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Empirical Bayes and Hierarchical Bayes Estimation of
Skew Normal Populations

Naveen K. Bansal, Mehdi Maadooliat and Xiaowei Wang

Department of Mathematics, Statistics, and Computer Science, P.O. Box 1881,
Marquette University, Milwaukee, WI 53201, U.S.A.

naveen.bansal@marquette.edu

ABSTRACT

We develop an empirical and hierarchical Bayesian methodologies for the skew
normal populations through the EM algorithm and the Gibbs sampler. A general
concept of skewness to the normal distribution is considered throughout. Moti-
vations are given for considering the skew normal population in applications, and
an example is presented to demonstrate why the skew normal distribution is more
applicable than the normal distribution for certain applications.

MSC : 62Exx, 62F15, 62P10
Keywords: Skew normal distribution; Gibbs sampler; EM algorithm.

1. Introduction

When testing for a treatment e¤ect in a pre-post study, generally paired t-test
is used under the assumption that the shift from pre to post follows a normal
distribution. In other words, it assumes that d = Y �X, where X and Y are the
pre and post variables, follows normal distribution. The paired t-test works fairly
well if d � p(x��

�
), where p(�) is a symmetric density with no heavy tail: However,

the assumption that the shift from pre to post treatment is symmetric around
some � may not be realistic in many applications. For example, when studying
the e¤ect of a particular treatment, it is possible that the e¤ect only applies to a
minority (or a majority) of the population, while rest of the population are not
a¤ected by the treatment. In such cases, the distribution of the shift would be
asymmetric. There are many distributions that can be considered to model this
asymmetry. One distribution that has received a lot of attention recently is the
skew normal distribution. The basic idea is that if f(�) is a symmetric density,



then asymmetry around some � can be introduced by considering a density of the
form

2

�
f(
x� �
�
)G(�

x� �
�
); (1.1)

where G(�) is the cumulative distribution function corresponding to some symmet-
ric density g, as long as � 6= 0: This idea was �rst introduced by Azzalini (1985)
for the normal density. If f and g both are N(0; 1) density, then (1.1) is called the
skew-normal distribution SN(�; � 2; �). One of the bene�ts of this distribution is
that the skewness can be introduced by a single parameter �. For more details on
SN(�; � 2; �), readers are referred to Azzalini(1985, 1986), Branco and Day(2001),
and a collection of papers in Genton (2004). For some extensions to SN(�; � 2; �),
see Azzalini and Dalla Valle (1996), Arellano-Valle, Gomez and Quintana (2003),
and Branco and Day (2001).
In this paper, we discuss the empirical Bayes and Hierarchical Bayes method-

ologies for the skew-normal populations. As a motivation, we will refer to the
example of pre to post treatment e¤ect throughout the paper. In section 2, we
present some motivations behind the skew-normal distribution, and give some
preliminary results. In section 3, empirical Bayes methodology, and in section 4,
hierarchical Bayesian methodology are presented.

2. Motivation and some Preliminary Results

The purpose of this section is to present some motivations behind the skewness
parameter �: To make the motivation clear, we assume � = 0; and � = 1 in this
section: Note that the results of this section can easily translated to the general
case by the transformation X = � + �S; where S � SN(0; 1; �):
There are basically three di¤erent representation results of the skew-normal

distribution.

1. If (X; Y ) is a bivariate normal random vector with E(X) = E(Y ) = 0;
V ar(X) = V ar(Y ) = 1, and Corr(X;Y ) = �; then the conditional distrib-
ution of Y given X > 0 is SN(0; 1; �(�)); where �(�) = �=

p
1� �2:

2. If Y0 and Y1 are independent N(0; 1) random variates, and � 2 (�1; 1); then
S = �jY0j+

q
(1� �2)Y1 follows SN(0; 1; �(�)):
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3. If Y � N(0; 1); and if conditionally on Y = y;

QY =

�
+1 with probability �(�y)
�1 with probability 1� �(�y) (2.1)

where �(�) denotes the cumulative distribution function of N(0; 1); then
S = QY Y follows SN(0; 1; �):

The �rst representation is due to Arnold et al.(1993), while the other two
are due to Azzalini(1985, 1986). In this paper, we use a modi�ed version of
the third representation, which has been also termed as generalized skew normal
distribution by some authors (Loper�do, 2004). In this modi�ed version, the
distribution function �(�) in (2.1) is replaced by a general distribution function
G(�) of a symmetric random variable. Thus, if Y � N(0; 1); and if conditionally
on Y = y;

QY =

�
+1 with probability G(�y)
�1 with probability 1�G(�y) (2.2)

where G(�) is a distribution function of a symmetric random variable, then it is
easy to see that the probability density of S = QY Y is

h(x;�) = 2�(x)G(�x); �1 < x <1; (2.3)

where �(x) is the N(0; 1) density. Note that general G(�) brings �exibility to the
skewness in the normal distribution. One of the G(�) that we will focus in this
paper is

G(x) =
ex

1 + ex
; �1 < x <1: (2.4)

Since G is only used to introduce skewness in the normal distribution, we still call
the density (2.3) as skew-normal instead of generalized skew-normal, but denote
its distribution by SN(0; 1; �;G) to emphasize its dependence on G. The corre-
sponding distribution with the location � and the scale � (having density (1.1))
will be denoted by SN(�; � 2; �;G): G will be assumed to be known throughout.
We now present some propositions for the motivation behind the parameter �:

Proposition 2.2 is due to Vidal et al. (2004). Proofs of the Propositions 2.1 and
2.3 will be given in the Appendix. The notation H(x;�) will be used to denote
the cdf of S:

Proposition 2.1. The family of cdfs fH(x;�); � 2 Rg is stochastically increas-
ing with lim

�!1
H(x;�) as the right half normal cdf [2�(x) � 1]I(x > 0), and

lim
�!�1

H(x;�) as the left half normal cdf 2�(x)I(x < 0):
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Proposition 2.2. The L1�distance between H(x;�) and the normal cdf �(x) is
given by

L1(�; H) = sup
A2B

jP (AjH)� P (Aj�)j = 2
Z 1

0

�(x)G(j�jx)dx� 1
2

where B denotes the Borel set of subsets of R, and P (Aj�) denotes the probability
of A under H or �:

Proposition 2.3. The Kullback-Liblier distance betweenH(�;�) and�(�) is given
by

KL(�; H) = � log 2�
Z 1

0

log(G(j�jx)(1�G(j�jx)�(x)dx

Propositions 2.2 and 2.3 imply that the distance between the N(0; 1) and the
skew-normal SN(0; 1; �;G) is 0 if and only if � = 0; and the distance increases as �
moves away from 0 toward �1: The Kullback-Liblier distance in fact increases to
1 as j�j ! 1: This implies that a higher value of � indicate a signi�cant departure
from normality. Proposition 2.1 also shows that non-parametric inference such as
sign-test or sign-rank test can be used to make inference about the parameter �
(Lehmann, 1986). Also note that for � > 0 (� < 0); P (S > 0) > 1=2 (< 1=2);
and it increases to 1 (0) as � increases (decreases) to +1 (�1): For the pre-post
treatment studies, these propositions show that the parameter � brings extra
�exibility to model treatment e¤ect when the shift from pre to post need not be
symmetric. Note that a high positive value of � implies that a high majority of
the population show an improvement; while a low negative value of � implies that
only a few minority of the population show an improvement.

3. Empirical Bayes Estimation

Let �i (i = 1; :::; n) be the true unobservable score of the i
th subject of the sample,

and let Xi (i = 1; :::; n) be the corresponding observable score. In a pre-post
treatment study, �i can be considered as the true improvement while Xi as an
observed improvement at a particular instance for the ith subject. It would be
appropriate to model the true improvement with a skew normal distribution, i.e.,
�i � SN(�; � 2; �;G); where the parameters � and � would re�ect the shift and
spread in the improvement respectively, while � would re�ect how skew is the
improvement. The observed variable Xi conditionally on �i can be assumed to

4



follow N(�i; �
2); for some � > 0: Thus the model can be viewed as Xi = �i + "i;

where "i � N(0; �2), �i � SN(�; � 2; �;G), and where "i and �i are independent:
The structure of the model is thus hierarchical with Xij�i � N(�i; �2); and �i �
SN(�; � 2; �;G): We will assume that �2 is known until the end of the section
where we discuss how to handle the case of unknown �2: The reason for assuming
�2 known is that when G = �, the model is unidenti�able when �2 is unknown.

To see this note that marginally, Xi � SN(�; � 2 + �2; ��=
q
�2(1 + �2) + � 2),

see Azzalini (1985): Thus when �2 is unknown, four parameters �; � 2; �; and �2

produce only a three-dimensional parameter space. It is di¢ cult to see for any
other G if the model is identi�able when �2 is unknown, but we conjecture that
this will be true for any G other than �:
We now present the empirical Bayesian methodology that requires the posterior

distribution of �i; and the estimation of � = (�; � ; �)
T :

3.1. Posterior Distribution of �i

Denoting x = (x1; x2; :::; xn)T ; and the density of �i by �(�ij�; � ; �); the posterior
of �i is

�(�ijx;�) /
1

�
�(
xi � �i
�

)�(�ij�; � ; �): (3.1)

Here, the skew-normal density �(�ij�; � ; �) is given by

�(�ij�; � ; �) =
2

�
�(
�i � �
�

)G(�
�i � �
�

): (3.2)

Combining (3.1) and (3.2) yields

�(�ijx;�) /
1

��
�(
�i � ��(xi)

��
)G(�

�i � �
�

); (3.3)

where

��(xi) =
� 2

� 2 + �2
xi +

�2

� 2 + �2
�; and �2� = (

1

�2
+
1

� 2
)�1: (3.4)

Note that the posterior density (3.3) is not a skew-normal density.
If G = �; then a closed form solution of the posterior density (3.3) is available,

and is given by

�(�ijx;�) = [�(
�(��(xi)� �p
� 2 + �2�2�

)]�1�(
�i � ��(xi)

��
)�(�

�i � �
�

): (3.5)

This follows from the identity E[�(hU +k)] = �(k=
p
1 + h2); where U � N(0; 1);

(Azzalini, 1985).
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3.2. Estimation of �

We now derive the maximum likelihood estimate of � from the marginal distri-
bution of X = (X1; X2; :::; Xn)

T . Following the EM-algorithm, by considering
�i; i = 1; :::; n as missing values (see, Carlin and Louis, 1998), the likelihood of
the complete data is given by

Lc /
1

�n�n

nY
i=1

�(
xi � �i
�

)�(
�i � �
�

)G(�
�i � �
�

): (3.6)

Denoting the �̂
(k�1)

as the estimated value at the (k�1)th iteration, the E-step
yields

E[logLcjx; �̂
(k�1)

]

=const:� n
2
log � 2 � 1

2�2

nX
i=1

E[(�i � xi)2jxi; �̂
(k�1)

]

� 1

2� 2

nX
i=1

E[(�i � �)2jxi; �̂
(k�1)

] +
nX
i=1

E[logG(�
�i � �
�

)jxi; �̂
(k�1)

]

(3.7)

The posterior expectation above is with respect to the posterior distribution (3.3)

with � replaced by �̂
(k�1)

: Now, the estimate �̂
(k)
for the M-Step is obtained by

maximizing (3.7) with respect to � 2; �; and �: Di¤erentiating (3.7) with respect
to � 2; �; and � and equating to zero yield the following set of equations.

� 2 =
1

n

nX
i=1

E[(�i � �)2jxi; �̂
(k�1)

] (3.8)

� =
1

n

nX
i=1

E[�ijxi; �̂
(k�1)

]� �� 1
n

nX
i=1

E[p(�
�i � �
�

)jxi; �̂
(k�1)

] (3.9)

1

n

nX
i=1

E[p(�
�i � �
�

)(�i � �)jxi; �̂
(k�1)

] = 0; (3.10)

where p(�) = G0(�)=G(�): (�̂ (k); �̂(k); �̂(k)) are the solution for (� ; �; �) of the above
equations. Note that �̂

(k)
= 0 is always a feasible solution, but it need not yield
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the maximum likelihood. This happens because � = 0 is an in�ection point of
the likelihood function. This phenomenon has been reported by several authors in
the context of maximum likelihood method for the standard skew normal problem

(Azzalini, 1985; Dalla Valle, 2004). Thus if �̂
(k)
= 0 is a suspect, the initial guess

of �̂
(0)
close to 0 should be avoided. We recommend the initial guess to be the

method of moments estimates. The method of moments estimates can be exactly
computed when G(�) = �(�). In this case, as we noted earlier, the marginal

distribution ofXi is SN(�; � 2+�2; ��=
q
�2(1 + �2) + � 2): The �rst three moments

of this distribution are given by �01 = �+
q

2
�
�� ; �02 = �

2+2
q

2
�
���+� 2+�2; �03 =

�3+3
q

2
�
�2�� +3�(� 2+�2)+

q
2
�
��(3�2+(3��2)� 2); where � = �=

p
1 + �2: The

method of moments from these can be easily obtained. Even when G(�) 6= �(�); it
would be reasonable to use these estimates as the initial guess in the EM algorithm.
The posterior expectations in (3.8) - (3.10) can be computed by generating

normal random variates as follows. From (3.3), for any measurable function q(�);

E[q(�i)jxi; �̂
(k�1)

]

=
1

c
(k�1)
i

Z 1

�1
q(�i)

1

�̂(k�1)�
�(
�i � �̂(k�1)� (xi)

�̂(k�1)�
)G(�̂

(k�1)�i � �̂
(k�1)

�̂ (k�1)
)d�i

=
1

c
(k�1)
i

E[q(Ni(k�1))G(�̂
(k�1)Ni(k�1) � �(k�1)

�̂ (k�1)
)] (3.11)

where

c
(k�1)
i = E[G(�̂

(k�1)Ni(k�1) � �(k�1)

�̂ (k�1)
)]; (3.12)

Ni(k�1) � N(�̂(k�1)� (xi); �̂
(k�1)2
� ); (3.13)

�̂(k�1)� (xi) =
�̂ (k�1)2

�̂ (k�1)2 + �2
xi +

�2

�̂ (k�1)2 + �2
�(k�1); (3.14)

�(k�1)2� = (
1

�2
+

1

�̂ (k�1)2
)�1 (3.15)

Thus, if Ni(k�1) is generated with M copies fN (j)
i(k�1); j = 1; :::;Mg for su¢ -
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ciently large M; then

E[q(�i)jxi; �̂
(k�1)

] �
MX
j=1

w
(k�1)
ij q(N

(j)
i(k�1)); (3.16)

where

w
(k�1)
ij =

G(�̂
(k�1)N(j)

i(k�1)��
(k�1)

� (k�1)
)PM

j=1G(�̂
(k�1)N(j)

i(k�1)��
(k�1)

� (k�1)
)

: (3.17)

Note that fw(k�1)ij ; j = 1; :::;Mg can be considered as weights given to the normal
variates to adjust the skewness. Here, fN (j)

i(k�1); j = 1; :::;Mg need not be gener-
ated separately for each i and k; only one set of N(0; 1) variates fzj; j = 1; :::;Mg
need to be generated. N (j)

i(k�1) can be then taken as

N
(j)
i(k�1) =

�̂ (k�1)2

�̂ (k�1)2 + �2
xi +

�2

�̂ (k�1)2 + �2
�̂
(k�1)

+ (
1

�2
+

1

�̂ (k�1)2
)�1=2zj:

Thus, based on (3.17), from (3.8)-(3.10), the solution for the updated (� 2(k); �(k); �(k))
of the EM-algorithm can be computed as a solution of

�̂ 2(k) =
1

n

nX
i=1

MX
j=1

w
(k�1)
ij (N

(j)
i(k�1) � �̂

(k)
)2 (3.18)

�̂
(k)
=
1

n

nX
i=1

MX
j=1

w
(k�1)
ij N

(j)
i(k�1)

� �̂ (k)�̂(k)
nX
i=1

MX
j=1

w
(k�1)
ij p(�̂

(k)N
(j)
i(k�1) � �

(k)

� (k)
) (3.19)

1

n

nX
i=1

MX
j=1

w
(k�1)
ij (N

(j)
i(k�1) � �̂

(k)
)p(�̂

(k)N
(j)
i(k�1) � �

(k)

� (k)
) = 0 (3.20)

Numerical solution of the above equations can be obtained using iterative
algorithms such as Newton-Raphson method.
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3.3. Posterior Inference

Posterior inference based on empirical Bayesian methodology involves the esti-
mation of E[�ijxi]; i = 1; :::; n + 1 or other posterior quantities, where �n+1 and
xn+1 are associated with a possible new observation. Using the empirical Bayes
estimate of �̂; from (3.3), the estimate of E[�ijx] is given by

Ê[�ijxi] = c�1i
Z 1

�1
�i
1

�̂�
�(
�i � �̂�(xi)

�̂�
)G(�̂

�i � �̂
�̂

)d�i;

where

�̂�(xi) =
�̂ 2

�̂ 2 + �2
xi +

�2

�̂ 2 + �2
�̂ (3.21)

�̂� = (
1

�2
+
1

�̂ 2
)�1=2; and (3.22)

ci =

Z 1

�1

1

�̂�
�(
�i � �̂�(xi)

�̂�
)G(�̂

�i � �̂
�̂

)d�i: (3.23)

where the estimates (�̂; �̂ ; �̂) are obtained through the EM algorithm as described
above. It should be also noted that Ê[�ijxi] can be approximated by simulated
N(0; 1) variates fzj; j = 1; :::;Mg as

Ê[�ijxi] �
MX
j=1

wijN̂ij (3.24)

where N̂ij = �̂�(xi) + �̂�zj; and wij = G(�̂
N̂ij��̂
�̂
)=
PM

j=1G(�̂
N̂ij��̂
�̂
):

Note that when �̂ = 0; the Ê[�ijxi] is same as the typical empirical Bayes rule;
when �̂ > 0, higher weights are assigned for high values of N̂ij and lower weights
for low values of N̂ij; and the reverse happens when �̂ < 0:
Although, in the empirical Bayesian methodology, the main interest is about

the posterior inference on �i; i = 1; :::; n; however, in some applications such as
in a pre-post treatment study, the estimate of the distribution SN(�; � 2; �;G) or
perhaps the estimates of the quantities like P (�i > 0) can be useful to see the
e¤ect of the treatment. SN(�; � 2; �;G) can be estimated by SN(�̂; �̂ 2; �̂; G); and
P (�i > 0) by P̂ (� > 0) = 2

R1
0

1
�̂
�(x��̂

�̂
)G(�̂x��̂

�̂
)dx.
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3.4. Unknown �2 case

When �2 is unknown, as it will be the case in practice, an estimate of it is needed.
In the presence of replications such estimate is possible. Suppose, fXij; j =
1; 2; :::;mig are the repeated observations for each i = 1; 2; :::; n, thenXij = �i+"ij;
where �i and "ij are independent, �i � SN(�; � 2; �;G); and "ij � N(0; �2):
Then ( �Xi =

1
n

Pmi

j=1Xij; i = 1; :::; n) and S2 = (
P
mi � n)�1

Pn
i=1(mi � 1)S2i ;

where S2i = (mi � 1)�1
Pmi

j=1(Xij � �Xi)
2; are su¢ cient statistics. It can be

seen that �Xi; i = 1; :::; n and S2 are independent, �Xij�i � N(�i; �
2=mi); and

(
P
mi � n)S2 � �2�2(Pmi�n): As suggested by Berger (1985) for the normal pop-

ulations, the method discussed as above can be used by replacing �2 by s2=n;
where s2 is a realization of S2: A direct empirical Bayes estimator of �2 can also
be obtained along the lines of EM algorithm as described above by replacing �2

by �2=n in (3.6), and by multiplying the density of S2 in it.

4. Hierarchical Bayesian Methodology

Consider the following hierarchical structure.

xij�i � N(�i; �2); �i � SN(�; � 2; �;G); (�; � ; �) � �(�; � ; �) (4.1)

where �(�; � ; �) is a given prior distribution. We assume that �2 is known. The
unknown �2 case will be discussed at the end of this section. Of particular inter-
ests are the posterior distributions of �i and the posterior distribution of � and �:
In a pre-post treatment study, the posterior of � and � would re�ect the nature
of the treatment e¤ects. The posterior of � would re�ect the overall treatment
e¤ect; while the posterior of � would re�ect, through the skewness, the extent of
majority (or minority) enjoying the e¤ect of the treatment. The direct deriva-
tion of the marginal posterior of �i; �; and � would be complicated; however, the
Gibbs sampler can be used to generate the samples of the posterior. In order to
implement the Gibbs sampler, we use the data augmentation technique (Tanner,
1996). Note that from the third representation result of the skew normal distri-
bution as discussed in section 2, �i = � + �qizi; where zi � N(0; 1); and where
conditionally on zi; qi = 1 with probability G(�zi); and qi = �1 with probability
1�G(�zi) = G(��zi): Thus, from (4.1), the joint posterior density of (�; � ;q; z);

10



where q = (q1; q2; :::; qn)T and z = (z1; z2; :::; zn)T ; is

�(�; � ;q; z) /
nY
i=1

1

�
�(
xi � � � �qizi

�
)�(zi)[G(�zi)]

1+qi
2 [G(��zi)]

1�qi
2 �(�; � ; �):

(4.2)
If �; � 2; and � are apriori independent, i.e., �(�; � ; �) = �1(�)�2(�)�3(�) for

some priors �1; �2; and �3; then the full posterior conditionals are given by

�1(�j� ; �; z;q;x) / �(
p
n
� � �x� �qz

�
)�1(�)

�2(� j�; z;q;x) /
nY
i=1

�(
xi � � � �qizi

�
)�2(�)

�3(�j�; � ; �;x) /
nY
i=1

[G(�zi)]
1+qi
2 [G(��zi)]

1�qi
2 �3(�)

�4i(zij�; � ; �; z(�i);q;x) / �(
r
1 +

� 2

�2
(zi �

�qi(xi � �)
�2 + � 2

))[G(�zi)]
1+qi
2 [G(��zi)]

1�qi
2

�5i(qi = 1j�; � ; �; z;q(�i);x) = d(�; �; � ; zi;x) exp(zi�(xi � �)=�2)G(�zi)

�5i(qi = �1j�; � ; �; z;q(�i);x) = d(�; �; � ; zi;x) exp(�zi�(xi � �)=�2)G(��zi);
where qz = n�1

P
qizi; d(�; �; � ; zi;x) = [exp(zi�(xi��)=�2)G(�zi)+exp(�zi�(xi�

�)=�2)G(��zi)]�1; and notations z(�i); and q(�i) respectively are used to denote
all zj; j = 1; :::; n except zi, and all qj; j = 1; :::; n except qi. Note that if �2(�)
is normal or �2(�) / const:; then the conditional posterior of � is normal; and if
�2(�) / const:; then the conditional posterior of � is truncated normal.

4.1. Unknown �2 case

Under the repeated measurements fXij; j = 1; 2; :::;mig; i = 1; 2; :::; n; using
the data augmentation technique as above, it can be seen that the posterior of
(�; � ; �; �2;q; z) is given by

�(�; � ; �2;q; z) /
nY
i=1

1
�mi

�(
p
mi
�xi � � � �qizi

�
) exp(

(
P
mi � n)S2
�2

)

�(zi)[G(�zi)]
1+qi
2 [G(��zi)]

1�qi
2 �(�; � ; �2; �)

Gibbs sampler can then be performed by obtaining the full conditional poste-
rior in the same manner as described above.
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5. An Example

As an example, we consider the data from a pre-post study on 13 neurosurgical
patients who underwent thalamic chronic electrode implants as a treatment for
dyskinesia and chronic pain (Bhatnagar and Mandybur, 2005). The purpose of
the study was to study if the electrical stimulation of a speci�c thalamic nucleus
such as the ventrolateral nucleus (VL) has any e¤ect on the patients� language
and cognitive processing. The hypothesis of the study was that the stimulation of
the VL improves the language and speech impairment. The subjects were assessed
before and after the stimulation on a detailed neurolinguistic test battery which
included subjects recalling and naming pictures of slides shown for four seconds.
One of the observed variables was the number of seconds it took to recall and
naming the pictures. The results of this variable are presented in the table below.

The improvement after the stimulation, i.e., the di¤erences between before and
after are (in seconds) {7.18, 1.02, 7.27, 3.00, 6.56, 4.40, 5.66, 5.17, 1.83, 7.00, 6.80,
4.80, 14.28}. Note that one patient had a signi�cant improvement (14.28 seconds);
however, it cannot be considered as an outlier since this kind of improvement is
anticipated in some patients. We should also point out that removing this patient
did not signi�cantly alter the results as far as skewness is concerned.
The empirical Bayes methodology and Hierarchical Bayes analysis developed

in section 3 and section 4 were performed on the di¤erences. The distribution
function G(x) = exp(x)=(1 + exp(x)) was used throughout, and �2 which can
be termed as the within subject variability was assumed to be 1 after the con-
sultation with a researcher of the study (a very high within subject variability
was not expected). As initial values of the EM-algorithm, we used the method
of moments estimates based on G(�) = �(�): All the calculations of the empirical
Bayes methodology was done using Mathematica 5:0 (Wolfram Research Inc.),
and Hierarchical Bayesian analysis was done using WinBugs 1:4:1.
Method of moments estimates of (�; � ; �) are (1:35; 5:33; 2:25): Using these

estimates as the the initial estimates for the EM steps, we obtained the empirical
Bayes estimates of (�; � ; �) from (3.18) - (3.20) usingM = 150; which are given by

12



(2:42; 4:47; 5:48): The EM algorithm converged after 10 iterations. We did noticed
that the solution to (3.18) - (3.20) is sensitive to the initial values. High initial
value of � yielded diverging sequence as it has been observed by several authors
for the maximum likelihood estimates (see, for example, Dalla Valle(2004)). Note
that the estimate of � is very high, indicating a strong evidence of skewness.
The empirical Bayes estimate of �13 corresponding to x13 = 14:28; from (3.24)

using M = 150, is 13:66 with a 95% con�dence interval (11:30; 16:01): The em-
pirical Bayes estimate of �7; corresponding to x7 = 5:66; is 5:51 with a 95%
con�dence interval (3:28; 7:73): The con�dence intervals here are approximate
based on the approximation (Ê[�ijxi] � 1:96V̂ [�ijxi]; Ê[�ijxi] + 1:96V̂ [�ijxi]);
where Ê[�ijxi] is given by (3.24) and V̂ [�ijxi] is computed similarly as V̂ [�ijxi] =
MP
j=1

wij(N̂ij � Ê[�ijxi])2; where wij = G(�̂
N̂ij��̂
�̂
)=
PM

j=1G(�̂
N̂ij��̂
�̂
): The exact con-

�dence region can be computed using, for example, the highest posterior density
region from (3.3); see, Maritz and Lwin (1989), chapter 6.
We, now, contrast the above estimates with the empirical Bayes estimator un-

der normal distribution, i.e., when � = 0: Under normal distribution, ~E[�ijxi] =
~�2

~�2+�2
xi+

�2

~�2+�2
~�; and ~V [�ijxi] = ( 1�2+

1
~�2
)�1; where ~� = �x; and ~� 2 = max(n�1

Pn
i=1(xi�

�x)2 � �2; 0) (Berger, 1985): The empirical Bayes estimate of �13 under normal
distribution is 13:49 with a 95% con�dence interval (11:62; 15:35); while the empir-
ical Bayes estimate of �7 under normal distribution is 5:67 with a 95% con�dence
interval (3:80; 7:54): Note that the empirical Bayes estimates under the normal
distribution underestimates the �13; while it overestimates the �7: This is per-
haps due to the fact that the empirical estimates under the normal distribution
is always shrinking the observations towards the mean �x at the same rate:
As we pointed out in section 3 that the distribution of �i; SN(�; � ; �;G); with

�; � ; and � replaced by its estimates, by itself, can shed some light on the nature
of the improvement from pre to post. Fig 1 shows the probability density function
of SN(�̂; �̂ ; �̂; G); where �̂; �̂ ; and �̂ are the empirical Bayes estimates. P (�i > 0)
can be estimated from SN(�̂; �̂ ; �̂; G); which is 0.9999. This value indicates the
proportion of subjects having positive improvement.
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Fig 1

Hierarchical Bayesian analysis of section 4 was performed by WinBugs. We
considered the following prior on (�; �; �): N(0; 106) for �; N(0; 100) for �; and
U(0; 100) for � with the assumption that �; �; and � are independent: Gibbs sam-
pler produced samples of all the augmented data z and q; and the parameters
(�; � 2; �) and all �is: We only report the posterior posterior distributions of �; �,
�13; and �7: 20,000 samples were generated with every 10th observation recorded.
Two chains were constructed in WinBugs. Both chains conveged after the burnout
period of 300. See, Fig 2 for the posterior density of �; �; �7; and �13: The mean
of the posterior of � was 7.12 indicating a strong evidence of skewness, while the
mean of the posterior of � was 2.896. The posterior of �7 had a mean of 5.548
with 95% con�dence limit of (3.686, 7.542), while the posterior of �13 had a mean
of 13.72 with 95% con�dence limits of (11.82, 15.66).
The hierarchical Bayes estimates are close to the empirical Bayes estimates.

Considering the di¢ culties is maximizing the marginal likelihood, it may be ad-
vantageous to use the hierarchical Bayes methodology than the empirical Bayes
methodology. Also, note that the hierarchical Bayes con�dence intervals are
shorter than the empirical Bayes con�dence intervals. This may be perhaps since
we did not use the highest posterior density con�dence intervals in the empirical
Bayes methodology.
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Fig 2
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6. Appendix

6.1. Proof of Proposition 2.1

It is clear that for any x < 0;

H(x;�) = 2

Z x

�1
G(�y)�(y)dy

decreases as � increases, and lim
�!�1

H(x;�) = 2�(x) and lim
�!1

H(x;�) = 0: For

any x > 0; since �(�y) = �(y), and G(��y) = 1�G(�y);

H(x;�) = 2

Z 0

�1
G(�y)�(y)dy + 2

Z 1

0

G(�y)�(y)dy

= 2

Z
[1�G(�y)]�(y)dy + 2

Z 1

0

G(�y)�(y)dy

= 1� 2
Z 1

x

G(�y)�(y)dy;

which decreases as � increases, and lim
�!�1

H(x;�) = 1 and lim
�!1

H(x;�) = 2�(x)�
1:

6.2. Proof of Proposition 2.3

The Kullback-Liblier distance between H(�;�) and �(�) is given by

KL(�; H) = �
Z 1

�1
log(2G(�x))�(x)dx

Using the symmetry of �(x); and since G(��x) = 1 � G(�x); it can be seen
that

KL(�; H) = � log 2�
Z 1

0

log(G(j�jx)(1�G(j�jx)�(x)dx
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