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Abstract: Arterial spin labeling techniques can yield quantitative measures of perfusion by 

fitting a kinetic model to difference images (tagged-control). Because of the noisy nature of the 

difference images investigators typically average a large number of tagged versus control 

difference measurements over long periods of time. This averaging requires that the perfusion 

signal be at a steady state and not at the transitions between active and baseline states in order 

to quantitatively estimate activation induced perfusion. This can be an impediment for functional 

magnetic resonance imaging task experiments. In this work, we introduce a general linear model 

(GLM) that specifies Blood Oxygenation Level Dependent (BOLD) effects and arterial spin 

labeling modulation effects and translate them into meaningful, quantitative measures of 

perfusion by using standard tracer kinetic models. We show that there is a strong association 

between the perfusion values using our GLM method and the traditional subtraction method, but 

that our GLM method is more robust to noise.  

 

1. Introduction  

Arterial spin labeling (ASL) techniques can yield quantitative measures of perfusion by 

fitting a kinetic model to tagged versus control difference images. The noisy nature of the 

difference images forces investigators to average a large number of tagged versus control 

difference measurements over long periods of time. This averaging requires that the perfusion 

signal be at a steady state and not at the transitions between active and baseline states in order 

to quantitatively estimate activation induced perfusion. While this is not an impediment for 

studies of baseline brain function, it limits the scope of functional magnetic resonance imaging 

(fMRI) task experiments to baseline perfusion measurements or long block designs [1–7].To 

make matters worse, the inherently low temporal resolution of ASL signals makes this approach 

impractical, as few data points are available at each condition. Another challenge to 

quantification of perfusion from ASL time series using kinetic models — for example, see Refs. 

[8–10] — arises because the noise in the input images accumulates and becomes amplified by 

the image operations. Again, while this is not so problematic for computation of a baseline 

perfusion image obtained from a large number of averages, it makes quantification of dynamic 
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changes in perfusion time series quite challenging. It is highly desirable to measure the change 

in perfusion due to an effect of interest in a wide range of activation paradigms including blocked 

and event-related designs. It is indeed technically possible to collect event-related ASL data 

[11–13] but, to our knowledge, there are no cognitive studies utilizing quantitative ASL that 

involve event-related designs, or larger design matrices that account for more than two effects of 

interest.  

In this work, we introduce a different solution to this problem: to estimate the parameters 

of a general linear model (GLM) that specifies Blood Oxygenation Level Dependent (BOLD) 

effects and ASL modulation effects and translate them into meaningful, quantitative measures of 

perfusion by using standard tracer kinetic models. Indeed, Liu et al. introduced an elegant signal 

processing model that captured BOLD and perfusion effects simultaneously in ASL data and the 

consequences of differencing those data [14]. Mumford et al. showed that Generalized Least 

Squares estimation yielded optimally efficient parameter estimates from unsubtracted ASL data 

for the purpose of statistical mapping [15] and, similarly, Woolrich et al. used a Bayesian 

approach to make statistical inferences on significance of perfusion and T�
� effects from 

dual-echo ASL data [16]. While these parameter estimates of ASL time series data are being 

used to calculate statistical measures of significance, they are not utilized to their full extent, as 

they contain valuable information about perfusion. The method presented here takes the next 

step: physiologically meaningful quantification of those parameter estimates. This method is 

based on the simple realization that the difference images used in ASL quantitative models have 

a direct relationship to the parameter estimates in general linear model estimation.  

 

2. Theory  

Let us consider an ASL fMRI experiment with a baseline condition and a single activation 

condition with tag and control ASL images acquired in each. One such experiment can be 

characterized by a linear model, as previously described [15]. For example, let �� be the time 

course (a vector) of image intensity at a particular voxel obtained from an ASL experiment. In Fig. 

1 are the regressors of a simple ASL design matrix representing the linear model  

 
�� � �� 	 �
�
� 	 ����� 	 �
�
� 	 ��                                                                                                                   �1�  

 
for time � � 1, … , �. The first regressor, the baseline vector ��� � 1 and its coefficient parameter, 

the scalar ��, indicate the baseline signal, and can be interpreted as a measure of spin density. 

The second regressor �
� describes the baseline difference between control and tagged images 
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�ΔM� and thus its amplitude, �
, is indicative of baseline perfusion. The third regressor ��� with 

its regression coefficient �� describes differences between control and tagged images �ΔM� 

due to activation, and the fourth regressor �
� with its regression coefficient �
 describes the 

BOLD effect changes. By realizing that the amplitude of the oscillation �� induced by the ASL 

scheme corresponds to the difference between control and tagged images, perfusion can be 

computed dynamically by translating the coefficient parameter estimates of the oscillations into 

the appropriate control tag differences. Quantification of perfusion effects in continuous ASL data 

without background suppression can be done directly by adapting a kinetic model {e.g., see Eq. 

(A1) in Ref. [10]}  

 

where  is the estimated perfusion change due to the effect of interest; � is the inversion 

efficiency; �������,� is the regressor for the effect at time �, ������ � is the coefficient parameter 

estimate of the regressor representing the effect of interest (for example, the amplitude of the 

perfusion changes due to activation in the above model are captured by ��); ��� is the baseline 

state signal (T
-weighted spin density); ! is the blood brain partition coefficient and "
, "
# and 

"
#$$ are the longitudinal relaxation rates of arterial blood, tissue and tissue in the presence of 

perfusion. The term % is the arterial transit time, while &", ' and ( are repetition time, post 

labeling delay, and labeling duration. As previously noted [10], when long post-inversion delays 

(') are used, the equation becomes insensitive to changes in arterial transit time. We note that 

the sign of ��������can be positive or negative depending on the acquisition order of the control 

and tagged pairs.  

Generalized least squares estimation yields estimates of the linear model’s parameters 

and their variances. Thus, the same relationship can be used to derive the standard deviation of 

the estimates in perfusion units. In order to calculate the variance of the estimated perfusion 

effects, we propagate the errors of the relevant coefficient parameter estimates through the 

kinetic model. Propagation of error can be calculated in a straightforward way from the partial 

derivatives of the model relative to the coefficient parameters of interest [17] as follows  
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Hence the variance of the perfusion estimate in Eq. (2) due to the variance in the 

parameter estimates can be calculated by using the partial derivatives in Eqs. (3) and (4) and 

given by  

 
Statistical significance (e.g., a t-score) in perfusion changes due to the effect of interest 

 can be determined by dividing the estimated  in Eq. (2) by the square root of 

the estimated variance of the effect of interest )̂
 
   +,���� �
�  in Eq. (5). Statistically significant 

changes in perfusion can also be estimated using the traditional method that averages together 

the pairwise subtractions collected during baseline and activation then using those values in a 

kinetic model as in Eq. (2). The variance of perfusion can also be computed during intervals 

corresponding to baseline and activation periods. In our GLM method we will simplify the 

variance of our perfusion estimate in Eq. (5) by neglecting the covariance between our baseline 

state signal and the coefficient for the effect of interest.  

We have previously shown that generalized least squares estimation of unsubtracted 

data yields more efficient estimates than ordinary least squares estimation of differenced data, 

while accounting for auto-correlated noise [15]. This approach also enables us to estimate BOLD 

and ASL effects simultaneously, as their corresponding regressors are uncorrelated. However, 
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differencing schemes reduce the degree of autocorrelation dramatically in ASL data [18,19] and 

are widely used. While we choose to model both the ASL and BOLD effects in undifferenced 

data, the method described here can also be used with differenced data, as long as the design 

matrix is constructed carefully to reflect the differencing scheme.  

 

3. Methods  

3.1. Simulated data  

ASL time courses acquired during a simple blocked design paradigm were synthesized, 

and white Gaussian noise was added to them. The paradigm consisted of five 50-s periods of 

baseline alternating with five 50-s periods of activation. A general linear model of the paradigm 

was built by generating regressors for: (1) the signal baseline, (2) the baseline perfusion 

modulated by alternating control and tagged scans, (3) the activation perfusion modulated by 

alternating control and tagged scans and (4) signal increases due to BOLD effects during 

activation. For more detail on this approach, please see Ref. [15]. The design matrix for the 

experimental paradigm is displayed in Fig. 1 where the columns are plotted with time on the 

horizontal axis. Relevant acquisition parameters were as follows: TR=4 s, tagging time=2 s, 

post-inversion delay=1.5 s, transit time=1.5 s. The true coefficient values were 10000, 50, 20, 50 

arbitrary units (au). When using the model in [10], these oscillations correspond to baseline and 

activation perfusions of 39.3 and 55.0 ml/min per 100 g. Fifty time courses were computed with 

the variance of the added noise varying from 0 to 500 au2 in steps of 10 au2. The T1 relaxation 

times of tissue and blood were assumed to be 1400 and 1600 ms, respectively [20,21].  

Perfusion parameter estimates and their corresponding variances were calculated from 

the synthetic ASL signals using the GLM technique described in this manuscript. Perfusion time 

courses were also computed from the same synthetic signals by a standard kinetic model that 

uses pairwise subtraction of the ASL signal. For the standard synthetic model, eight points from 

every “baseline” and “activation” interval as shown in Fig. 2 were used to calculate the mean and 

variance of perfusion during baseline and activation. Data acquired during the transitions 

between baseline and activation were excluded, as the dynamically changing perfusion would 

significantly affect the estimates of the baseline and activation periods. The mean baseline 

perfusion obtained from the traditional methods was compared to the baseline perfusion 

parameter obtained from the GLM estimation. Likewise, the mean perfusion during activation 

was compared to the activation perfusion parameter estimates. Variances of the baseline and 

activation perfusion values were compared to the variance of the perfusion parameter estimates.  
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3.2. Experimental data  

The technique was also demonstrated experimentally in a simple stimulation paradigm, 

as follows. Visual stimulation was performed by showing the subjects a circular, flashing, 

checker-board pattern. The subjects were instructed to tap their thumbs against their fingers as 

fast as they could while the flashing checkerboard was shown to them and to remain still with 

their eyes open otherwise. The stimulation paradigm consisted of four periods of baseline (50 s 

long) followed by four periods of stimulation (50 s long). Scanning was carried out on a 3T 

General Electric Signa MRI scanner (Waukesha, WI, USA). ASL images were collected during 

the paradigm using a pseudo CASL [22] sequence (TR/TE=4000/3 ms, tagging time=2000 ms, 

post-inversion delay=1500 ms, matrix=64×64, eight slices, thickness=6 mm, gradient-echo spiral 

acquisition).  

A general linear model of the paradigm was built in the same fashion as in the simulation 

and is displayed in Fig. 1 where the columns are plotted with time on the horizontal axis. A GLM 

analysis of pre-whitened data was used to estimate regression coefficients and to identify 

significantly active voxels (Z . 3). Time courses were extracted from volumes of interest defined 

by supra-threshold voxels within a 12-mm diameter sphere in the visual and motor cortices. 

Perfusion maps were computed from the parameter estimates of the GLM, as described 

in the theory section, and assuming the following physiological parameters: Transit time 

(0)=1500 ms, inv. efficiency ��)=0.85, gray matter T1=1400 ms, arterial T1=1600 ms [20,21].  

As with the simulated data, perfusion for the experimental data was also computed from 

the extracted time courses using the more traditional approach of averaging together the 

pairwise subtractions collected during baseline and activation and using those values in a kinetic 

model. The mean and variance of perfusion were computed during intervals corresponding to 

baseline and activation periods. Subtraction pairs corresponding to the transition periods 

between baseline and activation (16 s) were excluded from the calculations, as the dynamically 

changing perfusion would significantly affect the estimates of the baseline and activation periods.  

 

4. Results  

4.1. Simulated data  

Correlation plots between the mean perfusion measurements obtained from both 

methods at the highest noise level can be seen in Fig. 3. The correlation coefficients were 0.81 

and 0.77 during activation and baseline, respectively, and the slopes of the fit were 1.01 and 0.98. 

The estimates of the perfusion parameters from the GLM showed good agreement with the 
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perfusion estimates obtained using the traditional approach. Both methods underestimated the 

baseline perfusion by less than 8% (traditional) and 5% (GLM). The GLM method’s error is 

symmetric about the true value, while the traditional method appears to have underestimated it 

by less than 2%.  

The ASL GLM model in Eq. (1) was fit to the simulated time course data and the 

perfusion was estimated dynamically using Eq. (2) as well as the variance of the perfusion using 

Eq. (5). The perfusion was also estimated using the traditional method. The GLM-estimated 

perfusion time course from a sample simulated ASL time course using Eq. (2) is presented in Fig. 

4 along with a one standard deviation confidence band. The corresponding perfusion time 

course estimated using the traditional method (green) and the true temporal perfusion time 

course using the true GLM regression coefficients and Eq. (2) are also presented (black). The 

GLM coefficient parameter estimates of all the regressors from this sample time course were 

9999, 50.7, 22.7 and 50.8) au. The corresponding GLM parameter standard deviation estimates 

from Eq. (5) were 0.93, 1.34, 1.88 and 0.94 au. These GLM parameter estimates yielded 

baseline and activation perfusions of 39.8 and 57.6 ml/min per 100 g with associated standard 

deviations of 1.06 and 1.50 ml/min per 100 g. The traditional approach yielded baseline and 

activation perfusions of 37.9 and 54.6 ml/min per 100 g with associated variances of 34.2 and 45 

(ml/min per 100 g)2. For comparison, recall that the true coefficient values were set to 10000, 50, 

20, 50 au, corresponding to perfusion levels of 39.3 and 55.0 ml/min per 100 g.  

The behavior of standard deviation of the estimates in each method can be seen in Fig. 5. 

As Fig. 5 shows, the measured standard deviation increases linearly with the variance of the 

added noise vector in both the traditional and the GLM approach. Note in Fig. 5 (left) that the 

baseline perfusion standard deviation in the traditional approach does not go to zero when the 

standard deviation of the added noise was zero. The baseline and active standard deviation 

estimates were affected linearly by the noise level in the data using the traditional approach. 

Additionally there was apparent shift in the intercept of approximately 1.4 and 2 (ml/min/100 g). 

The shift was due to the slow settling time of the perfusion function results in significant variation 

of the extracted signal, even in the absence of noise. While more “unsettled” points can be 

excluded from the calculation, completely removing them severely reduces the amount of data 

available for estimation of the perfusion. Fig. 5 (right) shows that the relationship between the 

noise standard deviation and standard deviation of the parameters is also linear when using our 

GLM approach. However, the slope is dramatically smaller than in the traditional approach. Note 

that when the standard deviation of the noise increases up to 22.4 au, the standard deviation of 
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the parameter estimates are approximately 5.5 and 3.9 (ml/min/100 g) in the GLM approach, 

rather than 24.4 (ml/min/100 g) in the traditional approach. Also note that the activation 

parameter standard deviation is more sensitive to the noise than the baseline one.  

4.2. Experimental data  

For the experimental data, the ASL GLM model in Eq. (1) was also fit to the time course 

data and the perfusion was estimated dynamically using Eq. (2) as well as the variance of the 

perfusion using Eq. (5). Perfusion time courses were also estimated using the traditional method. 

A GLM-estimated perfusion time course from a visual cortex region of interest (ROI) on a 

representative subject is presented in Fig. 6 along with a one standard deviation confidence 

band. The corresponding perfusion time course estimated using the traditional method are also 

presented (green). The GLM parameter estimates of all the regressors from this sample time 

course were (2411.5, 13.1, 19.5, 6.3) au. The corresponding GLM parameter standard 

deviations were 19.6, 13.9 and 22.0 au. These GLM parameter estimates yielded baseline and 

activation perfusions of 42.9 and 106.4 ml/min/100 g with associated standard deviations of 2.79 

and 3.94 ml/min per 100 g The traditional approach yielded baseline and activation perfusions of 

57.3 and 109.2 ml/min per 100g, with estimated standard deviations of 17.9 and 19.9 ml/min per 

100 g.  

In Fig. 7 are the resulting perfusion estimate maps and their standard deviation for one 

subject displaying the corresponding changes due to activation in the motor and visual task. The 

underlay image shows the baseline perfusion. The overlaid maps show the changes in perfusion

associated with the stimulation tasks. Fig. 7 (top left) presents the estimated differential perfusion 

using the GLM approach and Fig. 7 (bottom left) presents the estimated differential perfusion 

using the traditional subtraction. The color scales are in units of ml/min per 100 g. Fig. 7 (top right) 

presents the standard deviation of perfusion estimates using the GLM approach and Fig. 7 

(bottom right) presents the standard deviation of perfusion estimates using the traditional 

subtraction method. The color scales are in units of ml/min per 100 g. The underlay images 

depict the estimated variance of the baseline perfusion and the overlay maps depict the 

estimated variance of the activation perfusion. Note that they are thresholded such that only 

statistically significant (1 . 3) increases in perfusion are shown. Those areas include the motor 

and visual cortices.  

Fig. 8 is a scatter plot of the GLM perfusion estimates and the mean perfusion computed 

using the traditional method. The data used for this plot consist of the mean perfusion inside an 

active ROI defined by a sphere with 12 mm diameter and Z score >3 pooled from all subjects 
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under both baseline and activation conditions.  

 

5. Discussion  

In the GLM method, we have presented, parameters of the kinetic model have been 

estimated along with their variances. From the parameter estimates and their variances, 

quantitative perfusion parameter maps can readily be generated. As shown in Figs. 4 and 5, 

perfusion time courses can also be obtained from the model and the parameter estimates. We 

showed that there is a good association between the perfusion values using our GLM method 

and the traditional subtraction method but that our GLM method is more robust to noise, can be 

used to estimate perfusion changes in wider array of experimental designs and can estimate the 

entire temporal perfusion curve, given an accurate model.  

While the perfusion levels being measured by the traditional and GLM methods are not 

identical, they are closely linked to each other. The GLM method produces estimates of the peak 

perfusion due to activation. The traditional method, on the other hand, computes the mean 

perfusion increase during the plateau of the activation, which accounts for discrepancies 

between the means and also for the larger variance of the activation perfusion. In a blocked 

design, these two quantities are more intimately linked, as evidenced by the tight correlation 

between the two methods displayed in Fig. 8.  

It is crucial to realize that the variance estimates obtained from the GLM approach have a 

different meaning than those obtained by calculating the variance on a time course of perfusion 

measurements computed from pairwise subtractions. The former refers to the variance of a 

contrast of the estimates of a model’s parameters, while the latter is strictly the variance of 

selected segments of the perfusion time course. The former utilizes the entire time course in 

relation to the experimental design matrix. The traditional method is limited to the data of those 

segments where perfusion is believed to be stable, so it has less data available during activation 

because of the time it takes the signal to settle. Hence, the variance estimates obtained from the 

GLM are dramatically lower than the traditional measures. The drawback of the GLM approach is 

that errors in the construction of the design matrix will affect the variance estimates, but this is 

also true of most functional MRI analyses in the literature. For example, we strongly suspect that 

the reason that the variance we estimated for the activation perfusion is greater than for the 

baseline may be due to imperfections in the shape of the activation regressor.  

We must note that the variance of the parameter estimates is different for different 

regressors (or different contrasts), as evidenced by the results of the simulations depicted in Fig. 
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5. This is due to the influence of the contrast of interest and the design matrix on the calculation 

of the contrast’s variance, i.e., var 23��4 � )�3�556�7
36. As in BOLD imaging experiments that 

use GLM analysis, this effect should be taken into account when designing an experiment.  

In summary, we have shown that when using an appropriate general linear model for ASL 

data, it is very straightforward to obtain quantitative perfusion measures using the parameters 

estimates obtained from a standard GLM analysis. The results obtained from this approach are 

in agreement with traditional quantification methods. However, the GLM approach has the added 

benefits of reduced sensitivity to noise and that it allows the researcher a much greater flexibility 

of experimental designs while still yielding quantitative results in meaningful physiological units.  
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Appendix 

 

 
Fig. 1. Simple ASL design matrix. Each plot represents one column (regressor) of the design 
matrix and its coefficient parameter (�). The first regressor indicates the baseline state signal, or 
spin density. The second regressor describes the baseline difference between control and 
tagged images (ΔM), is indicative of baseline perfusion. The third regressor describes ΔM 
changes due to activation. The fourth regressor describes residual BOLD effect changes.  
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Fig. 2. Samples used for perfusion estimation using the traditional method are shown for one 
block of the task. The top and bottom plots represent the baseline and active state ASL signals 
respectively. Samples close to the transition from baseline to active and vise versa were not 
used for estimation. The samples used for computation of the mean active and baseline state 
perfusions are marked with an x, respectively. 

 

 
 

Fig. 3. Correlation plots between the perfusion values obtained using the traditional method and 
the proposed GLM method. The relationship between the two methods is clearly linear but the 
GLM method yields higher perfusion values than the traditional method, since the estimated 
coefficient in the GLM method corresponds to the peak perfusion, rather than the plateau.  
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Fig. 4. Estimated temporal perfusion plots for simulated data using the GLM are indicated by the 
solid blue line. Traditional measurements of the time series are indicated in green, and the true 
perfusion value is denoted by the solid black line. Standard Deviations of perfusion calculated 
using the GLM approach are indicated by the dashed blue line. 
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Fig. 5. The left panel shows the variance of the perfusion values calculated using the traditional 
method during baseline and activation as a function of the noise level added to the synthetic data. 
The right panel shows the variance of the perfusion estimates computed using to the proposed 
GLM method also as a function of the noise level added to the synthetic data. The data are 
expressed in au.  
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Fig. 6. Estimated temporal perfusion plots for human data using the GLM (blue) approach and 
traditional (green). Variance of perfusion using the GLM approach (dashed thin line blue) are 
also included.  
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Fig. 7. Resulting perfusion maps in one of the subjects using GLM approach (top left) and 
traditional subtraction approach (bottom left), showing the corresponding changes in perfusion 
due to activation in motor/visual task. As expected, significant increases in motor and visual 
cortices can be observed. The underlay image shows the estimate of baseline perfusion. The 
overlaid maps show the statistical changes in perfusion associated with the stimulation tasks. 
The color scales are in units of ml/min per 100 g. The resulting standard deviation of perfusion 
estimates for one subject using the GLM approach (top right) and standard deviation of perfusion 
estimates using the traditional subtraction method (bottom right). The color scales are in units of 
ml/min per 100 g.  
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Fig.8. Comparison of perfusion estimates using GLM and traditional approach: Scatter plot of 
perfusion in ROIs places on visual and motor cortices during baseline and activation for 5 
subjects estimated using Traditional approach (� axis) versus GLM approach (� axis) is 
presented. As can be seen, there is a significant correlation between perfusion estimates of 
these two methods (r=0.94). 
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