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Abstract 

Given a separable, infinite dimensional Hilbert space, it was recently shown by the 

authors that there is a path of chaotic operators, which is dense in the operator algebra with the 

strong operator topology, and along which every operator has the exact same dense �� set of 

hypercyclic vectors. In the present work, we show that the conjugate set of any hypercyclic 

operator on a separable, infinite dimensional Banach space always contains a path of operators 

which is dense with the strong operator topology, and yet the set of common hypercyclic vectors 

for the entire path is a dense �� set. As a corollary, the hypercyclic operators on such a Banach 

space form a connected subset of the operator algebra with the strong operator topology. 

 

1. Introduction 

Throughout the present paper, let � be a separable, infinite dimensional Banach space 

over the scalar field � or �, and let ���� denote the algebra of bounded linear operators 	: � � �. An operator 	 in ���� is hypercyclic if there is a vector � in � for which its orbit, ���	, ��  � �	��: � � 0�, is dense in �. Such a vector � is called a hypercyclic vector for 	. An 

operator 	 in ���� is hypercyclic if and only if the set of hypercyclic vectors for 	, denoted by ���	�,is a dense �� set; see Kitai [23]. For a countable family � of hypercyclic operators, a 

direct application of the Baire Category Theorem implies that the set �������	� of common 

hypercyclic vectors is also a dense �� set. However, for the situation when � is an 

uncountable family of hypercyclic operators, we cannot apply this Baire Category Theorem 

argument to show the set �������	� of common hypercyclic vectors is a dense �� set, or is 

even nonempty. This observation has prompted research on the existence of common 

hypercyclic vectors for uncountable families of hypercyclic operators. Bayart and Matheron [5], 

Chan and Sanders [13], and Costakis and Sambarino [19] have separately developed different 

sufficient conditions for an uncountable family of operators to have a dense �� set of common 

hypercyclic vectors. Other results on common hypercyclic vectors include the work of Abakumov 

and Gordon [1], Aron, Bès, León, and Peris [3], Bayart [4], Bayart and Grivaux [7], Conejero, 

Müller, and Peris [18], and León and Müller [24]. 

In much of the above work on common hypercyclic vectors, the uncountable family of 
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operators maintains some sort of continuity within the family. This brings us to the definition of a 

path of operators. A family of operators � ! � ����: " � #�, where # is an interval of real numbers, 

is a path of operators if the map  : # � �����, $ · $�, defined by  �"� �  ! ,is continuous with 

respect to the usual topology on the interval # and the operator norm topology on ����. If the 

interval # � &', �(, then the path � ! � ����: " � #� is a path of operators between  ) and  *. 

For any path, a vector � in � is called a common hypercyclic vector for the path if � ����+��� !�. 
In the present paper, we examine common hypercyclic vectors for a family of operators 

which consists of the conjugates of a single hypercyclic operator. For notation, let ,�	� ��-./	-: - invertible� be the conjugate set of the operator 	. The conjugate set ,�	� is also 

often referred to as the similarity orbit of 	. A standard similarity argument shows that an 

operator 	 in ���� is hypercyclic if and only if each operator in the conjugate set ,�	� is 

hypercyclic. From this observation, one can ask whether the set �7�8������9� of common 

hypercyclic vectors for the entire conjugate set ,�	� of a hypercyclic operator 	 is a dense �� 

set. In Proposition 2.1 below, we show this set of common hypercyclic vectors has  

only two possibilities. If every nonzero vector in � is a hypercyclic vector for 	, then the set �7�8������9� of common hypercyclic vectors for the conjugate set S(T) contains every nonzero 

vector also. Otherwise, the set �7�8������9� of common hypercyclic vectors for the conjugate 

set ,�	� is empty. 

Not only does the conjugate set ,�	� of a hypercyclic operator 	 consist entirely of 

hypercyclic operators, those hyper-cyclic operators are dense in ���� with respect to the strong 

operator topology, or SOT for short. This result was proved by Bès and Chan [9] by applying a 

fundamental property of the strong operator topology established by Hadwin, Nordgren, Radjavi, 

and Rosenthal [22]. As we have mentioned above, if ���	� : � \ �0�, then the set �7�8������9� of common hypercyclic vectors for the conjugate set must be empty. Regardless 

of this, we show the conjugate set ,�	� must contain a path � ! � ����: " � &1, ∞�� of operators 

which is SOT-dense in ����, and yet the set �!�&/,>���� !� of common hypercyclic vectors for 

the whole path is a dense �� set; see Theorem 2.4 below. As a corollary, we show the 

hypercyclic operators in ���� form an SOT-connected subset of ����; see Corollary 3.3 below. 

Also using Theorem 2.4, we show that for any nonzero vector ? in �, the set �	 � ����: g ����	�� is SOT-dense, as well as SOT-connected in B(X); see Corollary 3.2 below. 

A hypercyclic operator clearly has orbits which exhibit wild behavior. It may also possess 

orbits with simple behavior. A vector � in � is a periodic point of the operator 	 if 	A� � � for 
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some positive integer �. An operator 	 in ���� is called chaotic if it is hypercyclic and the set 

of periodic points for 	 is dense in �. Recently, Chan and Sanders [15] showed that every 

separable, infinite dimensional Hilbert space B over the scalar field � admits a path of chaotic 

operators which is SOT-dense in ��B�, and yet each operator along the path shares the exact 

same set of hypercyclic vectors. However, Bonet, Martínez-Giménez, and Peris [11] provided 

examples of separable, infinite dimensional Banach spaces which fail to support even a single 

chaotic operator. Hence, the techniques in [15] do not work for an arbitrary separable, infinite 

dimensional Banach space. For this general setting, even though we are not able to show that 

there is an SOT-dense path of hypercyclic operators, each of which has the exact same set of 

hypercyclic vectors, Theorem 2.4 below exhibits such a path with a dense �� set of common 

hypercyclic vectors. In the case where the Banach space does support a chaotic operator, using 

Theorem 2.4, we show there does exist a path of chaotic operators which is SOT-dense in ����, 

and for which the set of common hypercyclic vectors for the whole path is a dense �� set. 

Furthermore, the chaotic operators in ���� form a connected subset of ����; see Corollary 3.4 

below. 

 

2. Conjugate Class of a Hypercyclic Operator 

As stated in the introduction, an operator 	 in ���� is hypercyclic if and only if every 

operator in the conjugate set ,�	� � �-./	-: - invertible� is hypercyclic. In fact, one can easily 

verify that  

� � ���-./	-� if and only if -� ����	�. (2.1) 

Using this observation, we show that the set of common hypercyclic vectors for the conjugate set ,�	� of an operator 	 has only two possibilities, either the set of all nonzero vectors or the 

empty set. 

 

Proposition 2.1. Let 	 be an operator in ����. 

(i) If ���	� � � \ �0�, then the set G7�8��� ���9� of common hypercyclic vectors for the 

conjugate set ,�	� is also � \ �0�. 
(ii) If ���	� : � \ �0�, then the set G7�8��� ���9� of common hypercyclic vectors for the 

conjugate set ,�	� is empty. 

Proof. Part (i) follows directly from the statement given in (2.1). For part (ii), let H be any 

nonzero vector in � which fails to be a hypercyclic vector for the operator 	. For any nonzero 
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vector � in �, there exists an invertible operator - such that -� � H. For instance, if � and H 

are linearly independent, we may take -� � H and -H � � and - � # on a closed subspace 

complementary to the finite dimensional subspace spanned by � and H. If H � I� for some 

nonzero scalar I, then let - � I# on �. Since -� � H J ���	�, by (2.1), we have � J���-./	-�. Therefore, �7�8������9� � K. 

Read [26] provided an example of an operator 	 on ℓ/ for which every nonzero vector 

is a hypercyclic vector. Thus, it is possible for the set of common hypercyclic vectors for a 

conjugate set to be nonempty. On the other hand, every separable, infinite dimensional Banach 

space � admits a hypercyclic operator 	 for which ���	�  � � \�0�; see the hypercyclic 

operator constructed by Ansari in [2] or by Bernal in [8]. Since the conjugate set ,�	� of this 

particular hypercyclic operator fails to have a single hypercyclic vector in common, it follows 

trivially that the set of all hypercyclic operators in ���� fails to have a single hypercyclic vector 

in common. 

The conjugate set ,�	� of a hypercyclic operator 	 is SOT-dense in the operator 

algebra ����. However, in many cases, this SOT-dense set fails to have a single common 

hypercyclic vector. On the positive side, it does contain a path of operators which is SOT-dense 

in ����, and for which the set of common hypercyclic vectors for the whole path is a dense �� 

set. For this, we need two technical results.  

 

Lemma 2.2. Let �/, �M, … , �O be P linearly independent vectors in �, and let  

 

There exists a Q R 0 such that whenever H/, HM, … , HO are P vectors in � satisfying $ �S T HS $U Q for each integer V with 1  k, we have 

 
 

 

Proof. Since all norms are equivalent on the finite dimensional space span ��/, �M, . . . , �O�, there 

is a constant X R 0 such that 

 
(2.2) 

for any scalars I/, IM, . . . , IO. Choose a Q R 0 such that 
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(2.2) 

Let H/, HM, . . . , HO be any P vectors in � satisfying Y�S T HSY U Q for 1  k. For any integer V 
with 1  k and for any scalars I/, IM, . . . , IS./, ISZ/, . . . , IO, we have 

 

Thus, our result follows. □ 

The second result involves the union of a finite linearly independent set with the tail end 

of an orbit generated by a hypercyclic vector. 

 

Proposition 2.3. Let 	 � ���� be a hypercyclic operator. If g � ���	� and �/, �M, … , �O are P 

linearly independent vectors in �, then there is an integer [  0 such that the set ��/, �M, … , �O� \  �	Ag: �  [� is linearly independent. 

 

Proof. By way of contradiction, we suppose that no such integer [ exists; that is, the set ��/, �M, … , �O� \  �	Ag: �  [� is linearly dependent for each integer [  0. If we take [ � 1, then 

by the linear independence of the vectors �/, �M, … , �O and the linear independence of the orbit 

of a hypercyclic vector (see, for example Bourdon [12]), we obtain a nonzero polynomial ]/ for 

which ]/�	�? � span��/, �M, … , �O  �. For similar reasons, by taking [ � 1 ` deg ]/, we obtain a 

nonzero polynomial ]M with ab? ]M R ab? ]/ and ]M�	�g � span��/, �M, . . . , �O�. After P ` 1 

steps, we obtain nonzero polynomial ]OZ/ with deg ]OZ/ R deg ]O and ]OZ/�	�g � span��/, �M, . . . , �O�. Since the P ` 1 vectors ]/�	�g, ]M�	�g, . . . , ]OZ/�	�g lie in the 

subspace span��/, �M, . . . , �O�, which is P-dimensional, it follows that they must be linearly 
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dependent. However, this contradicts the fact that g is a hypercyclic vector.  □ 

 

We are now ready to prove that every conjugate set of a hypercyclic operator contains a 

path of operators which is SOT-dense in ����. 

 

Theorem 2.4. Let 	 be a hypercyclic operator in ����. The conjugate set ,�	� � �-./	-:  - c�db�"c�eb� contains a path � ! � ����: " � &1, ∞�� of operators which is 

SOT-dense in ����, and for which the set �!�&/,>���� !� of common hypercyclic vectors for 

the whole path is a dense �� set. 

 

Proof. We begin with an outline of the construction of the desired path of hypercyclic operators. 

The path must contain a hypercyclic operator in every nonempty SOT-basic open set f in ����, 

which is of the form  

f � g9 � ����: Y9hi T �hiY U j for 1  e  Pk, 
where � � ����, j R 0, and �l � �. The vectors �l and ��l provide a starting point of our 

construction of an invertible operator - so that -./	- is in f and it can be joined to the given 

hypercyclic operator 	 with a path having a dense �� set of common hypercyclic vectors. For 

that, we may assume that the vectors �l are linearly independent and use Proposition 2.3 to 

choose appropriate powers of T on a hypercyclic vector g � ���	� that can approximate �l 
and ��l .Then we use Lemma 2.2 to control the norms of - and -./ so that the terms -./	-��l� T ��l qualify -./	- to be in the set f. Furthermore, to create the desired path we 

first note that we can trivially write 	 as #./	#, where # is the identity, and so we have to join # 

with - with an appropriate path of invertible operators. The operator - takes the form of the 

sum of the identity and a finite rank operator m whose range is the linear span of carefully 

chosen powers 	ng. The path will then be in the form of # ` "m, where " in &0,1( is the 

parameter for the path. However, in order to carefully select vectors 	ng to make our argument 

work, we need to have good estimations on their distances from each other and separate them in 

terms of linear functionals. 

To this end, let g � ���	�. Let o be the collection of all sets p of the form  

p � �	nqg, 	nrg, … , 	nrsg, 	tg, 	tZ/g, … 	tZMO./g� (2.4) 

where [, P are integers with [ u 0 and P u 1 and v/, vM, . . . , vMO are distinct integers with 

each vS u [ ` 2P. Note that the collection o is countable. For the set p given in (2.4) and for 
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each integer V with 1  V  2P, define  

aS,x � disty	nzg, span�p \ �	nzg� �{ and |S,x � dist }	tZS./g, span�p \ �	nzg��~. 
Then define ∆x by 

∆x� minga/,x , aM,x , … , aMO,x , |M,x , … , |MO,xk. 
Since the orbit of the hypercyclic vector g must be linearly independent, each set p � o is 

linearly independent, and so ∆xR 0. 

 

Claim 1. For the set p � � given in (2.4), there are 2P linear functionals �/,x , �M,x , … , �MO,x in 

the dual space �� such that for any integers c, V with 1  c, V  2P, we have Y�S,xY and 

�S,x�	n�g� � �S,xy	tZ�./g{ � �1, c� c � V,0, c� c : V.� 
Proof of Claim 1. As a corollary of the Hahn–Banach Theorem, there exist linear functionals �/,x , … , �MO,x and �/,x , … , �MO,x in the dual space ��� such that for integers c, V with 1  c, V  2P, we have �S,x�	nzg� � 1 and �S,x��� � 0 for all � � �]'��p \ �	nzg��, and �S,xy	tZS./g{ and �S,x��� � 0 for all � � �]'��p \ �	nzg��.  Furthermore, Y�S,xY � /�z,�   /∆� 

and Y�S,xY � /�z,�   /∆�.  Letting �S,x � �S,x ` �S,x for each integer V with 1  V  2P completes 

the proof of Claim 1.  □ 

 

We now use Claim 1 to form a countable collection of invertible operators in ����.For 

theset p � o given in (2.4), define the operator -x: � � � by 

-x��� � � ` � �S,x���y	tZS./g T 	nz?{.MO
S�/  (2.5) 

To see that the operator -x is invertible, define the operator 9x �  � � � by 

9x��� � � ` � ��,x���MO
��/ y	n�g T 	tZ�./g{. 

For any � � �, observe that 

-x9x��� � -x��� ` � ��,x���-x
MO

��/ y	n�g T 	tZ�./g{. 
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By Claim 1, for any integers c, V with 1  c, V  2P, we have �S,xy	n�g T 	tZ�./g{ � 0, and so by 

(2.5), 

-xy	n�g T 	tZ�./g{ � 	n�g T TtZ�./g. 
Thus, 

-x9x��� � -x��� ` � ��,x���-x
MO

��/ y	n�g T 	tZ�./g{ 
� � ` � ��,x���MO

S�/ y	tZS./g T 	nzg{ ` � ��,x���MO
S�/ y	n�g T 	tZS./g{ 

� �. 
Likewise, -x9x��� � � for any � � �. Therefore, the operator -x is invertible and -x./ � 9x. 

Moreover, by definitions of -x, -x./ and by Claim 1, both operators -x, -x./ satisfy the 

inequality 

Y-x./Y, �-x�  1 ` �Y�S,xYMO
S�/ Y	tZS./g T 	nzgY  1 ` 2∆x �Y	tZS./g T 	nzgYMO

S�/ . (2.6) 

Using the countable collection �-x: p � o� of invertible operators, we generate a countable 

SOT-dense subset of ,�	�. 

 

Claim 2. The countable collection �-x./	-x: p � o� is SOT-dense in ����. 

 

Proof of Claim 2. Let � be a nonempty SOT-open set in ����. Then there exists an operator � � ����, an j R 0, and nonzero vectors �/, �M, . . . , �O in � such that 

g9 � ����: Y9hi T �hiY U j for 1  e  Pk � �. 
Without loss of generality, we may assume the set ��/, �M, . . . , �O� is linearly independent. By 

Proposition 2.3, there is an integer [  0 such that the set ��/, �M, . . . , �O� � �	Ag: �  [� is 

linearly independent. Since g � ���	�, we can choose P distinct integers vM, v�, . . . , vMO 

satisfying 

vMl   [ ` 2P and Y	nrig T �hiY U j2  for 1  e  P. (2.7) 

Consider the linearly independent set 
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p� � ��/, 	nrg, �M, 	n�g, … , �O , 	nrsg, 	tg, 	tZ/g, … , 	tZMO./g�, 
and define a�Ml./ � dist }�l , spanyp� \ ��l�{~   for 1  e  P, 

a�Ml � dist }	nrig, spanyp� \ �	nrig�{~   for 1  e  P, 
|�S � dist }	tZS./g, spanyp� \ g	tZS./gk{~  for 1  V  2P, 
∆� � minga/�, aM�, … , aMO� , |/�, |M�, … , |MO� k. 

Set 

� � P ` �Y	tZMl./g T 	nrigYO
l�/ ` �Y	tZMl.Mg T �lYO

l�/ . (2.8) 

Since the set p�  is linearly independent, by Lemma 2.2, there is a Q R 0 such that whenever v/, v�, . . . , vMO./ are P distinct integers with 

p � �	nqg, 	nrg, … , 	nrs�qg, 	nrsg, 	tg, … , 	tZMO./g� � o 

and 

�	nri�qg T �l� U Q  for 1  e  P, (2.9) 

we get 

∆x   ∆�2. (2.10) 

We may further assume that Q satisfies 

Q U min  1, j2�	� }1 ` 4Δ� �~M£. (2.11) 

Note that there exists such an p � o because g is a hypercyclic vector for 	.  Moreover, for 

any such p � o and for any integer e with 1  e  P, we have 

�-x./	-x��l� T ��l�  �-x./	-x��l� T -x./	-x�	nri�qg�� ` �-x./	-x�	nri�qg� T ��l�. (2.12) 

To estimate the first summand on the right-hand side of (2.12), note that 

�-x./	-x��l� T -x./	-x�	nri�qg��  �-x./��	��-x���l T 	nri�qg� U �-x./��	��-x�Q,   by �2.9� 
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 ¥1 ` 2∆x �Y	tZS./? T 	nz?YMO
S�/ ¦M �	�δ, by �2.6� 

 ¥1 ` 4∆� �Y	tZS./? T 	nz?YMO
S�/ ¦M �	�δ, by �2.10�. 

 

 

(2.13) 

 

We now estimate the above summation 

�Y	tZS./? T 	nz?YMO
S�/ � ��	tZMl./? T 	nri?�P

e�1 ` ��	tZMl.M? T 	nri�q?�P
e�1  

  ��	[`2eT1? T 	v2e?�P
e�1 ` ��	[`2eT1? T �e�P

e�1 ` ���e T 	v2eT1?�P
e�1  

U P ` ��	[`2eT1? T 	v2e?�O
l�/ ` ��	[`2eT2? T �e�O

l�/ , by �2.9�, �2.11� 
� �, by �2.8�. 

Combining inequality (2.13) with the above inequality gives us 

Y-x./	-x��l� T -x./	-x�	v2eT1?�Y U ª1 ` 4∆� �«M �	�Q U j2 , by �2.11�. (2.14) 

To estimate the second summand on the right-hand side of (2.12), observe that for each 

integer c with 1  c  2P, we have 

-x�	n�?� � 	n�? ` � �S,x�	n�?�y	tZS./? T 	n�?{MO
S�/ , by �2.5� 

� 	n�? ` y	tZ�./? T 	n�?{, by Claim 1 � 	tZ�./?. (2.15) 

Thus,  

Y-x./	-x�	nri�q?� T ��lY � Y-x./		tZMl.M? T ��lY, by �2.15� � Y-x./	tZMl./? T ��lY � �	nri? T ��l�, by �2.15� 
U j2 , by �2.7�. (2.16) 

Combining inequality (2.12) with inequalities (2.14) and (2.16) yields Y-x./	-x��l� T ��lY U j, 
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and so -x./	-x � � which completes the proof of Claim 2. □ 

 

We now construct a path of operators between 	 and -x./	-x which lies entirely within 

the conjugate set ¯�	� of the operator 	. 

 

Claim 3. For each p � p, there is a path of operators between 	 and -x./	-x contained in the 

conjugate set ¯�	� for which the set of common hypercyclic vectors for the whole path is a 

dense �� set. 

 

Proof of Claim 3. Let p be the set in o given in (2.4). For each " � &0, 1(, define an operator -!,x �  � � � by  

-!,x��� � � ` � "�S,x���y	tZS./g T 	nzg{MO
S�/ . 

Using computations similar to those before Claim 1, each operator -!,x is invertible, and its 

inverse -!,x./ �  � � � is given by 

-!,x./ ��� � � ` � "��,x���y	n�g T 	tZ�./g{MO
��/ . 

Consider the path of operators ��! � ����: " � &0, 1(�, where �! � -!,x./ 	-!,x. Clearly this path of 

operators is between 	 and -x./	-x and lies entirely in the conjugate set ,�	�. To show �!�&°,/(����!� is a dense �� set, first note that by Corollary 2.3 in [13], the set �!�&°,/(����!� 
is a �� set, and so it suffices to show this set is also dense. We do this by proving �spanOrb�	, g�� \ �0� is contained inside the set �!�&°,/(����!�. To begin, note that given any 

nonzero polynomial ] and any " � &0,1(, we have  -!,x]�	�g : 0 because ]�	�g : 0 by the 

linear independence of the orbit of g, and because the operator -!,x is invertible. Furthermore, 

-!,x]�	�g � ]�	�g ` � "�S,x�]�	�g�y	tZS./g T 	nzg{MO
S�/ � �spanOrb�	, g�� \ �0� � ���	�, 

because every nonzero vector from the linear span of a dense orbit is a hypercyclic vector; see 

Bourdon [12] and Bès [10]. Therefore, by statement (2.1), we get ]�	�g � ��y-!,x./ 	-!,x{ �����!�. Hence, �spanOrb�	, g�� \ �0� � �!�&°,/(����!�, and this concludes the proof of Claim 3. 

□ 
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We are now ready to construct the desired SOT-dense path of operators in the conjugate 

set ¯�	�. Let �pA: �  1� be an enumeration of the countable set o. By Claim 3, if for each 

integer �  1, let �!,A � -M!,x²./ 	-M!,x² for " � &0, 1/2( and �!,A � -M.M!,x²./ 	-M.M!,x² for each " � &1/2, 1(, then ��!,A � ����: " � &0, 1(� is a path of operators in the conjugate set ¯�	� such 

that �°,A � �/,A � 	 and -x²./	-x²  � �//M,A � ��!,A � ����: " � &0, 1(�, and in addition, the set �!�&°,/(��y�!,A{ is a dense �� set. For each " � &�, � ` 1(, let  ! � �!.A,A. Then � ! �����: " � &1, ∞�� is a path of operators in the conjugate set ¯�	� which is SOT-dense by Claim 

2, and for which the set �!�&/,>���� !� � � �!�&°,/(��y�!,A{>A�/  is a dense �� set. □ 

 

The SOT-dense path � ! � ����: " � &1, ∞�� in the previous theorem consists of 

operators of the form -./	-, which share many properties that each other has; in fact, any 

properties preserved by similarity. For instance, if one of them is chaotic, then every operator in 

the whole path is chaotic. If one of them has a nontrivial kernel, then every one in the whole path 

has one. If one of them is surjective, then every one is. If one of them has a nontrivial invariant 

subspace, then every one has one. If every nonzero vector is a hypercyclic vector for one single 

operator in the path, then the same holds true for every operator in the path. If one of them has a 

hypercyclic subspace, which is an infinite dimensional closed subspace consisting, except the 

zero vector, of hypercyclic vector of the operator, then every one in the path has such a 

subspace. In the next section, we study more common properties that a path of operators may 

share. 

 

3. Corollaries of the Main Result 

Theorem 2.4 has several interesting corollaries. First, let us examine the linear structure 

within the dense �� set of common hypercyclic vectors for the path of operators given within the 

proof of Theorem 2.4. For each set p � o, consider the path of operators ��! � ����: " � &0,1(� 
between the operators 	 and -x./	-x given in the proof of Claim 3. To show the set �!�&°,/(����!� of common hypercyclic is dense, we prove that if g is a hypercyclic vector for 	, 

then �spanOrb�	, g�� \ �0� is contained inside the set �!�&°,/(����!�. Furthermore, these paths 

of operators are the building blocks for the desired SOT-dense path of operators. Thus, the set of 

common hypercyclic vectors for the path of operators constructed within the proof of Theorem 

2.4 contains some natural linear structure. 

 

Corollary 3.1. Let 	 be a hypercyclic operator in ����,and let g � ���	�. There exists a path 
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� ! � ����: " � &1, ∞�� of operators, contained entirely in the conjugate set ¯�	�, which is 

SOT-dense in ����,and for which ��]'����	, g�� \ �0� is contained within the dense �� set �!�&/,>���� !� of common hypercyclic vectors. 

 

Since the orbit of a hypercyclic vector is linearly independent, the set of common 

hypercyclic vectors for the path of operators given in Corollary 3.1 contains an infinite 

dimensional linear manifold for which every nonzero vector is a common hypercyclic vector. 

However, the linear manifold given in Corollary 3.1 is not closed. Corollary 3.5 of Sanders [27] 

provides a natural sufficient condition for the set of common hypercyclic vectors for a path of 

operators to contain a closed, infinite dimensional subspace of which every nonzero vector is a 

common hypercyclic vector. 

The existence of a path of hypercyclic operators that is SOT-dense in ���� gives us 

information about the connectedness of the hypercyclic operators in ����. Recall that if ´ and µ are subsets of a topological space � satisfying ´ � µ � ¶́, and if ´ is connected, then µ is 

also connected; see Munkres [25]. A path of operators in ���� is SOT-connected, and so any 

set of operators in ����, which contains an SOT-dense path of operators, is also 

SOT-connected. From this topological argument and Corollary 3.1, we get the next result. 

 

Corollary 3.2. Let g be any nonzero vector in a separable, infinite dimensional Banach space �. 

Then the set · � �	 � ����: g � ���	�� is SOT-dense and SOT-connected in ����. 

Furthermore, its set of common hypercyclic vectors is �!�·���	� � �span�g�� \ �0�. 
 

Proof. For the first part of the proof, it suffices to show there is an operator 	 in ���� with g � ���	�. By Corollary 3.1, it follows that the set �	 � ����: g � ���	�� contains a path of 

operators which is SOT-dense in ����, and consequently SOT-connected by the topological 

argument above. To this end, let 	° be a hypercyclic operator with ���	°� : � \ �0�; see 

Ansari in [2] or by Bernal in [8]. Let g° � ���	°�. Choose an invertible map -: � � � such that -g � g°, and set 	 � -./	°-. Since -g � g° � ���	°�, by statement (2.1) we get g � ���-./	°-� � ���	�. 

For the second part, observe that �span�g��\�0� � � ���	���·   because ? � � ���	���· . To establish the reverse set inequality, let ¸° J ���	°� with ¸° : 0. For any ¸ J span�g�, the sets �g, ¸� and �g°, ¸°� are each linearly independent, and so there is an 

invertible map -°: � � � with -°g � g° and -°¸ � ¸°. Again by statement (2.1), this implies 
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? � ���-°./	°-°� and ¸ J ���-°./	°-°�.Thus, ¸ J � ���	���· . □ 

 

In many of the known cases, the set of common hypercyclic vectors for an uncountable 

family of hypercyclic operators is either empty or a dense �� set. Corollary 3.2 provides an 

example of a set of common hypercyclic vectors which is a �� set that fails to be dense. 

When B is a separable, infinite dimensional Hilbert space over the scalar field �, the 

invertible operators are path connected; see Douglas [21]. Thus, the conjugate set of a 

hypercyclic operator is both SOT-dense and SOT-connected in ��B�. By the topological 

argument given before Corollary 3.2, the hypercyclic operators in ��B� then form an 

SOT-connected subset of ��B�; see [15]. For the Banach space version of the result, we can 

combine Theorem 2.4 and the topological argument given before Corollary 3.2. 

 

Corollary 3.3. Let � be a separable, infinite dimensional Banach space. The set of all 

hypercyclic operators is SOT-connected in ����. 

 

The argument used in Corollary 3.2 can be used to show certain well-known classes of 

hypercyclic operators are SOT-connected in ����. For example, from the definition of a chaotic 

operator, one can easily see that an operator is chaotic if and only if each operator in its 

conjugate set is chaotic. Using the same argument as with Corollary 3.3, we get the following 

result. 

 

Corollary 3.4. Let � be a separable, infinite dimensional Banach space which admits a chaotic 

operator. The set of all chaotic operators is SOT-connected in ����.  

 

For another example, an operator 	 in ���� satisfies the Hypercyclicity Criterion if and 

only if each operator in its conjugate set satisfies the criterion. Moreover, every separable, infinite 

dimensional Banach space admits an operator which satisfies the Hypercyclicity Criterion; see 

the hypercyclic operator constructed by Ansari in [2] or by Bernal in [8]. Thus, the collection of all 

hypercyclic operators in ���� which satisfies the Hypercyclicity Criterion is SOT-connected in ����. De la Rosa and Read [20] provided an example of a Banach space which admits a 

hypercyclic operator that fails to satisfy the Hypercyclicity Criterion. Using techniques inspired by 

De la Rosa and Read, Bayart and Matheron [6] showed some common Banach spaces, 

including the sequence Hilbert space ℓM, also admit such hypercyclic operators. Since a 

hypercyclic operator fails to satisfy the Hypercyclicity Criterion if and only if each operator in its 
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conjugate set fails to satisfy the criterion, we get that whenever a Banach space � admits a 

hypercyclic operator that fails to satisfy the Hypercyclicity Criterion, then the collection of all such 

operators is SOT-connected in ����. Again, by a similar argument, if the Banach space � 

admits an operator with no nontrivial, closed, invariant subset, then the collection of all such 

operators is SOT-connected in ����. Recently, Chan and Seceleanu [16,17] provided classes of 

operators for each of which having one orbit with a nonzero limit point imply the operator be 

hypercyclic. An operator has this property if and only if each operator in the conjugate set also 

has this property. By our topological argument, the collection of all operators having this property 

is an SOT-connected subset of ����. 

 

4. Final Remarks 

In the final section of this paper, we discuss some natural questions which arise from the 

results in the previous sections. To begin, Proposition 2.1 states that the set of common 

hypercyclic vectors for the entire conjugate set is either all nonzero vectors or the empty set. In 

the Hilbert space setting, the unitary orbit, ��	� � �¹./	¹: ¹ unitary�, of an operator 	 is a 

well-studied subset of the conjugate set ¯�	�. Obviously, the unitary orbit ��	� is strictly 

smaller than the conjugate set ¯�	�. Hence, in view of Proposition 2.1, one may ask whether the 

set � ���9�·�����  of common hypercyclic vectors for the unitary orbit ��	� is always a dense �� set if 	 is hypercyclic. 

As it turns out, the answer is still negative, unless we have the trivial case that every 

nonzero vector is a hypercyclic vector for 	 and hence the set of common hypercyclic vectors is B \ �0�. Otherwise, we have a unit vector H that is not a hypercyclic vector for 	. Extend the 

singleton set �H� to an orthonormal basis of B. For any unit vector �, extend the singleton set ��� to an orthonormal basis of B. Let »: B � B be a unitary operator taking the second 

orthonormal basis one-to-one and onto the first orthonormal basis with »� � H. Since H J���	�, by statement (2.1), we get � J ���»./	»�. From this, we can conclude � ���	� � K7����� . 

Of course, the unitary orbit ��	� cannot be SOT-dense in ��B� because every 

operator in the unitary orbit ��	� has the same norm as the operator 	. Along that line, a 

question one may ask is whether we can have a path of operators in the unitary orbit ¹�	� of a 

hypercyclic operator 	 that is SOT-dense in �	� ¼ Sph�B�, where Sph�B� denotes the unit  

sphere of B. This may appear to have a positive answer, given the results in the previous 

sections. However, the answer is negative because the unitary orbit U�	� is not necessarily 
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SOT-dense in �	� ¼ Sph�B�. One can easily construct the following counterexample in the 

sequence space ℓM�À� � �∑ 'AbA>.> : ∑|'A|M U ∞�, where �bA: � � À� is the canonical 

orthonormal basis of ℓM�À�. Let 	: ℓM�À� � ℓM�À� be the bilateral weighted backward shift on the 

sequence space defined by 

	 Ã � 'AbA
>

A�.> Ä � � 12
./

A�.> 'AbA./ ` � 2'AbA./
>

A�° . 
The above formula defines a hypercyclic shift 	 due to a result of Salas [28, Theorem 2.1]. Let 9: ℓM�À� � ℓM�À� be defined by 

9 Ã � 'AbA
>

A�.> Ä � 2'°b°. 
Clearly �	� � �9� � 2. If we let 

f � �, � �yℓM�À�{: �,b/ T 9b/� U 14Å, 
be an SOT-open set containing 9, then one can easily show that no operator in the unitary orbit ��	� is in f. In fact, �	��  ���/2 for every vector � in ℓM�À�, and so �¹./	¹��  ���/2 for 

any unitary operator ¹. Hence we have 

�¹./	¹b/ T 9b/� 12, 
and so ¹./	¹ J f. 

We now switch our focus to weak hypercyclicity in the setting of a separable, infinite 

dimensional Banach space �. An operator 	 in ���� is weakly hypercyclic if there is a vector � in � for which its orbit Orb�	, �� is dense in � with respect to the weak topology. Any such 

vector � is called a weakly hypercyclic vector for 	, and we use the notation ÆBX�	� to 

denote the set of all weakly hypercyclic vectors for the operator 	. By a similarity argument, an 

operator is weakly hypercyclic but not hypercyclic if and only if the same is true for each operator 

in the conjugate set; see Chan and Sanders [14] or Shkarin [29] for the existence of such 

operators. Bès and Chan [9] showed that the conjugate set of a weakly hypercyclic operator is 

SOT-dense in the operator algebra ����. Combining above discussion with Theorem 2.4 

naturally leads to the question: 

 

Question 4.1. If 	 is a weakly hypercyclic operator in ���� which fails to be hypercyclic, does 
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the conjugate set ,�	� contain a path � ! � ����: " � &1, ∞�� of operators which is SOT-dense 

in ����, and for which the set � ÆBX� !�!�&/,>�  of common weakly hypercyclic vectors is dense? 

 

The techniques in the proof of Theorem 2.4 cannot be applied to the above problem 

because the existence of a norm dense orbit is vital to the construction of the desired SOT-dense 

path. 
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