
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

9-1-2012

Analyzing Multiple-Probe Microarray: Estimation
and Application of Gene Expression Indexes
Mehdi Maadooliat
Marquette University, mehdi.maadooliat@marquette.edu

Jianhua Z. Huang
Texas A & M University - College Station

Jianhua Hu
University of Texas M.D. Anderson Cancer Center

Accepted version. Biometrics, Vol. 68, No. 3 (September 2012): 784-792. DOI. © 2012 Wiley. Used
with permission.
Mehdi Maadooliat was affiliated with Texas A&M University at the time of publication.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213077684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1111/j.1541-0420.2012.01727.x


Biometrics 000, 1–18 DOI: 000

000 2010

Analyzing multiple-probe microarray: estimation and application of gene

expression indexes

Mehdi Maadooliat1

Jianhua Z. Huang2

Jianhua Hu3,∗

1Graduate student, Department of Statistics, Texas A&M University, College Station, TX, USA,

2Professor, Department of Statistics, Texas A&M University, College Station, TX, USA,

3Associate Professor, Department of Biostatistics, Division of Quantitative Sciences,

University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

*email: jhu@mdanderson.org

Summary: Gene expression index estimation is an essential step in analyzing multiple probe

microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular

method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the

additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al.

(2006) proposed data transformation to improve expression index estimation based on an ad hoc

entropy criteria and naive grid search approach. In this work, we re-examined this problem using

a new profile likelihood-based transformation estimation approach that is more statistically elegant

and computationally efficient. We demonstrate the applicability of the proposed method using a

benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate

expression index and used the empirical study to shows its promise in terms of improving model

fitting and power of detecting differential expression over the commonly used univariate expression

index. As the other important content of the work, we discussed two generally encountered practical

issues in application of gene expression index: normalization and summary statistic used for detecting

differential expression. Our empirical study shows somewhat different findings from the MAQC

project (MAQC, 2006).

Key words: Differential expression detection; Fold change; Multivariate expression index; Nor-

malization; Profile likelihood; Transformation model.
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1. Introduction

Microarray technologies have been used to monitor expression intensities of thousands of

genes simultaneously in a wide range of organisms. We focus on the popular Affymetrix

short oligonucleotide array platform (Lockhart et al., 1996; Parmigiani et al., 2003). In this

system, each gene is represented by multiple oligonucleotide probes, or a “probe set.” A probe

set contains 10-20 probe pairs whose expression intensities are measured via hybridization to

the targeted sample cRNA. Each probe pair consists of the perfect match (PM) probe with

the target mRNA sequence of 25 nucleotides and the counterpart mismatch (MM) probe

that is identical to the PM probe except for a base change at the middle (13th) position.

The first part of this work concerns an important statistical problem in analyzing affymetrix

array data, that is, estimation of gene expression based on the multiple-probe information.

A number of statistical methods have been proposed to address this problem. GeneChip

software (MAS version 5.0; Affymetrix 2004) computes a robust form of mean differences

between PM and MM probes. Chu et al. (2002) applied mixed linear models to account for

the dependence among logarithm-transformed probe intensities. Li and Wong (2001) pro-

posed a multiplicative model-based expression index, which has been used and implemented

in the dChip software (www.dchip.org). Its superiority over several existing methods has

been shown in Lemon et al. (2002) via both analytic arguments and empirical data. The

so-called Li-Wong Reduced (LWR) model was proposed based on the differences between

PM and MM intensities. Since the MM probes are designed originally for measuring the

background/nonspecific intensities, the differences are considered to be the signal intensities

in LWR. The model is expressed as

PMij −MMij = θiφj + εij (1)

where PMij and MMij are the PM and MM intensity values for the ith (i = 1, · · · , I)

array and the jth (j = 1, · · · , J) probe pair for the gene, θi is the true expression index, φj
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is the rate of response in the corresponding PM probe, and the residuals εij ∼ N(0, σ2).

The model identifiability is ensured by posing the constraint
∑

j φ
2
j = J . Later work showed

that the underlying distribution assumptions of normality and constant variance across the

probes do not hold and data transformation techniques can be used to resolve this problem

(Geller et al., 2003; Hu et al., 2006).

Hu et al. (2006) established the connection between the Li-Wong model and the first

characteristic mode of the singular value decomposition (SVD) of the probe intensity matrix,

and proposed a parametric transformation model on PM intensities. More specifically,

they proposed a grid search over a parametric transformation family (e.g., Box-Cox) and

selected the optimal value of the transformation parameters by maximizing the normalized

discrete Shannon entropy defined on the singular values of the residual matrix. Note that, the

empirical results provided in their paper show a good level of improvement in homogeneity of

variance of the residuals and efficiency of the expression index. Moreover, the transformation

model does not require knowledge of the experimental design.

We propose a more statistically principled estimation method than the entropy-based

procedure in Hu et al. (2006). The transformation model can be written as

f(yij|η) = θiφj + εij, (2)

where f(·|η) is a monotonic transformation, η is the vector of transformation parameters,

and εij’s are independent normal random errors with mean 0 and constant variance σ2.

The goal of this transformation model is to stabilize the variance of the residuals and thus

achieve an efficient estimates for the gene expression index under normality assumption. This

is similar in spirit to performing logarithm transformation often seen in analyzing microarray

experiments, as discussed in Geller et al. (2003); Hu et al. (2006) and Irizarry et al. (2003b).

We consider a wider class of transformations which contains the logarithmic transformation

and LWR model (identity transformation) as a special case. We expect to achieve a better
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performance based on the general model, since our empirical investigation shows that the

logarithm transformation is not always optimal. The proposed likelihood based method

and the entropy based procedure in Hu et al. (2006) are closely related since the normal

distribution has the maximum entropy property. However, our simulation study as reported

in Web Appendix A shows that the proposed method exhibits smaller variability of parameter

estimation than the ad hoc entropy procedure. Application to a benchmark Affymetrix U95A

spiked-in experiment (Irizarry et al., 2003a,b) also indicates that the proposed method has

superior performance in terms of reflecting the true patterns in a controlled experiment,

comparing to the Li-Wong model.

We also introduce a new multivariate gene expression index obtained through the connec-

tion between the multiplicative model and SVD. It is noted that all the existing methods

concern only the univariate expression index. Through extensive real data exploration, we

show the benefit of using the multivariate index in terms of model fitting and applications,

such as differential expression detection.

The second part of the work is devoted to discussion of two practical issues in analysis of

microarray data using estimated gene expression index, namely, normalization and summary

statistic used for detecting differential expression. These issues are important but still under

debate. MAQC (2006) used empirical studies over some of the known techniques, and con-

cluded that normalization has little impact on the result of detecting differentially expressed

genes, and p-value has no gain over fold-change in terms of gene ranking of differential

expression. We use the benchmark spiked-in data to re-investigate these two issues for the

expression indexes based on our proposed model. Our empirical study seems telling a different

story from MAQC project.

We describe the likelihood based estimation procedure and introduce the two-dimensional

expression index model in Section 2. We use the well known benchmark human spiked-in

dataset to demonstrate the applicability of the proposed expression index estimation method
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in Section 3, and explore the two practical issues of normalization and summary statistic for

detecting differential expression in Section 4. Some final remarks are given in Section 5.

2. Profile likelihood based expression index estimation

2.1 Estimation procedure

We consider the transformation model (2) in which yij takes the value of preprocessed and

normalized multiple-probe index. We denote the parameter vector Θ = (ηT ,θT ,φT , σ2)T ,

where θ = (θ1, . . . , θI)
T , φ = (φ1, . . . , φJ)T , and write out the log-likelihood function as

`(Θ) = −IJ
2

log(σ2) +
I∑
i=1

J∑
j=1

[
log |f ′(yij|η)| −

{
f(yij|η)− θiφj

}2

2σ2

]
(3)

It is noticeable that maximization of (3) with respect to Θ simultaneously is computationally

expensive. Hence, we turn to the profile likelihood method which comprises of two phases.

In the first phase, we fix the transformation parameter vector η at η0 and estimate only

θ,φ, and σ2. The maximum likelihood estimates (MLEs) of the parameters can be viewed

as functions of η0, and can be easily obtained using the connection between SVD and the

least square estimates (or equivalently MLEs with normal residuals) established in Hu et al.

(2006). The explicit forms of the parameter estimates are

θ̂(η0) = u1
σ1√
J
, φ̂(η0) = v1

√
J, (4)

σ̂2(η0) =
1

IJ

I∑
i=1

J∑
j=1

{
f(yij|η0)− θ̂(η0)iφ̂(η0)j

}2
,

where, u1 and v1 are the left and right singular vectors, respectively, corresponding to the

largest singular value σ1 by performing SVD on the matrix {f(yij|η0)}. We do not need the

full SVD decomposition, and efficient algorithm for low-rank matrix approximation can be

used to speed up the calculation of the leading vectors (e.g. Achlioptas and Mcsherry, 2007).

In the second phase, we aim to obtain the estimate of η via maximizing the profile log-

likelihood function
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`p(η) = −IJ
2

log(σ2(η)) +
I∑
i=1

J∑
j=1

[
log |f ′(yij|η)| −

{
f(yij|η)− θ(η)iφ(η)j

}2

2σ2(η)

]
. (5)

Notice that the profile log-likelihood function only contains the vector of parameters η

with all other parameters being expressed as functions of η. The variety of appropriate

optimization techniques such as Downhill Simplex or gradient based algorithms (e.g. Avriel,

1976) can be used subject to the structure of the family of transformations. It is worth

emphasizing that the obtained estimates based on the profile likelihood are the MLEs of the

parameters, and thus have good theoretical properties. We abbreviate the whole profiling

and singular value decomposition procedure as PSVD.

So far our development is only for a single gene. However, we encounter thousands of genes

in a real microarray experiment and aim at estimating a common transformation for all these

genes. In this general case, the log-likelihood and the profile log-likelihood are respectively

the summation of (3) and (5) over all involved genes. Our algorithm can be easily extended

to calculate the maximum likelihood estimate. Despite of the large dimensionality, the SVD

technique enables the computational feasibility of handling all the genes simultaneously in

our procedure.

Given the general framework, we focus on the popular Box-Cox transformation family as

an example hereafter. Let Y denote the untransformed data. The Box-Cox transformation

for each element of Y is defined as

f(yij|β) =


yβij − 1

β
, β 6= 0,

log(yij) , β = 0.

(6)

Since the transformation parameter η = β is one dimensional, the 3rd step of the PSVD

procedure becomes a simple optimization problem for a univariate concave function. In our

implementation, we adopt the popular L-BFGS-B optimization algorithm (Byrd et al., 1994).

We conducted simulation studies to make comparisons between the PSVD method and
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the entropy-based procedure in Hu et al. (2006). We studied both cases of normally and

non-normally distributed data. The observation is that the PSVD method yields more

efficient parameter estimate than the entropy-based procedure. The simulation study also

demonstrates the advantage of data transformation in improving the model fit. We include

the detailed description of the simulation studies in the Web Appendix A.

2.2 Multivariate expression index

It is aforementioned that the MLE of θ,φ in model (2) are the singular vectors corresponding

to the largest singular value of data matrix {f(yij|η)}. It is also known that the data matrix

can be represented as the sum of rank-one matrices based on SVD. The most important

rank-one matrix is associated with the largest singular value and it captures the highest

“energy” in the data, where “energy” is defined by either the 2-norm or Frobenius norm(e.g.

Trefethen and Bau, 1997) of the matrix. An intuitive question is whether this rank-one matrix

is sufficient to capture the majority of energy in the data and it is interesting to investigate

if the rank-one matrix corresponding to the second largest singular value contains nontrivial

information about gene expression index.

One of the typical way of assessing the relative importance of the low-rank matrices

generated by the SVD is to look at the ratio of the corresponding singular values. Following

this practice, we include the rank-one matrix associated with the second largest singular

value in expression index estimation only if
d2

d3

> c, where di denotes the ith largest singular

value of the transformed data f(yij|β̂) in (2). In our empirical investigation, we take the

relatively conservative threshold c = 3. This idea also has been used in Hu et al. (2009). The

model can be explicitly written as

f(yij|β̂) =


θiφj + εij ,

d2

d3

6 c

θ
(1)
i φ

(1)
j + θ

(2)
i φ

(2)
j +$ij ,

d2

d3

> c

(7)

When a gene can be represented using one component, we take θi as its univariate expression
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index for array i; Otherwise, we take the vector (θ
(1)
i , θ

(2)
i ) as its two-dimensional expression

index.

Note that more components can be considered in the similar way. Our empirical investi-

gation suggests that the third and higher-order singular vectors mainly contain noises for

short oligonucleotide array experiments and thus they will not be considered. More detailed

description is deferred to section 3.2.

3. Application to a benchmark spiked-in data

We used a benchmark Affymetrix U95A spiked-in experiment as an example. It consists of

12, 610 genes non-differentially expressed across all the arrays, and 16 genes spiked-in at 14

known concentration levels ranging from 0 to 1, 024 picomolars, each of which has at least 3

replicate arrays. A Latin square design was used for the arrangement of 16 genes at different

concentration levels in 59 arrays. The detailed description of the experimental design can be

found in Irizarry et al. (2003a,b).

In real data analysis, we need to first perform data preprocessing procedure. Irizarry et al.

(2003a,b) introduced quantile normalization and an alternative background intensity estima-

tion method rather than directly using MM intensities as the Li-Wong model. Because of its

good empirical performance, this preprocessing procedure has been widely used. Therefore,

we adopted this approach and took the background adjusted and normalized PM probe

intensities PM∗
ij as the data value prior to transformation in our development.

3.1 Comparisons of expression index estimates

We estimated the expression indexes of all the genes using the Li-Wong and PSVD methods,

respectively. The PSVD method applied to all the genes simultaneously yields the estimate

of the transformation parameter β̂ = 0.177. We notice there is a difference of the data scale

among the two methods: the Li-Wong method is conducted at the original scale, and the
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PSVD procedure is conducted at the nonlinear scale of the specific Box-Cox transformation.

Because of the different scales in the Li-Wong and PSVD models, we transform the estimated

expression index using the PSVD method back to the original scale for fair comparison.

This can be performed using θ̂final
i = (θ̂i + 1)

1

β̂ for i = 1, . . . , I, where θ̂final
i is a reasonable

approximation of the expression index on the original scale.

It is known that all the genes but the spiked-in ones should be constantly expressed. So a

good method should yield small variations in estimated expression indexes of the non-spiked-

in genes across all the arrays. The left panel in Figure 1 shows the box plot of the standard

errors of the estimated expression indexes of the nonspiked-in genes for both of the methods

at logarithmic scale. The PSVD method is clearly superior to the Li-Wong method with

overall smaller and less variable standard errors. The average (sample standard deviation) of

the standard errors of all the genes are 40.49(77.53), and 11.05(25.41), respectively, for the

Li-Wong and PSVD methods.

[Figure 1 about here.]

We also interrogated the 16 spiked-in genes spotted to the arrays at 14 concentration

levels of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 picomolars. It is intuitive to

assess the correlation between the estimated expression indexes and the corresponding true

concentration levels for each gene. Because the concentration levels are designed in the two-

fold fashion, we examined the Pearson’s correlation coefficient posterior to base 2 logarithm

transformation of both the concentration levels and θ̂final. The box plots of the correlation

coefficients of the 16 genes are displayed in the right panel of Figure 1. We can see that the

PSVD method outperforms the Li-Wong model. The average (sample standard deviation) of

the correlation coefficients for the Li-Wong and PSVD methods are, respectively, 0.98(0.02)

and 0.99(0.01). In summary, the PSVD method empirically performs better than the Li-Wong

method.
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3.2 Value of multivariate expression index

We used the same dataset to explore applicability of the two-dimensional expression index.

First, we observed that the second component is required by none of the 16 spiked-in genes

without the transformation (or under the Li-Wong model) but required by 6 genes with the

transformation (Box-Cox with β̂ = 0.177), based on the criterion defined in Section 2.2. On

the other hand, the second component is required by 1, 044 nonspiked-in genes without the

transformation, but only by 38 with the transformation.

We focus on the 6 spiked-in genes that require the two dimensional expression index

for further investigation. Figure 2 shows an example gene 546 at, in which the left upper

panel corresponds to the case of using only the first singular vector and the left lower

panel corresponds to the case of using the first two singular vectors. In both panels, the

probes having the largest and the second largest residual variance upon fitting model (2) are

highlighted with the symbols of the cross and the black circle, respectively. The plot of the

residuals εij upon using only the first singular vector and the residuals $ij upon using the

first two singular vectors against the transformed data are contained in the left column. It

is clearly seen that the residuals of the most variable probes using just one singular vector

become much more homogeneous by using two singular vectors. We also examined the normal

quantile-quantile plots of the residuals and observed that the residual distribution is closer

to the normal distribution using two singular vectors.

[Figure 2 about here.]

The right column of Figure 2 indicates that the fit of the most variable probe 15, indicated

by the crosses, is unsatisfying using the rank-one matrix approximation. It is intriguing to

interrogate the benefit of using the two singular vectors for this probe. Model (2) tells that a

linear relation between the transformed data f(PM∗
ij|β̂) and the univariate expression index

θ̂i (i = 1, · · · , I) should be observed for any probe j if the probes behave consistently. Such

a plot for probe 15 is displayed in the right upper panel of Figure 2 and a random pattern is
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shown. We examined the normally behaved probes and observed a clear linear pattern for all

of them. In the right lower panel, we presented the plots of θ̂
(2)
i versus f(PM∗

ij|β̂)− θ̂(1)
i φ̂

(1)
j

obtained using the two-component model. We can observe a clear linear pattern for probe 15,

implying that the second singular vector contains important information about this probe

and makes substantial contribution to θ̂
(2)
i .

The discussion above demonstrates the merit of using the second singular vector from

the perspective of model fitting. Next, we investigate its empirical value using the known

feature of the spike-in experiment. We focus on two spiked-in genes: 1091 at and the earlier

discussed 546 at. With the known concentration level of each array for a spiked-in gene, we

can examine the capability of distinguishing different concentration levels by using the two-

dimensional expression index. For this purpose, we adopt K-means clustering procedure

implemented using R function “pam” (Theodoridis and Koutroumbas, 2006). For gene

546 at, we focused on the arrays at the concentration levels of 32, 64, 128, 256, 512, and

1024 picomolars. The other gene 1091 at uses the arrays with the lowest concentration levels

of 0, 0.25, 0.5, and 1 picomolars. This represents the most difficult case for discrimination

because the concentration levels are the most close to each other. We apply the K-means

procedure to cluster the arrays into three classes, using separately the univariate and two-

dimensional expression indexes as the input. Performance of the two expression indexes will

be evaluated based on the output of the K-means procedure.

An expression index is considered to be good if the corresponding clustering succeeds in

assigning the same group membership to the arrays at the same concentration level and

cluster together the arrays with the concentration levels at the similar magnitude. Figure 3

contains the plots of the concentration levels of the arrays versus their group membership

produced by clustering. The left and right panels correspond to the univariate and two-

dimensional expression index, respectively. Genes 546 at and 1091 at are shown respectively
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in the upper and lower regions, separated by the middle line in black, of the two panels. For

gene 546 at and based on univariate expression index, we observe that an array is assigned

to cluster B while two others are assigned to cluster A at the concentration level of 64

picomolar, and similarly an array is assigned to cluster C while two others are assigned

to cluster B at the concentration level of 256 picomolar. In contract, the two-dimensional

expression index succeeds in clustering all the replicate arrays together and grouping the

arrays at different concentration levels correctly according to the order of the concentration

magnitudes. For gene 1091 at, the two-dimensional expression index again shows its promise

in differentiating groups of different concentration levels.

[Figure 3 about here.]

The proposed procedure yields either an univariate or a multivariate index for a gene.

For both testing of differential expression across the groups for a single gene and ranking

among the genes, we can use the p-values derived from the ordinary two-sample t-test for

an univariate index and the p-values derived from the Hotelling’s T-square test (Mardia

et al., 1979) for a multivariate index. For gene 1091 at we performed Hotelling’s T-square

test between two groups of arrays composed of low concentration levels `1 = {0, 0.25}, and

`2 = 0.5. The first group includes two concentration levels to ensure enough array replicates

in the group. For the test of equal mean expression intensities between the two groups, using

the univariate expression index obtains the p-value of 0.2 and the 95% confidence interval of

(−0.14, 0.51), while using the two-dimensional expression index obtains the p-value of 0.02

and the simultaneous 95% confidence interval of (−0.29, 0.66) and (−0.82,−0.07) for the two

dimensions of the expression index. Thus, in this example, the two-dimensional expression

index is more powerful to detect differential expression than the univariate expression index.

In summary, our empirical investigation shows that usage of the second singular vector has

value in terms of improvement of both the model fit and capability of detecting differential

expression.
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4. Discussion of two practical issues

There is much discussion of array normalization in the literature. Many researchers view

normalization as a way to make intensities of arrays comparable. For example, Bolstad et al.

(2003) studied various normalization methods and demonstrated the good performance of

quantile normalization. Quantile normalization intends to make a set of quantiles identical

across the arrays and was incorporated in the robust multi-array analysis (RMA) method

described in Irizarry et al. (2003b). The detailed discussion of normalization techniques

is referred to Bolstad et al. (2003). The data preprocessing steps including normalization

are conducted to perform more meaningful downstream analysis, in which detection of

differential expression is usually a primary task. This problem is typically tackled using

some classical test statistics or equivalently the associated p-value. For example, ordinary

two-sample t test statistic is usually used for two-group comparison and preferred over the

naive summary statistic, fold-change (FC, ratio of mean group intensity) rule, which does

not account for the variation among the samples.

On the other hand, MAQC (2006) drew rather different conclusions via some real data

studies. In particular, they showed that the impact of array normalization on detection of

differential expression is trivial for various existing techniques and the classical test statistics

or the corresponding p-values do not show the advantage over the simple fold change rule in

terms of gene ranking.

Herein we re-examine these two issues using the same Affymetrix U95A spiked-in data set.

The known truth associated with the specific design of this data set allows assessing various

criteria including the performance of gene ranking. Our studies are based on gene expression

index estimates obtained from both our PSVD and the Li-Wong model.

In this data set, all except for 16 spiked-in genes have constant expression across all the 59

arrays. The Latin square design creates multiple sets of 12 arrays where all the arrays in a
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set have the common concentration levels for each of the 16 spiked-in genes. Therefore, such

12 arrays in a set can be treated as array replicates. Also among the sets, a spiked-in gene

has different concentration levels. In our study, we focus on two such sets of 12 arrays and

are interested in comparison of the arrays between these two groups.

We obtained the expression index estimates without normalization and with quantile

normalization, respectively. Then we consider both the p-value obtained from the two-sample

test and the simple absolute value of logarithm-transformed fold change (FC score) as the

score for each gene. Negative p-value is used as the p-value score to be concordant with

the order of the FC score. Intuitively, we expect the spiked-in genes to have smaller p-

values and larger FC scores than all the other non-spiked-in genes. So it is sensible to assess

the performance of gene summary score in terms of the power to distinguish between the

two groups of non-spiked-in and spiked-in genes. For this purpose, we take a look at the

receiver operating characteristic (ROC) curve and its commonly used summary statistic, the

area under the curve (AUC) measurement. The results based on PSVD expression index

estimates are shown in Figure 4. The ROC curves without normalization and using quantile

normalization are plotted in the left upper and lower panels, respectively. In each panel, the

p-value score and the FC score are plotted in solid and dotted lines, respectively, and the

AUC measurements of the two scores are shown. We observe that quantile normalization

clearly improves the discriminatory power of both scores over no normalization and the

p-value score also has better performance than the FC score.

We also study the performance of gene ranking from another perspective. We plot the

ranks of all the genes based on the p-value score along with those based on the FC score

in the right panels of Figure 4. The line indicates the identical ranks between the p-value

score and the FC score. The 16 spiked-in genes are indicated as the bold dots. In truth, the

16 genes should have higher ranks than all the other genes and, thus, they should locate
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in the extreme right upper corner. Clearly, the normalization performs better than the no

normalization case. The p-value score also outperforms the FC score, whereas the latter

has more non-spiked-in genes ranking higher than the spiked-in ones. For example, in the

normalization case the FC score obtains higher ranks for 5 out of the 16 genes with the

largest rank difference of 13 while the p-value score outperforms by ranking the other 11

genes higher with the largest rank difference of 451. It is clear that the advantage of the

p-value score over the FC score is more prominent in the no normalization case.

Next, we focus on study of the 16 spiked-in genes since their true concentration levels

are known on all the arrays. Figure 5 shows the plot of ranks of the 16 genes based on

each score along with their ranks based on the absolute difference of concentration levels

between the two groups. We expect a score and the absolute concentration difference to

be positively correlated. The cases without normalization and with quantile normalization

are displayed in the upper and lower rows, respectively; and the FC score and the p-value

score are displayed in the left and right columns, respectively. The corresponding Spearman’s

correlation coefficient is displayed in each panel. We notice that no normalization obtains

correlation coefficients closer to zero than quantile normalization. The advantage of the p-

value score is obvious over the FC score when the quantile normalization is applied, with the

correlation coefficients of 0.202 and −0.141, respectively. The FC score yields the negative

correlation coefficient and shows group-splitting pattern where some genes are positively

correlated while the others show the opposite pattern. In the contrast, the p-value score in

the right lower panel shows the highest correlation in the correct direction. This panel shows

clearly that most genes are positively correlated, except for the three outliers in the right

low corner. It appears that all the three genes have the highest concentration levels in at

least a group, and thus this phenomenon could be caused by the saturation problem.

We obtained the similar results based on the expression index estimates of the Li-Wong

model. The results are included in Web Appendix B.
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In summary, our empirical investigations provide some evidence that: (1) normalization has

non-negligible impact on detection of differentially expressed genes; (2) p-value has favorable

performance in terms of ranking over the naive fold change score. We believe the difference

between the p-value score and the FC score is mainly caused by that the former one takes

into account the within-group variability while the latter one does not.

[Figure 4 about here.]

[Figure 5 about here.]

5. Discussion

We proposed a profile likelihood approach to estimate a transformation model for affymetrix

short oligonucleotide array data. The proposed method is more statistically principled and

efficient than the ad hoc entropy based method introduced in Hu et al. (2006) that is

evident by our simulation studies. Its computationally efficiency comes with the simple

SVD method used for parameter estimation. The real data example shows that it has some

advantage over the popular Li-Wong model in terms of empirical performance. We also

introduced a multivariate expression index which utilizes the first two singular vectors. Our

empirical investigation shows the promise of using multivariate index in terms of both model

fitting and differential expression detection. In addition, we re-examined two important

practical issues in gene expression analysis, the value of normalization and statistical p-

values. Our study shows that, when using the proposed method for generating expression

indexes, normalization has impact on differential expression detection and statistical p-values

have better performance than the simple fold change criterion in terms of gene ranking.

6. Supplementary Materials

Web Appendices referenced in Sections 1, 2, and 4 are available under the Paper Information

link at the Biometrics website http://www.biometrics.tibs.org.
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Figure 1. Left panel: Standard errors of estimated expression indexes of the nonspiked-in
genes using the Li-Wong and PSVD methods. Right panel: Pearson’s correlation coefficients
between expression index(θ̂final) and true concentration in base 2 logarithm of the spiked-in
genes using the Li-Wong and PSVD methods.
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Figure 2. Model fitting using only one singular vector (upper panels) and two singular
vectors (lower panels)‘. The left column contains the plot of residuals versus the transformed
data. The right upper panel contains the plots of the transformed data f(PM∗

ij|β̂) versus the

estimated expression index θ̂
(1)
i for probe 15 of gene 546 at; The right lower panel contains

the plots of residuals f(PM∗
ij|β̂)− θ̂(1)

i φ̂
(1)
j versus θ̂

(2)
i for the same probe.
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Figure 3. K-means clustering using univariate(left column) and two-dimensional(right
column) expression index. The upper region corresponds to gene 546 at at the concentration
levels of 32, 64, 128, 256, 512, and 1024 picomolars; The lower region corresponds to gene
1091 at at the concentration levels of 0, 0.25, 0.5, and 1 picomolars. Each panel contains the
plot of the concentration levels of the arrays versus their group memberships produced by
K-means clustering.
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Figure 4. ROC curve and the rank plot for the PSVD Model. ROC curve for comparing
the p-value and FC scores is given in the left column, and the rank plot for the rank(p-value
score) vs. rank(FC score) is given in the right column. Upper row represents no normalization
and the lower row represents the quantile normalization technique.
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Figure 5. Rank plot for the 16 spiked-in genes based on the PSVD Model. Rank plot
for the rank(FC score) vs. rank(abs(cons. diff.)) is given in the left column, and the rank
plot for the rank(p-value score) vs. rank(abs(cons. diff.)) is given in the right column. Upper
row represents no normalization and the lower row represents the quantile normalization
technique.
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