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Abstract 

 

In an effort to probe the structure of a group Bb metallo-β-lactamase, Co(II)-substituted ImiS was prepared and 

characterized by electronic absorption, NMR, and EPR spectroscopies. ImiS containing 1 equiv of Co(II) (Co(II)1-

ImiS) was shown to be catalytically active. Electronic absorption studies of Co(II)1-ImiS revealed the presence of 

two distinct features:  (1) an intense sulfur to Co(II) ligand to metal charge transfer band and (2) less intense, 

Co(II) ligand field transitions that suggest 4-coordinate Co(II) in Co(II)1-ImiS. 1H NMR studies of Co(II)1-ImiS 

suggest that one histidine, one aspartic acid, and one cysteine coordinate the metal ion in Co(II)1-ImiS. The 

addition of a second Co(II) to Co(II)1-ImiS did not result in any additional solvent-exchangeable NMR resonances, 

strongly suggesting that the second Co(II) does not bind to a site with histidine ligands. EPR studies reveal that 

the metal ion in Co(II)1-ImiS is 4-coordinate and that the second Co(II) is 5/6 coordinate. Taken together, these 

data indicate that the catalytic site in ImiS is the consensus Zn2 site, in which Co(II) (and by extrapolation Zn(II)) is 

4-coordinate and bound by Cys221, His263, Asp120, and probably one solvent water molecule. These studies 

also show that the second, inhibitory metal ion does not bind to the consensus Zn1 site and that the metal ion 

binds at a site significantly removed from the active site. These results give the first structural information on 

metallo-β-lactamase ImiS and suggest that the second metal binding site in ImiS may be targeted for inhibitors. 

 

β-Lactamases are bacterial enzymes that hydrolyze β-lactam containing antibiotics and render the drugs 

ineffective. There are currently over 300 known β-lactamases, and several attempts have been made to classify 

these enzymes into 4 distinct groups based on molecular properties (1−6). Groups 1, 2, and 4 (or A, C, and D) are 

similar in that these enzymes utilize an active site serine as a nucleophile in the hydrolysis reaction. The 

remaining group (3 or B) is often called metallo-β-lactamases (MβL's)1 because the enzymes require 1−2 Zn(II) 

for full catalytic activity (2, 7−10). The Group B β-lactamases have been further categorized into 3 subgroups 

based on amino acid sequence identity and substrate affinity (2). The subgroup Ba β-lactamases share >23% 

sequence identity, exist as monomers, prefer penicillins as substrates, require 2 Zn(II) ions for full activity, and 

are represented by CcrA from Bacteroides fragilis (11) and β-lactamase II from Bacillus cereus (12). The subgroup 

Bb β-lactamases share 11% sequence identity with the Ba enzymes, prefer carbapenems as substrates, exist as a 

monomers, require only 1 Zn(II) for full catalytic activity, and are represented by CphA from Aeromonas 

hydrophila (13, 14) and ImiS from Aeromonas veronii bv. sobria (15). The subgroup Bc β-lactamases have only 9 



conserved amino acids, exist as tetramers, prefer penicillins and carbapenems as substrates, require 2 Zn(II) for 

full catalytic activity, and are represented by L1 from Stenotrophomonas maltophilia (16, 17) and FEZ-1 

from Fluoribacter (Legionella) gormanii (18). A similar grouping scheme (B1, B2, and B3) based on structural 

properties of the metallo-β-lactamases has recently been offered (19). Previous biochemical, kinetic, and 

inhibition studies have suggested significant structural and mechanistic differences among the different group B 

β-lactamases (6, 8, 20−32). This result suggests that one inhibitor may not be effective in treating infections 

caused by bacteria that produce a metallo-β-lactamase. To combat this problem, we are currently characterizing 

a metallo-β-lactamase from each of the group B subgroups (CcrA, ImiS, and L1) in an effort to identify common 

structural/mechanistic properties of the enzymes toward which a single inhibitor can be designed. One part of 

our approach is the use of rapid freeze quench methods in conjunction with EPR and EXAFS to probe the 

structure about the metal ions (Co(II)-substituted) during the early stages of the hydrolytic mechanism. 

While there is considerable information available on the subgroup Ba and Bc metallo-β-lactamases, such as X-

ray crystal structures (17, 33−35) and spectroscopic, mechanistic, (11, 12, 21, 29, 36−40), and computational 

studies (41−48), there is much less known about the structure and mechanism of any of the subgroup Bb 

enzymes. UV−vis and EXAFS spectroscopic studies have been reported on Co(II)-substituted CphA from A. 

hydrophila, and these studies suggested that the tightly bound Co(II) (Zn(II)) is coordinated by 2 histidines, 1 

cysteine, and 1 additional N/O ligand (14). By comparing the structures and amino acid sequences of the X-ray 

crystallographically characterized metallo-β-lactamases with the amino acid sequence of CphA, it is evident that 

the spectroscopically predicted metal binding site is unique among the metallo-β-lactamases and requires that 

ligands from the consensus Zn1 and Zn2 sites contribute ligands to one Co(II) in CphA. In order to probe the 

mechanism of a subgroup Bb metallo-β-lactamase using future rapid freeze quench (RFQ) spectroscopic studies, 

it is essential that the spectroscopic properties of the resting enzyme, the Co(II)-substituted form in this case, be 

characterized. This work describes our work on metallo-β-lactamase ImiS (15, 49), a subgroup Bb enzyme 

from A. veronii bv. sobria. 

Experimental Procedures 

Preparation of Co(II)-Substituted ImiS.  
The overexpression plasmid, pET26b-ImiS, was used to transform BL21(DE3) Escherichia coli cells (50). A 10 mL 

overnight culture of these cells in LB (Luria-Bertani) medium was used to inoculate 4 × 1 L of LB medium 

containing 25 μg/mL kanamycin and 29 μg/mL ZnSO4·7H2O. The cells were allowed to grow at 37 °C with shaking 

until the cells reached an optical density at 600 nm of 0.6−0.8. Protein production was induced with 1 mM 

isopropyl-β-d-thiogalactopyranoside (IPTG), and the cells were shaken at 37 °C for 3 h. The cells were collected 

by centrifugation (15 min at 9506g) and resuspended in 30 mL of 50 mM Tris, pH 7.0, containing 500 mM NaCl. 

The cells were ruptured by two passages through a French press at 16000 lb/in.2, and the cell debris was 

separated by centrifugation (30 min at 23419g). The cleared supernatant was dialyzed versus 50 mM Tris, pH 

7.0, overnight at 4 °C, centrifuged to remove insoluble matter, and loaded onto an equilibrated Q-Sepharose 

column (1.5 by 12 cm with 25 mL bed volume). Bound proteins were eluted with a 0 to 500 mM NaCl gradient in 

50 mM Tris, pH 7.0, at 2 mL/min. Fractions (8 mL) containing ImiS were pooled and concentrated with an 

Amicon ultrafiltration cell equipped with a YM-10 membrane. Protein purity was ascertained by sodium dodecyl 

sulfate (SDS) polyacrylamide gel electrophoresis. 

Apo-ImiS was prepared by four dialysis steps of recombinant ImiS (60−100 mg) against a 300-fold excess of 15 

mM HEPES (4-(2-hydroxymethyl)-1-piperazineethanesulfonic acid), pH 6.5, containing 10 mM EDTA (12 h each 

dialysis at 4 °C). The EDTA was removed completely by three dialysis steps against the same buffer containing 

150 mM sodium chloride, followed by passage through a 1.5 × 68-cm column of Sephadex G-25 (bed volume 120 

mL), equilibrated with 15 mM HEPES, pH 6.5, containing 100 mM NaCl (51). The column flow rate was adjusted 



to 1 mL/min, and 6 mL of fractions were collected and monitored by absorbance at 280 nm. Column fractions 

containing ImiS were pooled and concentrated using ultrafiltration, as described above. ICP-AES was used to 

demonstrate that the Zn(II) had been removed from the enzyme samples. 

To prepare Co(II)-substituted ImiS, 1−2 molar equiv of CoCl2 were added directly to solutions of apo-ImiS, and 

the enzyme samples turned blue in color within 1 min. The samples were incubated on ice for 1 h, dialyzed 

versus 2 × 1 L of freshly chelexed 50 mM HEPES, pH 6.5, at 4 °C over 6 h, concentrated, and then used in 

spectroscopic studies. The activity and blue color of Co(II)-ImiS persisted at least for one month at 4 °C. 1H NMR 

spectra were used to demonstrate if the EDTA had been completely removed from the samples (51). 

Steady-State Kinetics.  
Steady-state kinetic studies were carried out in 50 mM Tris buffer, pH 7.0, on a Hewlett-Packard 5480A UV−vis 

spectrophotometer, using an Isotemp circulator to maintain the reactions at 25 °C. The errors are reported as 

standard deviations (σn-1) from multiple kinetic trials (16). 

Electronic Absorption Spectra of Co(II)-Substituted ImiS.  
Electronic absorption spectra were obtained on a Hewlett-Packard 5480A spectrophotometer. Background 

spectra of apo-ImiS were used to generate difference spectra of the Co(II)-substituted samples. 

Circular Dichroism Spectroscopy.  
Circular dichroism samples were prepared by dialyzing the purified enzyme samples versus 3 × 2 L of 5 mM 

phosphate buffer, pH 7.0, over 6 h. The samples were diluted with final dialysis buffer to ∼75 μg/mL. A JASCO J-

810 CD spectropolarimeter operating at 25 °C was used to collect CD spectra (16, 24). 

NMR Spectra of Co(II)-Substituted ImiS. 
NMR spectra were collected on a Bruker Avance 500 NMR spectrometer operating at 500.13 MHz, 298 K and a 

magnetic field of 11.7 T. The spectra were obtained by using a modified presaturation pulse sequence (zgpr) for 

water suppression and the following parameters:  recycle delay (AQ), 41 ms; sweep width, 400 ppm; receiver 

gain, 128; line broadening, 80 Hz. The samples for NMR studies were made by concentrating apo-ImiS using an 

Amicon equipped with a YM-10 membrane or a Centricon-10 to final concentrations of ca. 1.1 mM and adding 

corresponding equivalent CoCl2. The sample volumes were approximately 0.4 mL. Protein chemical shifts were 

calibrated by assigning the H2O signal the value of 4.70 ppm at 298 K. 

EPR Spectra of Co(II)-Substituted ImiS.  
EPR spectra were recorded at 9.6330 ± 0.0005 GHz using a Bruker EleXsys E-500-10W/12 EPR spectrometer 

equipped with a SuperX 90 dB X-band microwave bridge, an ER-4116DM dual mode TE102/TE012 resonant cavity, 

an Oxford Instruments ESR900 helium flow cryostat, and an Oxford Instruments ITC502 temperature controller. 

EPR simulations were carried out by matrix diagonalization using XSophe v.1.1.2 (Bruker Biospin GmbH (52)). 

Parameters were fitted to the spin Hamltonian H = βg·H·S + S·D·S + S·A·I, explicitly assuming S = 3/2 and using 

experimentally measured temperatures (±0.1 K) and microwave frequencies (±0.00001 GHz). Under the 

spin Hamiltonian formalism employed by XSophe, D > 0 corresponds to an MS = |±1/2〉 ground state and D < 0 

corresponds to an MS = |±3/2〉 ground state. A g-strain line width model was employed and, where 59Co 

hyperfine structure was observed, A-strain was also included (53). 

Rapid passage and/or saturation effects are often overlooked in EPR studies of high-spin Co(II). These effects can 

be responsible for either relatively minor degrees of misinterpretation of the signals, such as inaccurate spin 

Hamiltonian parameters, or major misinterpretation, such as the incorrect assignment of the Kramers doublet in 

which the transition occurs. The latter is a consequence of the absorption-like appearance of transitions under 



rapid passage conditions that, under ideal conditions, are actually derivative-shaped features, and can lead to 

incorrect geometrical interpretation of the system. In the present study, the deconvolution of individual species 

and the use of computer simulation were essential in facilitating the identification of conditions under which 

saturation and/or rapid passage effects were negligible. For each species, at least one set of conditions was 

identified and employed under which that species exhibited (i) square-root (microwave power) dependence and 

(ii) equal integrated intensity above and below the baseline (for MS = |±1/2〉 signals). Extensive studies of the 

microwave power, temperature, and field modulation depenedencies of some signals were carried out. Rapid 

passage effects on some of the signals were characterized. These studies revealed significant differences in 

relaxation behavior between some signals but provided little additional structural information on the major 

species, and detailed consideration of these data was thus deemed outside the scope of the present work. 

Results 

Characteristics of Apo-ImiS and Co(II)-Substituted ImiS.  
Apo-ImiS was found to contain < 0.05 equiv of Zn(II) and exhibit a steady-state kcat of <0.31 s-1, less than 0.1% of 

native ImiS, when using imipenem as substrate. CD spectra showed that apo-ImiS maintains structural features 

consistent with those of the as-isolated ImiS (50):  19% α-helix, 47% β-character, and 33% unstructured (data not 

shown). When 1 equiv of Co(II) was added to apo-ImiS (Co(II)1-ImiS), the resulting enzyme turned light blue in 

color. Steady-state kinetic studies revealed that Co(II)1-ImiS is catalytically active with a kcat of 255 ± 16 s-1 and 

a KM of 99 ± 12 μM, when using imipenem as the substrate. Steady-state kinetic studies on Co(II)2-ImiS revealed 

a 5-fold reduction in kcat and no change in Km, which is in excellent agreement with previous studies on CphA (14, 

54). These numbers are similar to those previously reported on the Zn(II)1-ImiS (kcat = 315 s-1 and Km = 46 μM) 

(50). CD spectra (not shown) were identical to those of as-isolated Zn(II)1-ImiS (50) and apo-ImiS. 

Electronic Absorption Spectra of Co(II)-Substituted ImiS.  
Electronic absorption spectra of ImiS containing between 1 and 3 equiv of Co(II) are shown in Figure 1. Upon 

addition of up to 1 equiv Co(II), an absorption band that was centered at 340 nm and that exhibited ε340 = 950 M-

1 cm-1 (per ImiS) was observed. Less intense features were also evident, with ε550 = 306 M-1 cm-1 and ε600 = 392 M-

1 cm-1. Upon further addition of up to 2 equiv Co(II), the only change was a slight increase in the molar 

absorptivity of the lower energy absorption bands to ε550 = 367 M-1 cm-1 and ε600 = 416 M-1 cm-1. 



 
Figure 1 Electronic spectra of ImiS containing Co(II). (A) Difference spectra for ImiS containing 1 equiv of Co(II) 
(bottom curve), 2 equiv of Co(II) (middle curve), and 3 equiv of Co(II) (top curve). (B) Spectra for ImiS containing 
1 equiv of Co(II) (bottom curve) and 2 equiv of Co(II) (top curve). Difference spectra were generated by 
subtracting the spectrum of apo-ImiS from the experimental spectra. 
 

1H NMR Spectra of Co(II)-Substituted ImiS.  
The 1H NMR spectrum of Co(II)1-ImiS reveals three relatively sharp proton resonances between 10 and 80 ppm 

(Figure 2) and one broad resonance at 175 ppm (Figure 2, inset). A spectrum of the same sample in 90% D2O 

revealed that only the signal at 63 ppm is solvent-exchangeable (see figure in Supporting Information). 

Therefore, we assign this resonance to an NH proton of a Co(II)-bound histidine (55). The resonance at 19 ppm is 

in the range corresponding to β-CH2 protons of a Co(II)-bound Asp (56, 57). The narrow signal at 13 ppm is 

tentatively assigned to β-CH2 protons of the Co(II)-bound histidine. Similar assignments were reported on Co(II)-

substituted alcohol dehydrogenase (58) and Co(II)-substituted carbonic anhydrase (59). The ratio of NMR peak 

integrations of the peaks at 63 and 19 ppm is 1:2, respectively, for Co(II)1-ImiS. 



 
Figure 2 500 MHz, 1H NMR spectra of Co(II)-substituted ImiS. (A) Spectrum of 1.1 mM ImiS containing 1 equiv of 
Co(II). (B) Spectrum of 1.1 mM ImiS containing 2 equiv of Co(II). (C) Spectrum of 1.1 mM ImiS containing 10 
equiv of Co(II). Inset:  Peak at 175 ppm in spectrum of 1.1 mM ImiS containing 1 equiv of Co(II). The buffer for 
these samples was 50 mM Hepes, pH 7.0, in 10% D2O. The experimental parameters were as follows:  
temperature, 298 K; FID resolution, 6.10 Hz; acquisition time, 41 ms; sweep width, 400 ppm; receiver gain, 128; 
line broadening, 80 Hz. 
 

NMR spectra were also collected for Co(II)-substituted ImiS samples containing 2, 4, and 10 equiv of Co(II). In the 

spectrum for Co(II)2-ImiS, no other proton resonances were observed in the region of 10−100 ppm, suggesting 

that the second equivalent of Co(II) does not coordinate His residues. Therefore, NMR spectra of Co(II)-

substituted ImiS containing 4 and 10 equiv of Co(II) were collected, and several new peaks in the region of 10−70 

ppm were observed. However, none of these newly observed resonances were solvent-exchangeable. 

EPR Spectra of Co(II)-Substituted ImiS.  
EPR spectra of Co(II)-substituted ImiS were recorded under various conditions, and a range of spectra from 

which all of the EPR-detectable species of Co(II)-substituted ImiS could be extracted is presented in Figure 3. 

Each of these experimental EPR spectra could be simulated as being due to either one or two distinct chemical 

species. The EPR signals from these distinct chemical species were isolated from the experimentally observed 

spectra shown in Figure 3 by difference techniques, and the EPR signals due to these species and their 

simulations are shown in Figure 4. 



 
Figure 3 EPR spectra of ImiS upon addition of Co(II). EPR spectra of ImiS were recorded after incubation with 0.5 
(A and C), 1.0 (E and G), and 2.0 (I and K) equiv of Co(II). Spectra were recorded using 1.06 mT, 100 kHz field 
modulation with the following temperatures and microwave powers:  5 K, 63 mW (A); 12 K, 2 mW (C); 5 K, 160 
mW (E and I); 16 K, 0.5 mW (G and K). Traces B, D, F, H, J, and L are computer simulations of spectra A, C, E, G, I, 
and K, respectively. The simulations B, D, F, H, and J are composed of admixtures of individual species shown in 
Figure 4, and the EPR parameters are given in the caption to Figure 4. Trace L is a simulation of K assuming a 
single species; the simulation is reproduced (2F) and the parameters given in Figure 4 for clarity. Trace 3B is an 
admixture of traces 4B and 4J; 4J is inverted. Trace 3D is an admixture of traces 4D (25%) and 4F (75%). Traces 
3F and 3J are admixtures of traces 4B and 4H; 3F contains twice the relative amount of 4B than does 3J. Trace 
3H is an admixture of traces 4B and 4F. 
 



 
Figure 4 Individual EPR-detectable species of ImiS. Traces A, C, E, and G are EPR signals proposed to be due to 
single chemical species and were obtained by difference from the experimentally observed spectrum shown in 
Figure 3E. Traces B, D, F, and H are computer simulations of A, C, E, and G, respectively, and were obtained 
assuming a single magnetic species in each case. Traces I and J were generated by integration of traces 3K and 
3L, respectively. Species A was obtained by subtraction of I (inverted) from trace 3A. Trace B is a simulation 

assuming S = 3/2, MS = |±3/2〉, geff(z) = 6.2, corresponding to 2.27 ≥ greal(z) ≥ 2.07 for |D| ≫ |gβBS|. Species C was 

obtained by subtraction of trace 3K from 3C. Simulation D assumed S = 3/2, MS = |±1/2〉, g⊥ = 2.50, g|| = 2.44, D = 
50 cm-1, E/D = 0.27, Az(59Co) = 8.6 × 10-3 cm-1. Species E was generated by subtraction of A from trace 3K. 

Simulation F assumed S = 3/2, MS = |±1/2〉, g⊥ = 2.22, g|| = 2.27, D = 50 cm-1, E/D = 0.05. Trace G was generated 

by subtraction of A from trace 3I. Simulation H assumed S = 3/2, MS = |±1/2〉, g⊥ = 2.32, g|| = 2.50, D = 50 cm-

1, E/D = 0. 
 

EPR spectra of Co(II)0.5-ImiS were highly dependent upon the recording conditions. At low temperature and high 

microwave power (5 K, 63 mW), a spectrum (Figure 3A) was observed that exhibited a sharp spike at 111.6 mT 

(geff = 6.2) and an underlying broad resonance. Given the EPR conditions employed and given the clear 

dissimilarity of the broad signal to a well-formed, field-modulated, phase-sensitive-detected EPR signal, an 

attempt at quantitation of these signals was not appropriate. At higher temperature and lower microwave 

power (i.e. nonsaturating conditions:  12 K, 2 mW), a complex signal (Figure 3C) was observed that was 

deconvoluted into two distinct species. A rhombic species with some resolved hyperfine splitting (Figure 4C) was 

simulated (Figure 4D) with spin Hamiltonian parameters of MS = |±1/2〉, g⊥ = 2.50, g|| = 2.44, D ≫ gβBS, E/D = 

0.27, and Az(59Co) = 8.6 × 10-3 cm-1. This species accounted for 25% of the total spins observable under these 

conditions, corresponding to only 5% of the added Co(II). A second, axial component, corresponding to 75% of 

the observable spins but only 15% of the added Co(II), was simulated assuming MS = |±1/2〉, g⊥ = 2.22, g|| = 



2.27, D ≫ gβBS, and E/D = 0.05 (Figure 4F). The composite simulation (Figure 3D) reproduced the experimental 

spectrum (Figure 3C) well, but this spectrum accounted for only 20% of the added Co(II). If the very sharp signal 

detected at low temperature and high power represents the balance of Co(II), then this signal may account for 

80% of the added Co(II). 

Upon incubation of ImiS with 1 equiv of Co(II), a spectrum (Figure 3E) was observed at 5 K and 160 mW that still 

contained the sharp signal at geff = 6.2, which was observed with Co(II)0.5-ImiS. However, instead of, or in 

addition to, the broad trough-like feature observed in the high power, low temperature spectrum of Co(II)0.5-

ImiS, a more intense axial feature was evident. At 16 K and 0.5 mW, the sharp signal was only evident as a 

shoulder on the now unsaturated and well-resolved axial signal (Figure 3G). Taken together, the spectra 3E and 

3G show clearly different relaxation behaviors for the two axial species. The very sharp signal is barely 

observable under conditions that are nonsaturating for the axial signal. However, the axial signal did not exhibit 

the distortion observed in spectrum 3A, and integration, corrected for temperature and (power)1/2, indicated 

that the axial signal in 3E exhibits 78% of the expected intensity for an unsaturated signal. The very sharp signal 

is very difficult to quantify as the true positions of the other two resonance positions are unknown. However, 

simulations with various parameters produce spectra that, when doubly integrated, suggest that the sharp 

signal could account for up to 85% of the spin density. In support of this estimate, quantitation of the axial 

component recorded under nonsaturating conditions (Figure 4E) indicates that it accounts for only 10% of the 

added Co(II). Thus, the very sharp signal is the predominant paramagnetic species in terms of number of spins. 

These observations serve to highlight the importance of recording spectra under multiple conditions and to 

illustrate that the appearance of spectra can be deceptive when one is considering the spin concentrations of 

contributory species. 

Upon further addition of Co(II) up to 2 equiv, the axial component, evident in the spectra of Co(II)1-ImiS (Figures 

3E and 3G), exhibited a marked increase in intensity, corresponding to the additional 1 equiv of added Co(II). The 

axial component, which was observed both at high power, low temperature (160 mW, 5 K) and at low power, 

high temperature (0.5 mW, 16 K) conditions, was isolated by difference methods and simulated. Under 

nonsaturating conditions, the signal (Figure 4E) was simulated (Figure 4F) assuming MS = |±1/2〉, g⊥ = 2.22, g|| = 

2.27, D ≫ gβBS, and E/D = 0.05. At 5 K and 160 mW, the signal (Figure 4G) was partially saturated, which was 

evident from the higher area below the baseline than above it. In addition, some of the spectral features had 

shifted slightly, resulting in different parameters for the simulation of spectra recorded under these conditions 

(Figure 4H). The parameters from the simulation of the axial components of the spectra for Co(II)1- and Co(II)2-

ImiS recorded at 5 K and 160 mW do not represent accurate spin Hamiltonian parameters, though the 

simulation was useful in constructing the simulations (Figure 3F and 3J) of the experimental spectra (Figure 3E 

and 3I). 

Discussion 
Structural studies on Zn(II)-containing metalloproteins are limited by the fact that Zn(II) is diamagnetic, and 

therefore, metal binding sites containing Zn(II) cannot be characterized by common optical and magnetic 

techniques including electronic absorption spectrophotometry, magnetic circular dichroism, paramagnetic 1H 

NMR, and EPR spectroscopies. Fortunately, spectroscopically active Co(II) can often replace Zn(II) in these 

proteins to yield a catalytically active enzyme with a structurally homologous active metal center. Co(II)-

substituted ImiS was prepared by the direct addition method (60), and the resulting enzyme exhibited significant 

catalytic activity and a similar secondary structure as the native enzyme. UV−vis, paramagnetic 1H NMR, and EPR 

studies were conducted on Co(II)-substituted ImiS in an effort to probe the electronic structure of the metal 

binding site. 



Electronic absorption spectrophotometry on Co(II)-substituted ImiS revealed two distinct sets of absorption 

bands. The intense feature at 340 nm is consistent with a Cys→Co(II) ligand-to-metal charge transfer (LMCT) as 

has been seen in other Co(II) proteins (12, 36, 38), including Co(II)-CphA (ε325 = 530 M-1 cm-1 at pH 7.5) (61). This 

result strongly suggests that the first metal binding site for ImiS contains a cysteine ligand. The broad features 

between 500 and 650 nm are attributable to ligand field transitions (Figure 1B). Often ligand field transitions of 

high-spin Co(II) can be correlated with the coordination number of the metal ion. The intensities of four-

coordinate (tetrahedral) Co(II) are typically >300 M-1 cm-1, of five-coordinate Co(II) centers are ca. 100−150 M-

1 cm-1, and of six-coordinate (octahedral) Co(II) centers are <30 M-1 cm-1 (62). The coordination number 

(geometry)/intensities are due to increased pd orbital mixing of metal orbitals and increased Laporte-character 

in the transitions. In the spectrum of Co(II)1-ImiS, the extinction coefficients of the ligand field transitions are 

>300 M-1 cm-1. These data strongly suggest tetrahedral coordination of Co(II) in Co(II)1-ImiS (62). The addition of 

a second equivalent of Co(II) results in small increases in the intensities of the ligand field transitions:  Δε550 = 61 

M-1 cm-1 and Δε600 = 24 M-1 cm-1 (per ImiS). These increases are consistent with the second equivalent of Co(II) 

being five- or six-coordinate. 

Paramagnetic 1H NMR spectroscopy has been used previously to probe the metal binding sites of Co(II)-

substituted enzymes, in particular those with histidine ligands (59, 63−65). The NMR spectrum of Co(II)1-ImiS 

revealed three sharp signals between 19 and 70 ppm and a broad peak at 175 ppm. The peak at 175 ppm can be 

assigned to β-CH2 protons on a Co(II)-coordinated cysteine (12, 57, 66). This assignment strongly supports the 

prediction, from optical absorption data, of cysteine-derived sulfur ligation of Co(II) in Co(II)1-ImiS. These data 

further suggest that the first Co(II) binds to the consensus Zn2 binding site in ImiS that was identified by 

sequence homology with X-ray crystallographically characterized β-lactamases. The observation of only one 

solvent-exchangeable resonance (63 ppm), which is assigned to a histidine ligand (probably His263), supports 

this proposal. In addition, it is likely that the peak at 19 ppm results from methylene protons on a Co(II)-

coordinated Asp residue (Asp120). Thus, both NMR and spectrophotometric studies strongly suggest that the 

catalytic site in Co(II)-substituted ImiS is the Zn2 site. 

A second “consensus” site that was identified in ImiS consists of an asparagine and two histidine residues, and is 

termed the Zn1 site. However, the NMR spectra of ImiS with more than two or more equivalents of Co(II) 

provide no evidence for binding of Co(II) to the Zn1 site in ImiS; two solvent-exchangeable peaks that would have 

been expected to indicate binding to the Zn1 site were not observed. Interestingly, kinetic studies have 

demonstrated that a second equivalent of Zn(II) is a noncompetitive inhibitor of both ImiS (50) and the related 

enzyme CphA (13). These observations are consistent with binding of the second equivalent of Zn(II) to a site 

distinct from the active site, and support the indication from NMR data that the consensus Zn1 site is not 

actually the binding site for a second metal ion in ImiS. 

EPR spectroscopy unambiguously identified two distinct species of Co(II) associated with ImiS. The first species, 

with geff(z) = 6.2 (Figure 4A), can be readily assigned to MS = |±3/2〉 and thus to tetrahedral Co(II). This 

tetrahedral species is the predominant species in Co(II)0.5-ImiS, and likely accounts for 80% of the added Co(II). 

The signal increases in intensity upon addition of 1.0 equiv of Co(II), accounting for up to 90% of the added 

Co(II), and no further increase in the intensity can be observed in the spectrum of Co(II)2-ImiS. This result is 

entirely consistent with the prediction of tetrahedral Co(II) in the first metal binding site. Real g values and 

values for E/D could not be accurately determined (2.27 ≥ greal(z) ≥ 2.07 for |D| ≫ |gβBS|), and further structural 

information on the basis of electronic symmetry is not forthcoming. Nevertheless, both the form and the 

relaxation properties of the signal bear a striking resemblance to those from the Co(II)-substituted 

aminopeptidase from Vibrio proteolyticus (reclassified from Aeromonas proteolytica) in complexation with thiol-

containing inhibitors (66, 67), and these observations provide some support for the proposal, from optical and 

NMR spectroscopies, that the tetrahedral site provides a sulfur ligand to the metal ion. 



The second species that is clearly and quantitatively associated with ImiS is the axial signal with MS = |±1/2〉

, g⊥ = 2.22, g|| = 2.27, D = 50 cm-1, and E/D = 0.05. This signal is distinguishable by its resistance to saturation 

from the axial signal from Co(II)0.5-ImiS and indeed is undetectable in the spectrum of Co(II)0.5-ImiS. The signal 

accounts for only 0.1 equiv of Co(II) in the spectrum of Co(II)1-ImiS but accounts for 1 equiv of Co(II) in the 

spectrum of Co(II)2-ImiS. The EPR data concur with the electronic absorption spectra in indicating either 5-fold or 

6-fold coordination of this Co(II) ion, with no sulfur coordination. 

It is noteworthy that computer simulation of the spectrum of Co(II)2-ImiS indicates that the very sharp signal is 

still exhibited, and at the same intensity at which it is present in the spectrum of Co(II)1-ImiS. The temperature 

dependence of this signal is indistinguishable in Co(II)1-ImiS and Co(II)2-ImiS. Of further note, the axial 

component of Co(II)2-ImiS also accounts for 1 equiv of Co(II). The EPR data, taken together, clearly show that 

ImiS initially binds 1 equiv of Co(II) in a tetrahedral site, with 80−90% selectivity, and the data are strongly 

supported by electronic absorption spectrophotometry. EPR data are consistent with this Co(II) ion possessing a 

sulfur ligand, in support of the more definitive electronic absorption and NMR data. Upon saturation of one 

binding site with 1 equiv of Co(II), ImiS binds a second, five- or six-coordinate Co(II) ion in a distinct site. The two 

Co(II) ions continue to exhibit EPR signals with line shapes, intensities, and relaxation properties consistent with 

their being magnetically isolated, mononuclear Co(II) signals; there is no evidence for any change in the 

properties of the very sharp signal, due to the first Co(II) ion, upon the binding of the second Co(II). The signal 

due to the second Co(II) is readily quantitated and accounts for 1 equiv of Co(II). Matrix diagonalization 

simulations (not shown) of interactions of the two Co(II) ions place a lower limit of 7 Å on the distance between 

the two Co(II) ions and an upper limit of 0.02 cm-1 for any isotropic exchange coupling. Thus, the two Co(II) 

binding sites are distinct in terms of geometry and binding affinity, and they are physically separated from each 

other, i.e. they do not constitute a dinuclear site. 

The assignment of the EPR signals that are relevant to the structure and function of ImiS is essentially 

straightforward, following directly from the deconvolution, characterization, and quantitation of the distinct 

species that make up the experimental spectra. However, this may not be immediately obvious from the 

experimental data; other minor species were observed that complicated the EPR spectra. In order to 

characterize, quantitate, and ultimately rule out these species as being relevant to the structure and function of 

ImiS, these signals were analyzed in a manner analogous to that employed for the major signals. One species, 

clearly identified in Co(II)0.5-ImiS and corresponding to 0.025 equiv of Co(II), exhibited the spin Hamiltonian 

parameters:  MS = |±1/2〉, g⊥ = 2.50, g|| = 2.44, A(59Co) = 8.6 × 10-3 cm-1, and E/D = 0.27 with D ≫ gβBS. The MS = 

|±1/2〉 manifold corresponds to either five- or six-coordinate Co(II), and the high value of E/D and the low g-

strain, indicated by the resolved 59Co hyperfine lines, are both indicative of a five- or six-coordinated Co(II) ion, 

highly distorted from ideal octahedral geometry (68). This signal accounted for only a very small amount of the 

Co(II) in Co(II)0.5-ImiS and could not be detected at all in the spectra of Co(II)1-ImiS or Co(II)2-ImiS; its origin is 

unclear, and it was not investigated further. 

The other minor species that was observed, again only visible in the spectrum of Co(II)0.5-ImiS, was almost 

indistinguishable from the axial component of Co(II)2-ImiS when recorded under nonsaturating conditions. The 

signal accounted for only 0.075 equiv of Co(II) in the spectrum of Co(II)0.5-ImiS. Despite the similarity to the well-

characterized axial component of Co(II)2-ImiS, this axial signal from Co(II)0.5-ImiS exhibited relaxation behavior 

very different from that from Co(II)2-ImiS. Whereas the form of the predominant axial signal from Co(II)2-ImiS 

(also visible in Co(II)1-ImiS, though accounting for only 0.1 equiv of Co(II)) was only slightly affected by low 

temperatures and high powers, and exhibited essentially Curie law temperature dependence at moderate 

microwave powers, the axial signal from Co(II)0.5-ImiS exhibited marked rapid-passage effects at low 

temperatures. There was no firm evidence for the presence of this signal in the spectra of Co(II)1-ImiS or Co(II)2-



ImiS, and no investigation of its origin was undertaken in view of the very small amount of Co(II) that the signal 

represents. 

The spectroscopic studies reported herein strongly suggest that the catalytic, tight-binding site in ImiS is the 

consensus Zn2 site. By comparing the sequences of other metallo-β-lactamases, we predict that this metal 

binding site is made up of Cys221, His263, and Asp120 and that there is one solvent water molecule bound 

(Figure 5). This site differs from that previously predicted by spectroscopic studies for the similar subgroup Bb 

metallo-β-lactamase CphA (14). This work does, however, support recent mutagenesis studies on CphA that 

suggested that Cys221 is a metal binding ligand to Zn1 (69). In addition, a recent crystal structure of CphA (70), 

reported during the time that this present manuscript was reviewed, shows that Zn(II) binds to Cys221, His263, 

and Asp120, which is the exact site predicted by our spectroscopic studies. It is unclear why the previous 

spectroscopic studies on CphA (14) predicted a different metal binding site; however, it is possible that the 

freeze-drying of the CphA samples used in the EXAFS studies may have affected the structure of the enzyme. 

 
Figure 5 Proposed metal binding sites in ImiS. 
 

The identification of the true metal binding site in the subgroup Bb enzymes is important for future inhibitor 

design efforts. It is not clear whether the Zn2 site is the catalytic site in the other metallo-β-lactamases; however, 

β-lactamase II has been shown to be catalytically active with metal bound in the Zn1 site. These results offer 

insight into how metallo-β-lactamases have evolved to be active as mononuclear and dinuclear Zn(II)-containing 

enzymes. These studies also demonstrate that the second, inhibitory metal binding site in ImiS (and probably 

CphA) is not the consensus Zn1 site, in contrast to previous work (69). This result suggests that there is a remote 

binding site in ImiS that can affect the activity of the enzyme; it is conceivable that this binding site could be 

targeted for inhibitors. 

Conclusions 
ImiS is a metallo-β-lactamase that contains two amino acid sequence motifs that appear to code for adjacent 

metal binding sites, Zn1 and Zn2. ImiS binds up to 2 equiv of Zn(II) or Co(II) but is maximally active with only 1 



equiv of metal ion. EPR, electronic absorption, and NMR spectroscopies show that the first metal binds to a site 

that furnishes a tetrahedral coordination sphere that includes a cysteine-derived sulfur ligand and a histidine 

side chain. The Zn2 site contains both a catalytically essential cysteine residue and a histidine residue and it is, 

therefore, proposed that the Zn2 site binds the first equivalent of added metal ion and constitutes the 

hydrolytically active site of ImiS. The Zn1 site contains an asparagine and two histidine residues, and is adjacent 

to the Zn2 site. However, NMR studies do not detect any histidine coordination to a second equivalent of added 

Co(II). The addition of a second equivalent of metal ion competitively inhibits ImiS, suggesting a binding site 

remote from Zn2, and EPR indicates that a second Co(II) ion binds in a five- or six-coordinate site, and is at least 7 

Å distant from the first Co(II) ion. Thus, the Zn1 site appears to have no catalytic or metal-binding role in ImiS, 

whereas Zn2 binds the hydrolytic metal ion, and a third, as yet uncharacterized site binds metal ions with a lower 

affinity than Zn2 with concomitant inhibition of ImiS. 
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