T).

Lemma 1. Let T be a strong tournament. Then {x,y} € E(Cy2(T)) if a‘;ld only if Nt(z) = {y} or
N*(y) = {z}.

Proof. (<) Assume N*(z) = {y}. Suppose {z,y} € E(C2(T)). Since there is no {z} € N*(z) n N+t (y).
x and y must (1,2)-compete. This is a contradiction, since N*(z) = {y} means that dp_,(z,z) # 1,2 for
all z € V(D —y).

(=) Conversely, assume that {z,y} & E(C1,2(T)). Since T is a tournament, z and y are adjacent. Without
loss of generality, say y € N*(z). We claim that N*(z) = {y}. Suppose not. Let z be another vertex in
N*(z). Since z and y do not compete for z, (z,y) € A(T). T is strongly connected, so let w denote a

vertex in N*(y). If (w,z) € A(T) then (z, z), (y,w), and (w,z) € A(T) implies that {z,y} € E(C:2(T)),
3



a contradiction. Thus, (z,w) € A(T). But then (y,w),(z,z), and (z,w) € A(T) implies that {z,y} €
E(Ch,2(T)), a contradiction. Thus, N*(z) = {y}. |

Figure 1(b) illustrates that Lemma 1 is not the case for every tournament (consider {1,4}). From the

previous proof, we can see that in any digraph D, N*(x) = {y} implies that {z,y} & E(C} 2(D)).

The tournament in Figure 1(b) is called transitive. Tournament T is transitive provided it is acyclic. If
T is transitive, we assume its vertices are labeled vy, va,. .., v, so that i < j implies that (v;,v:) € A(T).
Tournament T is an upset tournament provided it is obtained from a transitive tournament by reversing
the arcs on a single (v,, v )-walk, W, so that the upset tournament contains arcs (v, vs) and (vVn—1,2y), as

well as the other arcs reversed on W. For example, the tournament in Figure 1(a) is an upset tournament.

Another useful collection is the set of all regular tournaments. Tournament T, on n vertices, is regular
provided all vertices in the tournament have the same out-degree. Thus all regular tournaments have an
odd number of vertices. We say T is near regular provided the largest difference between the out-degrees of

any two vertices is 1. All near regular tournaments have an even number of vertices.

Recall that P; is a path on ¢ vertices. The graph G — E(H) is obtained from G by removing the edges from
a subgraph of G that is isomorphic to H. For example, in Figure 1, the graph shown in (a) is Ky — E(Ps).

Theorem 2. A graph G' onn > 5 vertices ts the (1,2)-slep competition graph of some strong tournament
if and only if G 18 Ky, K, — E(Ps). or K, — E(P,).

Proof. (<) So long asn > 5, if T' is regular or near regular, then C) »(T') will be complete. Next, we show
that if T is an upset tournament, then C) 2(T) = K, — E(P3).

Let T be an upset n-tournament, n. > 5, with vertices vy, vy, ..., 1, labeled as given by the definition of an
upset tournament. In particular, (vy,v2) and (vn—1,v,) are arcs on a path P from v; to v,, and for every
arc not.on P, j > i implies (vj,v;) € A(T'). Furthermore, label the vertices of P as v;,, viy, vis,. .., Vi, S0
i1 =1, i3 = 2, 4p—1 = n — 1, and 4,, = n. Observe that v; € N™(vg) for 3 < k < n. Thus {uvs,...,vn}
is a complete subgraph of Cy o(T). Since N*(v1) = {2} and N*(vz) = {v;,}, by Lemma 1, {v),v} and
{v2,vi,} € E(C12(T)). We claim that {vy,vx} € E(C12(T)) for 3 <k < n and that {vs, vk} € E(C12(T))

for 3<k <n, k #ia.

For the first case, let 3 < k < n and consider v; and vy. If k # 13, then vy and v compete for ve. If k =g
then (m,v2), (v, vi, ), and (v, v2) € A(T). So vy and vg (1, 2)-compete. Thus, {v), v} € E(C12(T)).

For the second case, let 2 < k < n where k # i3. Then (vg,v,), (¥, 1), and (v, v1) € A(T). Thus
{v2,vx} € E(C12(T)). Thus Cy 2(T) is K, — E(Ps). In particular, the edges missing in C; o(T') are {v;,v2}
and {1"21 Uia}'



Finally, if T is obtained from the transitive tournament by reversing arcs (v,,v1) and (vy,v2), then vy is

the only vertex with out-degree 1 and T is strong, so C12(T) = K, — E(P).

(=) To prove the converse, let G on n > 5 vertices be the (1,2)-step competition graph of some strong
tournament T'. For each 2 € V(T), d*(z) > 1. If for all £ € V(T), d*(z) > 1, then by Lemma 1, we know
that C) 2(T') is complete. Since n > 5, it is impossible for T' to have more than two vertices with out-degree
1 and be strongly connected. Thus, Cy 2(T') is missing at most two edges. It remains to be shown that these

missing edges, if they exist, must share an endpoint.

Suppose not. Let {x,y} and {u, v} denote the edges missing from Cy2(T) where x, y,u, and v are distinct.
Without loss of generality, say (z,y) and (u,v) € A(T). Then by Lemma 1, N*(z) = {y} and N*(u) = {v}.
This is a contradiction since r and u must be adjacent. Thus, G is either K, Ky, — E(P3), or K, — E(P,).
|

Thus, we know all (1,2)-step competition graphs of strongly connected tournaments on n vertices. The
cases n = 1,3,4 are easy to check. See Figure 1 for the (1, 2)-step competition graphs of all tournaments on

4 vertices; only (a) is strong.

3. Remaining Tournaments

If a tournament is not strong, then the vertices of T may be partitioned into Ty, T3, ..., Ty where each T; is
a maximally strongly connected tournament and for all ¢, j, if z € T; and y € T}, then (z,y) € A(T) if and
only if i < j. Such as partition of T is called the strong decomposition of T.

Lemma 3. Let T' be an n-tournament with strong decomposition Ty, Ts,... Tx. If {z,y} & E(C12(T)).
then z,y € V(T}) or |[V(T)| =1 and C, 2(T) = Kn-1 U K.

Proof. Observe that every vertex in T; for ¢ < k has an arc to each vertex in Ty. Thus, the vertices of
T3,T2,...,Tk—1 induce a complete subgraph in Cj o(T'). If [V(T})| > 1 then since T} is strong, every vertex
z € T} has an arc to at least one vertex in Ty. Thus x competes with every other vertex of T fori < k. On
the other hand, if [V(T})| = 1, say = € T}, then d*(z) = 0, so z is isolated in Cy 2(T). i#

Theorem 4. G, a graph on n vertices, is the (1,2)-step competition graph of some tournament if and only
if G is one of the following graphs:

1. Ky, where n # 2,3,4,

2. K (UK, wheren > 1,

3. K,, — E(P3) wheren > 2,

4. K, — E(P;) wheren # 1.4, or



5. K, — E(K3) where n > 3.

Proof. (<) K; is the (1,2)-step competition graph of a I-tournament. Kz — E(P;) is the (1,2)-step
competition graph of the transitive 3-tournament. Ky — E(P;) is the (1,2)-step competition graph of the
tournament shown in Figure 1(a). K2 — E(P;) is the (1, 2)-step competition graph of any 2-tournament. By
Theorem 2, the remaining graphs in cases (1), (3), and (4) are the (1,2)-step competition graphs of some
tournaments. If T' is transitive on 2 or more vertices, then Cy 3(T) = K1 U K;. Finally, the (1,2)-step
competition graph of a cyclic 3-tournament is K; U K; U K;. So if T, an n-tournaments with n > 3, has
strong decompaosition Ty, T where T) is any tournament and 7% is a cyclic 3-tournament, then C 3(T) is
K, — E(K3).

(=) Tt is left to the reader to verify that the (1,2)-step competition graphs of every tournament on 4 or
fewer vertices is listed. Suppose T is a tournament on n > 5 vertices. If T is strongly connected, then by
Theorem 2, C) 2(T) is one of the graphs listed. So assume that 7' is not strong. Let T7,7%,..., T be the
strong decomposition of T. By Lemma 3, any missing edges in Cy 2(T') must oceur in Tg. If |V(T;)| = 1, then
C12(T) is Kp—1 UK. Since T} is strong, |V (Tx)| # 2. If |V(Tk)| = 3, then Oy o(T) is either Ky U Ky U Ky
(so C12(T) is K, — B(K3)) or K3 — E(P,) (in which case, C12(T) is K, — E(P)). If |V(T})| =4, then by
Figure 1(a) and Lemma 3, Cy 2(T") must be K,, — E(P;). Otherwise |V (Tx)| > 5. Then by Theorem 2 and
Lemma 3, Cy 5(T') must be K,, K,, — E(P3), or K;, — E(Py). [ |

Observe that for n. < 4, the maximum number of edges missing in the (1, 2)-step competition graph of a

tournament on n vertices is n. Using Theorem 4, for n > 4, we have the following.

Corollary 5. If T is a tournament, the mazimum number of edges missing from the (1,2)-step competition

graph of a tournement on n > 4 vertices is n — 1.

4. The (i, k)-step competition graph of a tournament

We can generalize the (1,2)-step competition graph to the (i, k)-step competition graph as follows. Let
{z.y} be an edge in the (i,k)-step competition graph, denoted Cjx(T), if for some z € V(T) — {z,u}.
dT—y(Ia ZJ <iand dT—r(y!z) < k or dT—a.‘(y!z) <i and dT—y(ma Z] <k

By making the observation that for any digraph D, i > 1 and k > 2, E(C, 2(D)) C E(C; «(D)), the proof
of Lemma 1 implies the following corollary.

Corollary 6. Let T be a strongly connected tournament withi > 1 and k > 2, Edge {z,y} € E(Ci,(T)) if
and only if N*(x) = {y} or N*(y) = {z}.



Similarly, using the proof of Lemma 3, we make the following conclusion.

Corollary 7, Let T be an n-tournament with strong decomposition Ty, Ty, ..., Tx. If {z,y} € E(Cix(T)),
then z,y € V(Tx) or |V(Tx)| =1 and Ci 1 (T) = K UK.

Theorem 8. If T is an n-towrnament, > 1 and k > 2, then C; ;(T') = C12(T).

Proof. Since C;o(T) is a subgraph of C;(T), it suffices to show that E(C;k(T)) € E(Ci2(T)). So
let {z,y} € E(C;x(T)). Suppose {z,y} & E(C12(T)). If T is strongly connected, then by Lemma 1,
N*(z) = {y} or N*(y) = {r}. This contradicts Corollary 6. So we should assume that T is not strongly

connected.

Let Ty, T3,. .., T be the strong decomposition of T. By Lemma 3, either =,y € V(T}) or |V(T})| = 1 and
C12(T) = K, UK. Suppose z,y € V(7). Then applying Lemma 1 to T}, we conclude that N*(x) = {y}
or N+ (y) = {z}. Then by Corollary 6, {x,y} € E(Ci(Tk)), a contradiction.

On the other hand, suppose that |[V(T:)| = 1 and Oy 2(T) = K,,—; U K;. Every pair of vertices competes
for the single vertex in Tk, so we know that x € V(Tx) or y € V(Ty). Without loss of generality, say
{#} = V(T%). Then N*(z) =0, so z is isolated in C;x(T"), a contradiction. Thus {z,y} € E(C1(T)). B

Thus, even if we make it easier for vertices to compete in the tournament by increasing i and k, the (i, k)-step

competition graph will never have more edges than the (1,2)-step competition graph.
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