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Significance: The human enzyme cytochrome P450 17A1 (CYP17A1) 

catalyzes the critical step in the biosynthesis of the male sex hormones, and, 

as such, it is a key target for the inhibition of testosterone production that is 

necessary for the progression of certain cancers. CYP17A1 catalyzes two 

distinct types of chemical transformations. The first is the hydroxylation of the 

steroid precursors pregnenolone and progesterone. The second is a different 

reaction involving carbon–carbon (C-C) bond cleavage, the mechanism of 

which has been actively debated in the literature. Using a combination of 

chemical and biophysical methods, we have been able to trap and 

characterize the active intermediate in this C-C lyase reaction, an important 

step in the potential design of mechanism-based inhibitors for the treatment 
of prostate cancers. 

Keywords: cytochrome P450, steroids, nanodiscs, peroxo-hemiacetal, 

resonance Raman spectroscopy 

Abstract: Ablation of androgen production through surgery is one strategy 

against prostate cancer, with the current focus placed on pharmaceutical 

intervention to restrict androgen synthesis selectively, an endeavor that could 

benefit from the enhanced understanding of enzymatic mechanisms that 

derives from characterization of key reaction intermediates. The 

multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical 

hydroxylation of its primary substrate, pregnenolone (PREG) and then also 

orchestrates a remarkable C17–C20 bond cleavage (lyase) reaction, converting 

the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a 

process representing the first committed step in the biosynthesis of 

androgens. Now, we report the capture and structural characterization of 

intermediates produced during this lyase step: an initial peroxo-anion 

intermediate, poised for nucleophilic attack on the C20 position by a substrate-

associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that 

precedes carbon–carbon (C-C) bond cleavage. These studies provide a rare 

glimpse at the actual structural determinants of a chemical transformation 

that carries profound physiological consequences. 

The excessive production of androgen, which effectively fuels 

the progression of cancer, especially prostate cancer, was first treated 

by surgical methods,1 whereas more modern approaches are focused 

on the discovery and development of pharmaceuticals that can 

selectively inhibit androgen synthesis.2,3 A member of the cytochrome 

P450 superfamily,4,5 cytochrome P450 17A1 (CYP17A1), occupies a 

central role in the biosynthesis of steroid hormones in humans. As was 

first reported by Nakajin and Hall6 and Nakajin et al.7 for CYP17 from 

pig testis, this enzyme catalyzes two fundamentally different types of 

chemical transformations,5-11 with the first being the efficient 

hydroxylation of both of its primary substrates, pregnenolone (PREG) 

and progesterone (PROG), to 17-hydroxypregnenolone (17-OH) PREG 
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and 17-hydroxypregnenolone, respectively (Fig. 1). Importantly, 17-

OH PREG is further processed in a second step in which CYP17A1 now 

catalyzes, not another hydroxylation reaction, but a complex 17,20 

carbon–carbon (C-C) bond cleavage (lyase) reaction. This step 

converts 17-OH PREG to dehydroepiandrosterone (DHEA), a process 

that represents a critical branch point in human steroidogenesis by 

providing the essential precursor to androgens and various 

corticosteroids.5-9 Although a similar C-C bond cleavage of 17-OH 

PROG is also mediated by CYP17A1, it is of less importance in humans 

because its efficiency is only about 2% of the efficiency of the 

physiologically important lyase reaction involving 17-OH PREG.10 

Recognizing the intensive efforts currently underway to design and 

test substances that selectively inhibit CYP17A1,2,3 there is a pressing 

need to enhance our understanding of the relevant reaction 

mechanisms, a task that typically entails identification of key reaction 

intermediates. Directly addressing this issue, we report the successful 

capture and structural characterization of these elusive species, 

providing convincing evidence that in the presence of PREG, the 

enzyme active site is organized to facilitate the hydroxylation reaction, 

whereas the 17-hydroxyl group of the 17-OH PREG substrate directly 

interacts with the ferric peroxo-intermediate to promote the C-C bond 

cleavage process effectively. 
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Fig. 1. Proposed pathway for biosynthesis of androstenedione and DHEA catalyzed by 

human CYP17A1.4,5  

As depicted in the enzymatic cycle illustrated in Fig. 2,4,5 binding 

of substrate induces a low-spin (LS) to high-spin state conversion of 

the heme prosthetic group, whose attendant change in reduction 

potential triggers electron transfer from an associated reductase, with 

the resulting ferrous protein readily binding molecular oxygen to form 

a semistable dioxygen adduct, properly viewed as a ferric-superoxide 

species. This complex is the last intermediate in the cycle that can be 

conveniently studied by conventional spectroscopic methods. Delivery 

of a second electron produces a reactive ferric peroxo-intermediate.4,5 

In the vast majority of cases, as depicted by the green arrows 

appearing in the circular reaction cycle illustrated in Fig. 2, this 

peroxo-intermediate accepts the rapid sequential delivery of two 

protons. The first forms a fleeting hydroperoxo-intermediate, which 

rapidly undergoes O-O bond cleavage upon delivery of the second 

proton to generate a highly reactive “compound I” species, whose 

impressive ability to effect hydroxylation and certain other difficult 

chemical transformations is widely appreciated.4,5 Recent efforts by 
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Green and coworkers12,13 have provided further definition of the 

structure and reactivity of compound I. 

 
Fig. 2. Cytochrome P450 enzymatic cycle and formation of a peroxo-hemiacetal 

intermediate. 

There are critical physiological demands for other types of 

difficult substrate transformations that are not effectively mediated by 

compound I. A prime example is encountered in vertebrates, where at 

least 14 CYPs are involved in the transformation of cholesterol into a 

relatively large number of physiologically required steroid hormones, 

including androgens, estrogens, and corticosteroids.4,14 Although the 

classical hydroxylation reactions are most frequently encountered in 

these schemes, a few of these important CYPs are multifunctional, 

orchestrating complex sequential reactions that result in unusual C-C 

bond cleavage processes. Although such dramatic chemical 

transformations are well documented, much uncertainty remains about 

how these multistage reaction sequences actually proceed.5,9  

Our present work focuses on the membrane-bound CYP17A1, 

whose chimeric reactivity patterns are controlled, in large part, by the 
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precise molecular structure of the particular substrate orientation in 

the active site,15 (15), a feature properly referred to as “substrate-

assisted catalysis”.16 (16). Thus, although the hydroxylation reactions 

producing 17-OH PREG and 17-OH PROG are commonly accepted to be 

mediated by P450 compound I, the mechanism of the lyase reaction, 

converting 17-OH PREG to DHEA, has been intensively debated, based 

on results of extensive structural and functional studies.5,9,14,17,18 One 

of the proposed schemes is illustrated with red arrows in Fig. 2,4,5,8,9 

where it is suggested that the conversion is initiated by attack of the 

nucleophilic Fe-O-O fragment of the peroxo-intermediate on the 

electrophilic C20 carbon of the substrate, generating an unstable 

peroxo-hemiacetal derivative that would then decay to yield DHEA and 

acetic acid via homolytic or heterolytic scission of the dioxygen 

bond.5,9,19 Although attractive, the validity of this scheme, or other 

proposed schemes, awaits experimental confirmation by physical or 

temporal isolation and structural characterization of the key 

intermediates in this C-C bond cleavage reaction. A difficulty in the 

case of the steroidogenic cytochromes P450 is the inherently high 

reactivity of the encountered peroxo- and hydroperoxo-intermediates, 

coupled with impressively efficient delivery of protons to the active site 

Fe-O-O fragment. This obstacle has made temporal isolation of these 

fleeting species especially challenging, requiring the application of 

cryoradiolysis, a technique applied successfully to many systems by 

Symons, Hoffman, and their coworkers.20-22 Here, this low-temperature 

method allows reduction of a stabilized ferrous dioxygen state while 

effectively restricting associated proton transfer, as we have shown for 

other P450 systems.21-24  

Recognizing the need to trap adequate quantities of the initial 

ferric superoxide intermediate effectively, we used the previously 

developed nanodisc (ND) methodology, which efficiently self-

assembles the full-length CYP17A1 membrane protein into a nanoscale 

lipid bilayer (ND/CYP17A1) to eliminate aggregation and provide full 

functionality, with a descriptive model shown in Fig. S1.25 This 

approach has been shown to produce well-behaved assemblies of this 

and other membrane-bound enzymes, with the important advantage 

that such entities effectively enhance the stabilities of the dioxygen 

adducts of these enzymes,25,26 allowing them to be efficiently prepared 

and quickly trapped at liquid nitrogen temperature. Indeed, our 

previously reported resonance Raman (rR) spectroscopy studies,27 
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which focused on the trapped dioxygen adducts of CYP17A1 bound 

with its natural substrates, clearly showed that H-bonding interactions 

between the Fe-O-O fragments and active site residues, including 

bound substrates, produce telltale vibrational frequency shifts that 

effectively differentiate functionally significant H-bonding interactions 

to the proximal (p) or terminal (t) atoms within the Fe-Op-Ot 

fragment.28,29 Specifically, our work on the CYP17A1 dioxygen adducts 

demonstrated that of the four natural substrates of CYP17A1 (Fig. 1), 

only 17-OH PREG was properly positioned to donate an H-bond to the 

proximal oxygen of the Fe-O-O fragment, an interaction that was 

suggested likely to persist in the subsequent peroxo-intermediate, a 

suggestion that is now shown to be valid by the data presented herein 

(vide infra). This finding was important, showing that the particular 

substrate efficiently processed in the lyase step of metabolism is also 

the only one that adopts an orientation that effectively intercepts the 

fleeting peroxo-intermediate and facilitates its attack on the 

juxtaposed electrophilic C20 atom.30,31 Although the rR data obtained 

for the dioxygen intermediate of 17-OH PREG-bound CYP17A1 

provided evidence suggesting the existence of a “poised” Fe-Op-Ot 

peroxo-fragment, confirmation of the proposed lyase pathway 

demands the trapping and structural characterization of this complex 

and the following crucial intermediate shown in the center of Fig. 2. 
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Fig. S1. Model of CYP17A1 incorporated into a nanodisc. The cytochrome P450 
molecule is shown as a green cartoon representation, with heme presented in red 
sticks. The phospholipid bilayer is shown in orange with oxygen atoms in red, and the 
scaffold protein encompassing the lipid bilayer is shown as a blue cartoon 
representation.  

Results 

Detection and Temporal Evolution of Enzymatic 

Intermediates.  

To monitor the formation and decay of the reactive 

intermediates encountered in the C-C bond cleavage stage of 

androgen biosynthesis, we first prepared the oxy-ferrous derivative of 

CYP17A1 in a solution of buffer containing 60% (vol/vol) glycerol along 

with saturating concentrations of the appropriate substrate, holding 

the temperature at −30 °C. Anaerobic reduction of the protein, 

followed by the addition of oxygen gas to the sample at low 

temperature, permits formation of oxy-ferrous protein with nearly 

100% yield. The sample was immediately cooled to 77 K and then 

exposed to a 4-Mrad dose from a 60Co source to generate hydrated 
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electrons, which can migrate at 77 K to produce the initial peroxo-

intermediate (complete details are provided in Methods). The relevant 

reaction is initiated by raising the temperature from liquid nitrogen 

temperatures to ∼200 K while recording optical spectra. 

The results are shown in Fig. 3, where samples containing either 

PREG (Fig. 3A) or 17-OH PREG (Fig. 3B) exhibit a strong (negative) 

absorption band, appearing near 440 nm in the difference spectra. 

This observation is consistent with the initial production and expected 

disappearance of the peroxo-ferric P450 species as the temperature is 

raised.23,24 We note that any hydroperoxo-intermediate present in the 

cryoradiolytically reduced samples, generated by effective proton 

delivery even at 77 K, would also absorb near 440 nm.24 Quite 

interesting differences are observed upon annealing either the PREG or 

17-OH PREG sample to higher temperatures. The sample containing 

PREG, when annealed through 77–190 K, shows a steady loss of the 

peroxo-/hydroperoxo-intermediate (near 440 nm), converting directly 

to a species that exhibits an absorption spectrum that matches the 

absorption spectrum of the LS ferric state (λ = 417 nm) acquired at 77 

K. This behavior is consistent with the rapid progression through the 

typical O-O bond cleavage cycle (green arrows in Fig. 2), with facile 

formation and rapid decay of compound I and immediate appearance 

of product, behavior previously observed for several bacterial 

P450s.32,33 Notably, however, during an identical temperature 

excursion for the sample possessing 17-OH PREG, the decay of the 

peroxo-like Soret band at 437 nm was accompanied by the intriguing 

formation of a previously unidentified species with a Soret maximum 

near 405 nm. 

http://dx.doi.org/10.1073/pnas.1519376113
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/#s4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig02/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the National Academy of Sciences, Vol 112, No. 52 (December 2015): pg. 15856-15861. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

10 

 

 
Fig. 3. Thermal annealing of peroxo-ferric intermediates monitored by optical 
absorption spectroscopy in CYP17A1 with different substrates PREG (A) and 17-OH 
PREG (B). Shown are difference spectra obtained by subtracting the spectrum at 160 K 
from the spectra measured at temperatures gradually increasing from 161 K 
(baseline) to 185 K (maximal difference). 

Structural Definition of the Crucial Intermediates.  

Having confirmed the existence of a 405-nm intermediate for 

the sample containing 17-OH PREG, we exploited the impressive power 

of rR spectroscopy, which is able to provide definitive structural 

characterization of such trapped species, revealing telltale shifts of the 

internal vibrational modes of the Fe-O-O fragments in response to 

even quite subtle, but functionally significant, active site structural 

changes.23,34 The essential results of such studies are collected in Fig. 

4, where the 16O2-18O2 difference traces are plotted. As shown in Figs. 

S2–S5, the subtraction procedure cancels all heme modes 

(nonshifting), which clutter the raw spectra, thereby clearly revealing 

the isolated ν(O-O) and ν(Fe-O) vibrational modes of interest. 

Focusing first on the sample containing PREG, which is eventually 

processed by CYP17A1 to yield 17-OH PREG via mediation of the 

compound I intermediate, two sets of oxygen isotope-sensitive 
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(16O2/18O2) modes are clearly seen in the 16O-18O difference traces of 

the initial cryoreduced samples (Fig. 4A), signaling the presence of two 

intermediates. One species exhibits a ν(16O-16O) mode at 802 cm−1, 

with its corresponding ν(18O-18O) at 764 cm−1 (Δ16/18 = 38 cm−1), 

and a ν(Fe-16O) at 554 cm−1, with its ν(Fe-18O) mode appearing at 527 

cm−1 (Δ16/18 = 27 cm−1). It is seen that these features do not shift in 

the difference trace generated for the samples prepared in D2O 

(bottom trace in Fig. 4A). The lack of an observable 

hydrogen/deuterium (H/D) shift is entirely consistent with assignment 

of this set of bands to a trapped ferric peroxo-intermediate of 

CYP17A1. The second species in this sample exhibits a ν(16O-16O) 

mode at 775 cm−1, which shifts to 738 cm−1 for the 18O-analog 

(Δ16/18 = 37 cm−1), and a corresponding ν(Fe-16O) at 572 cm−1, 

shifting to 545 cm−1 for 18O2 (Δ16/18 = 27 cm−1). It is noted that 

these observed 16O-18O isotope shifts are consistent with the isotope 

shifts predicted for Fe-O-O or Fe-O-O-H fragments.35 Furthermore, the 

spectra of samples acquired in buffers prepared with D2O reveal that 

the 775/572 cm−1 modes shift significantly, confirming the 

identification of this species as the hydroperoxo-derivative, an 

observation documenting the fact that a significant fraction of the 

peroxo-intermediate is converted to the hydroperoxo-intermediate, 

even at 77 K. This finding is particularly important, revealing the fact 

that when PREG is bound to CYP17A1, the active site architecture is 

intricately arranged so as to promote especially efficient proton 

transfer, thereby facilitating formation of compound I and the classical 

hydroxylation reaction required to produce 17-OH PREG. 
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Fig. 4. rR spectral data for irradiated dioxygen adducts of CYP17A1. All spectra were 
measured with a 442-nm excitation line at 77 K, and the total collection time of each 

spectrum was 6 h. The rR 16O2-18O2 difference traces in H2O and D2O buffers of 
irradiated oxy-CYP17A1 samples (before annealing) with PREG (A) and 17-OH PREG 
(B) and corresponding samples after annealing to 165 K (C) and (D) are shown. Using 
the isolated bands for the 16O-peroxo (802 cm−1) and 18O-hydroperoxo (738 cm−1) 

species, the I738/I802 increases from 0.72 to 1.42. Similar values were obtained using 
the data from samples prepared with D2O buffers (from 0.77 to 1.59). Ann., annealed; 
Irr., irradiated. 
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Fig. S2. Low-frequency rR spectra of irradiated (IRR) oxy-ND/CYP17A1 samples with 
PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference 
traces are indicated. Spectra were measured with a 442-nm excitation line at 77 K, 
and the total collection time of each spectrum was 6 h. The modes associated with 
hydroperoxo-species exhibit a 5 to 3 cm−1 downshift in D2O buffer. The percentages of 

peroxo- and hydroperoxo- species are approximately equal. The difference traces were 

obtained by subtracting the 18O2 spectrum from the 16O2 spectrum in H2O (Upper) or 
D2O (Lower) buffer. Then, the absolute spectra and difference traces were corrected 
using linear functions in the regions where the oxygen-sensitive modes are present. 
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Fig. S5. Low-frequency rR spectra of irradiated and annealed at 165 K oxy-
ND/CYP17A1 samples with 17OH-PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 
18O2/D2O (D), and their difference traces. Spectra were measured with a 442-nm 
excitation line at 77 K, with the total collection time of each spectrum being 6 h. No 
new species were detected that could be assigned to either the acylperoxo- or 

hydroperoxo-form. The approximate loss of intensity of modes associated with the Fe-

O-O fragment is 40–50% as judged by comparison with the ν7 mode at 674 cm−1, 
which serves as an internal standard. 
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Fig. S3. Low-frequency rR spectra of irradiated oxy-ND/CYP17A1 samples with 17OH-
PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their difference 
traces are indicated. Spectra were measured with a 442-nm excitation line at 77 K, 
and the total collection time of each spectrum was 6 h. There is only one ν(O-O) mode 
and one ν(Fe-O) mode that do not have H/D sensitivity and are assigned to the 

peroxo-species. 
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Fig. S4. Low-frequency rR spectra of irradiated and annealed (Ann.) at 165 K oxy-
ND/CYP17A1 samples with PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O 
(D), and their difference traces. Spectra were measured with a 442-nm excitation line 
at 77 K, and the total collection time of each spectrum was 6 h. The intensity ratio of 
ν(O-O) of hydroperoxo-species to ν(O-O) of peroxo-species is ∼2:1. 

In the case of the 17-OH PREG-bound sample (Fig. 4B), where 

an additional H-bonding molecular fragment is introduced to the 

immediate heme environment by the substrate, the initial product of 

cryoradiolysis at 77 K exhibits a ν(16O-16O) mode at 796 cm−1 (Δ16/18 

= 38 cm−1), with the corresponding ν(Fe-16O) mode occurring at 546 

cm−1 (Δ16/18 = 24 cm−1). Furthermore, it is clear from viewing the 

spectra obtained for the samples prepared with D2O (bottom trace of 

Fig. 4B) that the observed modes are insensitive to the H/D exchange, 

with such behavior confirming the identity of this species as a ferric 

peroxo-intermediate, but with a slightly different disposition than the 

disposition seen for the PREG-bound sample. In fact, as we made clear 

in our earlier rR study of the dioxygen adducts of CYP17A1,27 the 

lowered ν(Fe-16O) frequency of the peroxo-form of the 17-OH PREG 

sample (546 cm−1), relative to the peroxo-form of the PREG-bound 

sample (554 cm−1), suggests that an H-bonding interaction occurs 

between the hydroxyl group of the substrate and the proximal oxygen 
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atom of the Fe-Op-Ot peroxo-fragment [i.e., the H-bonding seen in the 

dioxygen adduct persists in the peroxo-species, as we had suggested 

in our earlier work.27]. This finding is important, because such a 

specifically directed H-bonding interaction to the Op of the peroxo-

fragment is expected to facilitate its involvement in the lyase phase of 

catalysis.30,31 This result suggests the 17-OH PREG-bound peroxo-

intermediate is poised for attack upon the susceptible electrophilic C20 

carbon of the bound substrate. 

Turning our attention to efforts to trap and characterize 

structurally the key intermediate proposed in the center of Fig. 2, the 

following observations were made. The results of rR experiments using 

442-nm excitation (Fig. 4C) show that annealing of the PREG-bound 

sample to 165 K causes clean conversion of the peroxo-intermediate to 

more of the hydroperoxo-intermediate involved in the hydroxylation 

pathway, with the extent of conversion being estimated to be a factor 

of approximately twofold, as explained in the legend of Fig. 4. 

Interestingly, similar annealing studies of the 17-OH PREG-bound 

sample provide no evidence for the appearance of any new 16O/18O-

sensitive bands (Fig. 4D). However, this outcome is not surprising, 

given that Fig. 3B shows that the newly arising second intermediate 

has its Soret maximum near 405 nm, far from resonance with the 442-

nm excitation line. Indeed, rR spectral measurements on annealed 

samples, using the 406-nm excitation line from an available Krypton 

ion laser (Fig. 5), yielded a new set of strongly enhanced bands 

appearing at 791 cm−1 (16O2 sample) and 749 cm−1 (18O2 sample). The 

lack of an observable shift for samples prepared in D2O-based buffer 

(bottom trace of Fig. 5) confirms this species does not possess a 

bound hydroperoxo-fragment. Furthermore, as is shown in Fig. S6, rR 

studies conducted with 413-nm excitation confirm that as the 

temperature is increased from 165 to 190 K, the intensity of this band 

increases relative to the intensity of “internal standard” ν(O-O) bands 

of the residual dioxygen adduct. This rR spectral result is entirely 

consistent with the increase of the 405-nm electronic absorption band 

over the same temperature excursion (Fig. 3B). It is noted that a 

control experiment conducted on the PREG-bound sample annealed to 

190 K, using the same 406-nm excitation line (Fig. S7), did not show 

any evidence for a feature appearing near 790 cm−1, indicating that 

the peroxo-hemiacetal intermediate is encountered only with the 17-

OH PREG substrate, but not with the PREG substrate. 

http://dx.doi.org/10.1073/pnas.1519376113
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig02/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig04/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig04/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig04/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig05/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig05/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/sfig06/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig03/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/sfig07/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the National Academy of Sciences, Vol 112, No. 52 (December 2015): pg. 15856-15861. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

18 

 

 
Fig. 5. rR spectral data for irradiated dioxygen adducts of CYP17A1 samples with 17-
OH PREG annealed at 190 K. 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), 
and their 16O2-18O2 difference traces. (D, Inset) Difference trace of scrambled oxygen 
(SC) and the 16O2 spectrum. Spectra were measured with a 406-nm excitation line at 
77 K, and the total collection time of each spectrum was 8–9 h. 

 

http://dx.doi.org/10.1073/pnas.1519376113
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703009/figure/fig05/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Proceedings of the National Academy of Sciences, Vol 112, No. 52 (December 2015): pg. 15856-15861. DOI. This article is 
© National Academy of Sciences and permission has been granted for this version to appear in e-
Publications@Marquette. National Academy of Sciences does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from National Academy of Sciences. 

19 

 

 
Fig. S6. 16O2-18O2 difference traces of oxy-ND/CYP17A1 samples with 17OH-PREG 
irradiated and annealed at 165 K in H2O buffer (A), in D2O buffer (B), annealed at 190 
K in H2O buffer (C), and in D2O buffer (D). Spectra were measured with a 413.1-nm 
excitation line at 77 K. The total collection time of each spectrum was 6–8 h. The ν(O-
O) modes of residual ferrous dioxygen adducts at 1,135 cm−1 and 1,070 cm−1 were 

used as internal standards to evaluate the intensity increase of the new oxygen-
sensitive species at around 790 cm−1. 
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Fig. S7. rR spectra of irradiated and annealed at 190 K oxy-ND/CYP17A1 samples with 
PREG, 16O2/H2O (A), 18O2/H2O (B), and their difference traces. Spectra were measured 
with a 406-nm excitation line at 77 K. The total collection time of each spectrum was 4 
h. The spectra show only the presence of ν(O-O) modes of the residual precursor 
dioxygen adducts. In contrast to the case with 17OH-PREG–bound samples (Fig. 5), 

which displayed a 791-cm−1 mode of the peroxo-hemiacetal intermediate, and whose 

intensity was comparable to the intensity of the residual dioxygen adduct, there are no 
oxygen-sensitive modes observed near 790 cm−1 in the difference trace. 

 

Although the observation of this single feature, appearing at 791 

cm−1, is obviously consistent with an intermediate with “peroxo-like” 

character, it must be noted that this vibrational frequency and 16O/18O 

isotopic shifts are close to what is expected for the ν(Fe = O) mode of 

a ferryl heme species; the frequencies of such ferryl species depend on 

the transaxial ligand and distal pocket interactions, with reported 

values ranging from 745 cm−1 up to about 800 cm−1.34,36 However, the 

assignment of this feature to a ferryl species was ruled out by 

experiments conducted with scrambled oxygen, a (1:2:1) mixture of 
16O2/16O18O/18O2. As seen in Fig. 5 (Inset), and more fully documented 

in Fig. S8, a distinctive difference pattern emerges when subtracting 

the spectrum of the 16O2 sample from the spectrum of a sample 

prepared with scrambled dioxygen. If the 791 cm−1/749 cm−1 pair 

arises from a ferryl species (generated through O-O bond cleavage), a 
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clean two-component difference pattern (Fe-16O and Fe-18O) would be 

observed in the trace shown in Fig. 5 (Inset). However, we clearly see 

a third band at 770 cm−1, confirming the fact that the observed 

intermediate contains an intact O-O bond (i.e., 16O-18O), consistent 

with the structure proposed in the center of Fig. 2. Finally, it is also 

noted that the corresponding iron-oxygen ν(Fe-O) modes, expected to 

be seen for such a peroxo-like intermediate, are indeed seen as weak 

features appearing at 580 cm−1 (16O2) and 553 cm−1 (18O2). 

Collectively, these spectroscopic data establish the nature of the 

intermediate as the peroxo-hemiacetal depicted in the center of Fig. 2. 

 

 
Fig. S8. rR spectra of irradiated and annealed at 190 K oxy-ND/CYP17A1 samples with 
17OH-PREG, 16O2/H2O (A), 16O18O (B), and their difference traces. Spectra were 
measured with a 406-nm excitation line at 77 K. The total collection time of each 

spectrum was 8 h. SC, scrambled oxygen. 

Further support for this structural interpretation of the species 

trapped at 190 K is provided from previous studies of other iron-

oxygen systems, whose structures are closely related to this 

intermediate (e.g., acylperoxo-adducts of heme- and nonheme 

proteins that possess an Fe-O-O peroxo-fragment linked to an oxidized 

carbon). Unlike the red-shifted Soret band at 435–440 nm 
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characteristic for hydroperoxo-ferric intermediates in P450 

enzymes,23,24 a blue-shifted Soret maximum at 405 nm (Fig. 3B) is 

consistent with the bands seen for an acylperoxo-species derived from 

metachloroperoxybenzoic acid (mCPBA),37,38 as well as other 

substituted peroxybenzoic acids.39 In all cases, the Soret maximum 

varies from 413 nm for the mCPBA adduct down to 409 nm with 

electron-donating groups, such as the p-methoxy analog. Thus, the 

405-nm maximum for the peroxo-hemiacetal intermediate, with its 

relatively less electrophilic carbon atom compared with the acylperoxo-

species, is not unexpected. A more convincing argument for the 

validity of the assigned structure can be made by noting that Que and 

coworkers40 have recently isolated and spectroscopically characterized 

an acylperoxo-derivative of a nonheme iron protein, reporting a value 

of 792 cm−1 for the frequency of the ν(O-O) mode, a virtually identical 

value (791 cm−1) to the value we observe for the assigned peroxo-

hemiacetal intermediate. 

The results presented here, obtained through the combined 

application of nanodisc methodology, cryoreduction, and rR and optical 

spectroscopies, reveal that owing to the highly directional H-bonding 

interaction between the hydroxyl group of 17-OH PREG and the 

proximal oxygen of the ferric peroxo-anion, this intermediate is poised 

for attack on the C20 carbon atom of the substrate. Furthermore, 

methodical application of the structure-sensitive rR technique, using 

judicious isotopic labeling strategies, provides convincing evidence that 

the resulting crucial intermediate of this lyase reaction is indeed the 

previously proposed peroxo-hemiacetal derivative. Collectively, these 

studies provide an elegantly simple explanation of how even quite 

subtle changes in active site architecture of CYP17A1, imposed by 

molecular fragments of the substrate, can lead to altered enzymatic 

pathways that carry profound physiological consequences. 

Methods 

Expression and Purification of CYP17A1 and 

Incorporation into Nanodiscs.  

A gene for full-length human CYP17A1 was synthesized (DNA 

2.0), including a C-terminal penta-histidine tag as well as 
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modifications to the first twenty-four 5′ bases as described by Imai et 

al.,41 and ligated into the pCWori+ vector. DH5α was cotransformed 

with the resultant plasmid, as well as chaperone plasmid pGro7 

containing the GroEL/ES chaperone system. Expression was then 

carried out using the method devised by Waterman and coworkers,42 

and purification was performed as documented previously.27 The 

resultant detergent-solubilized CYP17A1 was then inserted into 

nanodiscs with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

membrane used as described by Luthra et al.25  

Preparation of Samples for rR Spectroscopy.  

The rR samples contained 280 μM ND/CYP17A1 in 100 mM 

potassium phosphate (pH 7.4), 250 mM sodium chloride, 30% 

(vol/vol) distilled glycerol, 6.24 μM methyl viologen, and either 450 μM 

PREG or 400 μM OH-PREG. Deuterated samples were prepared by 

exhaustive exchange into identical buffer adjusted to pD 7.4 [electrode 

calibrated by method of Glasoe and Long43] prepared with 100% D2O 

and distilled glycerol-d3. Ferric samples were then contained in 5-mm-

OD NMR tubes (WG-5 ECONOMY; Wilmad) and de-aerated under 

argon for 5 min, followed by reduction under anaerobic conditions with 

a 1.5-fold molar excess of sodium dithionite. Each sample was then 

transferred to a dry ice-ethanol bath held at −15 °C, where it was 

cooled for 1 min. Oxy-ferrous complexes were formed by addition of 
16O2, 18O2, or 16O18O scrambled oxygen) for 10 s, followed by rapid 

freezing in liquid N2. Frozen samples containing oxy-ferrous CYP17A1 

were subsequently radiolytically reduced to the peroxo-state by a 4-

Mrad dose of gamma-rays in a Gammacell 200 Excel 60Co source while 

immersed in liquid nitrogen as described previously.44 

rR Measurements.  

Samples of irradiated oxy-ND/CYP17A1 were excited using a 

441.6-nm line provided by a He-Cd laser (IK Series He-Cd laser; 

Kimmon Koha Co.), whereas the samples annealed to 190 K were 

measured with 406.7- and 413.1-nm excitation lines from a Kr+ laser 

(Coherent Innova Sabre Ion Laser). The rR spectra of all samples were 

measured using a Spex 1269 spectrometer equipped with Spec-10 LN-

cooled detector (Princeton Instruments). The slit width was set at 150 
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μm, and the 1,200-g/mm grating was used; with this grating, the 

resultant spectral dispersion is 0.46 cm−1 per pixel. The laser power 

was kept at ∼1 mW or less to minimize photodissociation. Moreover, to 

avoid laser-induced heating and protein degradation, the samples were 

contained in spinning NMR tubes (5-mm outside diameter, WG-5 

ECONOMY; Wilmad). The 180° backscattering geometry was used for 

all measurements, and the laser beam was focused onto the sample 

using a cylindrical lens.45 The NMR tubes were positioned into a 

double-walled quartz low-temperature cell filled with liquid nitrogen. 

All measurements were done at 77 K, and total collection time was 

around 6 h for the irradiated samples and ∼8–9 h for the annealed 

samples. Spectra were calibrated with fenchone (Sigma–Aldrich) and 

processed with GRAMS/32 AI software (Galactic Industries). 

Preparation of Optical Samples and Collection of Optical 

Spectra.  

Methods of preparation and collection of optical samples 

containing P450 in the peroxo-state have been described in detail 

previously.24,44 Briefly, ND/CYP17A1 in 100 mM potassium phosphate 

(pH 7.4), 15% (vol/vol) glycerol, and 400 μM PREG or 17-OH PREG 

were anaerobically reduced with a 1.5-fold molar excess of sodium 

dithionite with the aid of methyl viologen at a 1:40 ratio of redox 

mediator to P450. Oxy-ferrous CYP17A1 was formed by rapid injection 

of this solution into 100 mM potassium phosphate (pH 7.4) buffer 

containing 67.5% (vol/vol) glycerol contained in a methacrylate 

cuvette and chilled to 243 K. After 25 s of vigorous mixing, the sample 

was rapidly cooled to 210 K, and then to 77 K at a rate of ∼4 K⋅min−1. 

The final concentration of ND/CYP17A1 and glycerol was ∼30 μM and 

60% (vol/vol), respectively. Samples were irradiated as described 

previously (Methods, Preparation of Samples for rR Spectroscopy), and 

then photobleached for 30 min under a 100-W tungsten-halogen lamp 

behind a 450-nm long-pass filter while immersed in liquid nitrogen. 

Spectra were collected in a home-built optical cryostat46 aligned within 

the beam path of a Cary 300 spectrophotometer as the temperature 

was increased linearly at a rate of ∼1 K⋅min−1. 
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Fig. S1. Model of CYP17A1 incorporated into a nanodisc. The cytochrome P450 molecule is shown as a green cartoon representation, with heme presented in
red sticks. The phospholipid bilayer is shown in orange with oxygen atoms in red, and the scaffold protein encompassing the lipid bilayer is shown as a blue
cartoon representation.
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Fig. S2. Low-frequency rR spectra of irradiated (IRR) oxy-ND/CYP17A1 samples with PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their
difference traces are indicated. Spectra were measured with a 442-nm excitation line at 77 K, and the total collection time of each spectrum was 6 h. The modes
associated with hydroperoxo-species exhibit a 5 to 3 cm−1 downshift in D2O buffer. The percentages of peroxo- and hydroperoxo- species are approximately
equal. The difference traces were obtained by subtracting the 18O2 spectrum from the 16O2 spectrum in H2O (Upper) or D2O (Lower) buffer. Then, the absolute
spectra and difference traces were corrected using linear functions in the regions where the oxygen-sensitive modes are present.
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Fig. S3. Low-frequency rR spectra of irradiated oxy-ND/CYP17A1 samples with 17OH-PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C), 18O2/D2O (D), and their
difference traces are indicated. Spectra were measured with a 442-nm excitation line at 77 K, and the total collection time of each spectrum was 6 h. There is
only one ν(O-O) mode and one ν(Fe-O) mode that do not have H/D sensitivity and are assigned to the peroxo-species.

Fig. S4. Low-frequency rR spectra of irradiated and annealed (Ann.) at 165 K oxy-ND/CYP17A1 samples with PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O (C),
18O2/D2O (D), and their difference traces. Spectra were measured with a 442-nm excitation line at 77 K, and the total collection time of each spectrum was
6 h. The intensity ratio of ν(O-O) of hydroperoxo-species to ν(O-O) of peroxo-species is ∼2:1.
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Fig. S5. Low-frequency rR spectra of irradiated and annealed at 165 K oxy-ND/CYP17A1 samples with 17OH-PREG, 16O2/H2O (A), 18O2/H2O (B), 16O2/D2O
(C ), 18O2/D2O (D), and their difference traces. Spectra were measured with a 442-nm excitation line at 77 K, with the total collection time of each spectrum
being 6 h. No new species were detected that could be assigned to either the acylperoxo- or hydroperoxo-form. The approximate loss of intensity of modes
associated with the Fe-O-O fragment is 40–50% as judged by comparison with the ν7 mode at 674 cm−1, which serves as an internal standard.
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Fig. S6. 16O2-
18O2 difference traces of oxy-ND/CYP17A1 samples with 17OH-PREG irradiated and annealed at 165 K in H2O buffer (A), in D2O buffer (B),

annealed at 190 K in H2O buffer (C), and in D2O buffer (D). Spectra were measured with a 413.1-nm excitation line at 77 K. The total collection time of each
spectrum was 6–8 h. The ν(O-O) modes of residual ferrous dioxygen adducts at 1,135 cm−1 and 1,070 cm−1 were used as internal standards to evaluate the
intensity increase of the new oxygen-sensitive species at around 790 cm−1.
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Fig. S7. rR spectra of irradiated and annealed at 190 K oxy-ND/CYP17A1 samples with PREG, 16O2/H2O (A), 18O2/H2O (B), and their difference traces. Spectra
were measured with a 406-nm excitation line at 77 K. The total collection time of each spectrum was 4 h. The spectra show only the presence of ν(O-O) modes
of the residual precursor dioxygen adducts. In contrast to the case with 17OH-PREG–bound samples (Fig. 5), which displayed a 791-cm−1 mode of the peroxo-
hemiacetal intermediate, and whose intensity was comparable to the intensity of the residual dioxygen adduct, there are no oxygen-sensitive modes observed
near 790 cm−1 in the difference trace.
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Fig. S8. rR spectra of irradiated and annealed at 190 K oxy-ND/CYP17A1 samples with 17OH-PREG, 16O2/H2O (A), 16O18O (B), and their difference traces. Spectra were
measured with a 406-nm excitation line at 77 K. The total collection time of each spectrum was 8 h. SC, scrambled oxygen.
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