Marquette University e-Publications@Marquette

Mathematics, Statistics and Computer Science Faculty Research and Publications

Mathematics, Statistics and Computer Science,

Department of

8-3-2011

Utilizing Induced Voxel Correlation in fMRI Analysis

Daniel B. Rowe
Marquette University, daniel.rowe@marquette.edu

Andrew S. Nencka

Presented at the 2011 Joint Statistical Meeting, Miami Beach, Florida, August 2, 2011

Utilizing Induced Voxel Correlation in fMRI Analysis

Daniel B. Rowe, Ph.D.

Joint with Andrew S. Nencka

Associate Professor
Computational Sciences Program
Department of Mathematics,
Statistics, and Computer Science

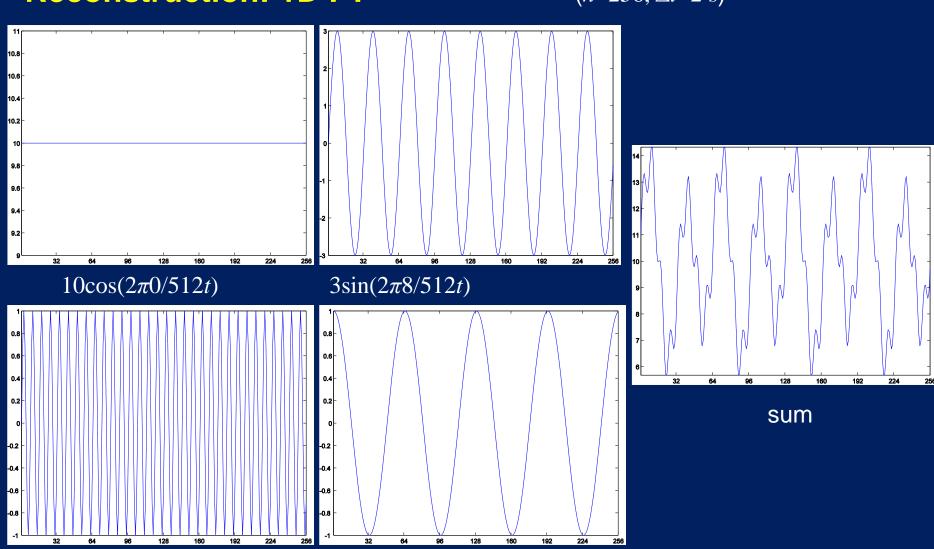
Adjunct Associate Professor Department of Biophysics

OUTLINE

- 1. Reconstruction-Preprocessing
- 2. Induced Correlation
- 3. Utilizing Induced Correlation
- 4. Results
- 5. Discussion

Reconstruction: 1D FT

 $(n=256, \Delta t=2 \text{ s})$



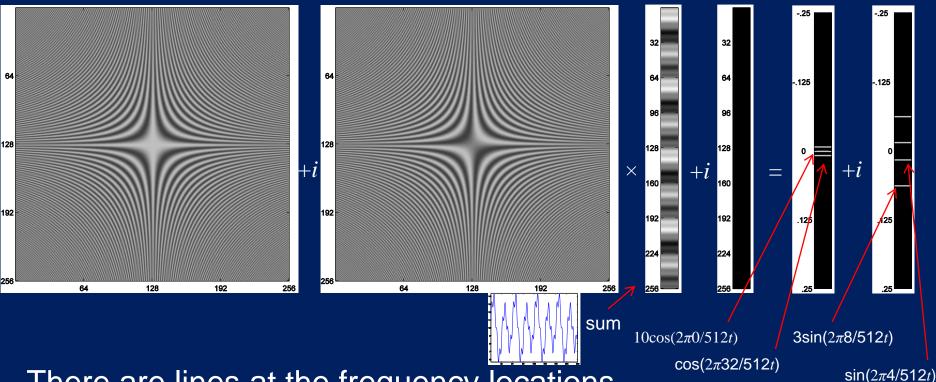
 $\cos(2\pi 32/512t)$ $\sin(2\pi 4/512t)$

Reconstruction: 1D FT

$$(\overline{\Omega}_R + i \ \overline{\Omega}_I)$$

 $(n=256, \Delta t=2 \text{ s})$

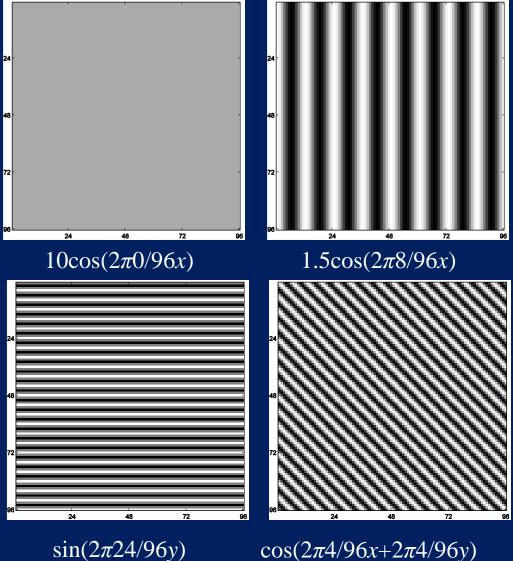
$$\times (y_R + i y_I) = (f_R + i f_I)$$



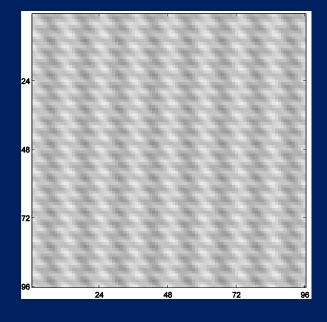
There are lines at the frequency locations.

Real part (image) represents constituent cosine frequencies. Imaginary part (image) represents constituent sine frequencies. Intensity of the lines represents amplitude of that frequency.

Reconstruction: 2D FT



(FOV=192 mm) $(n_x=n_y=96, \Delta x=\Delta y=2 \text{ mm})$



sum

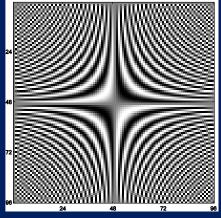
Reconstruction: 2D FT

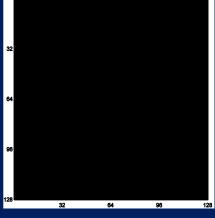
 $(n_x = n_y = 96, \Delta x = \Delta y = 2 \text{ mm})$

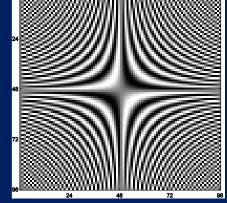
(FOV=192 mm)

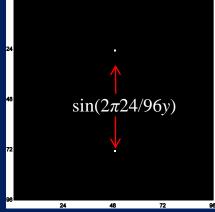
$$(\overline{\Omega}_{yR} + i \overline{\Omega}_{yI}) \times (V_R + i V_I) \times (\overline{\Omega}_{xR} + i \overline{\Omega}_{xI})^T = (F_R + i F_I)$$

$$[0\cos(2\pi 0/96x) \cos(2\pi 4/96x + \cos(2\pi 4/96x) + \cos(2\pi 4/96$$









Reconstruction: 2D IFT

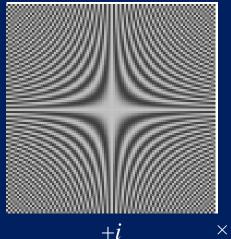
$$(\Omega_{yR} + i \Omega_{yI}) \times (F_R + i F_I) / \times (\Omega_{xR} + i \Omega_{xI})^T = (V_R + i V_I)$$

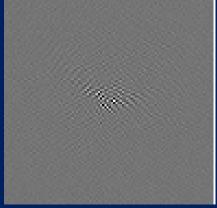
$$(F_R + i F_I)$$

$$(\Omega_{xR} + i \Omega_{xL})$$

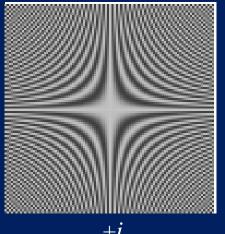
(FOV=192 mm)

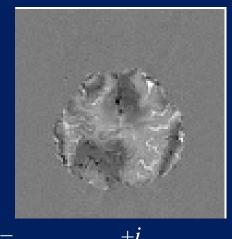
 $(n_x=n_y=96, \Delta x=\Delta y=2 \text{ mm})$

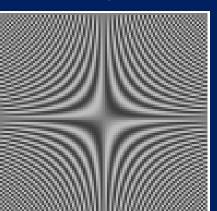




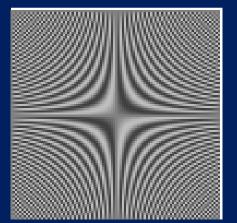
+i









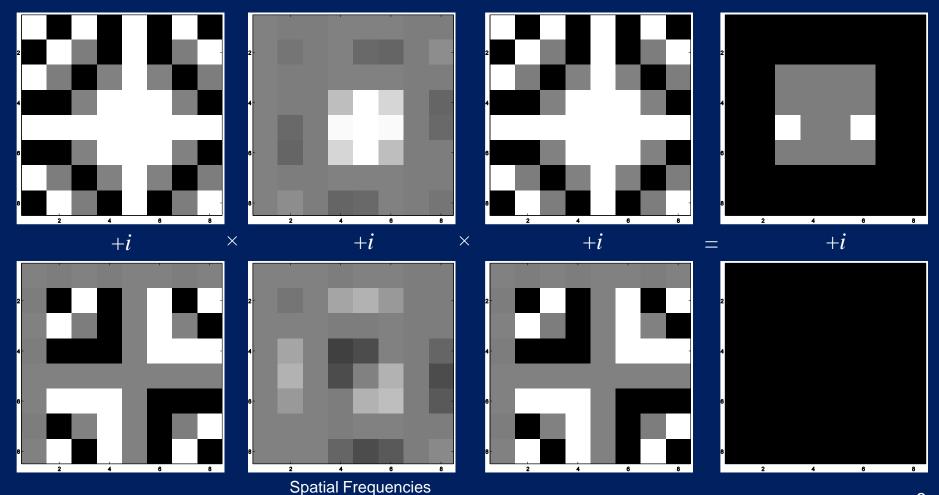




Spatial Frequencies

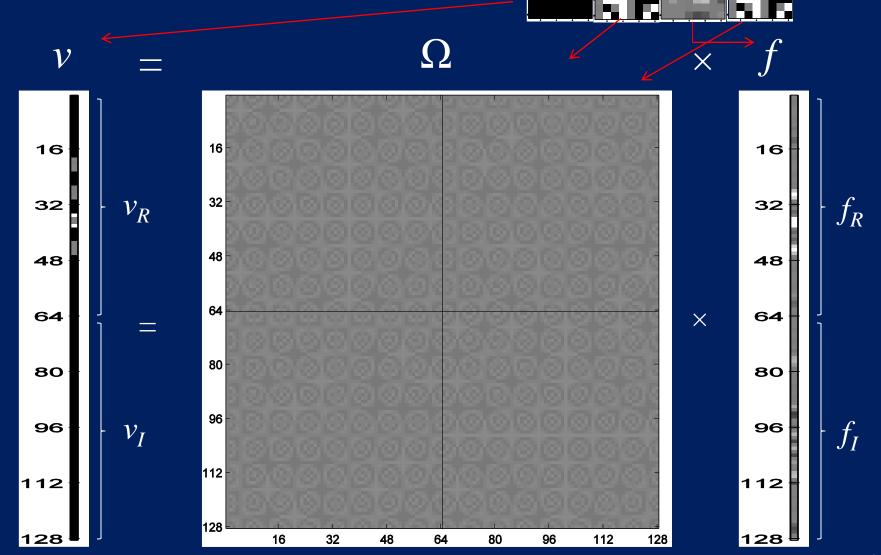
Reconstruction: 2D IFT

$$(\Omega_{yR} + i \Omega_{yI}) \times (F_R + i F_I) \times (\Omega_{xR} + i \Omega_{xI})^T = (V_R + i V_I)$$



MARQUETTE

Reconstruction: 2D IFT Isomorphism

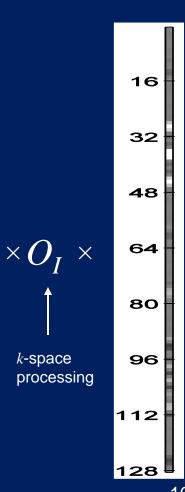


Reconstruction: Processing Image

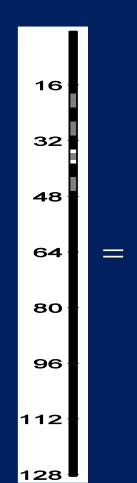
$$v = O_I \times$$

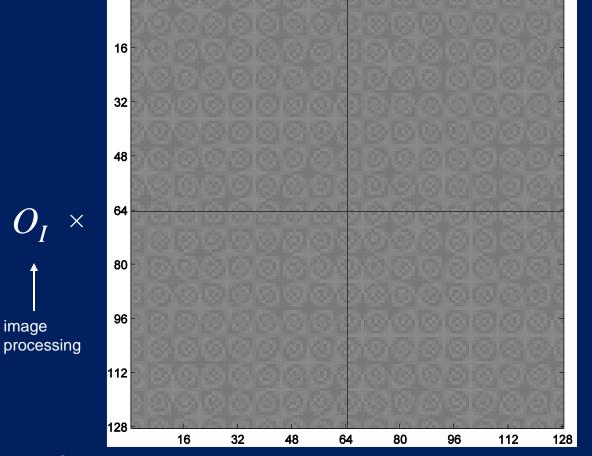
$$\Omega_{a}$$
 adjusted

$$imes O_I imes$$
 f



k-space





Reconstruction: Processing Image

$$\nu$$
 =

$$O_I \times \Omega_a \times O_k \times f$$

These operators are:

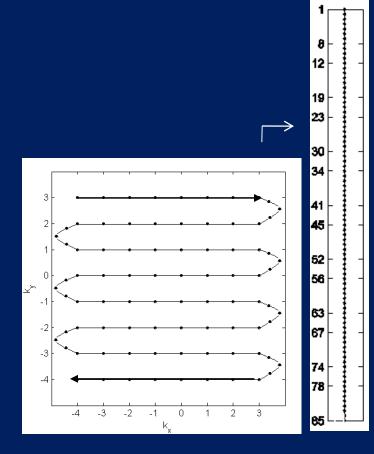
$$f = P_{C} \mathcal{R} C \mathcal{F}$$

$$\stackrel{P_{e_{I}}}{\underset{P_{I}}{$$

 $\Omega_a = \Omega$ adjusted for ΔB and for T_2^* .

$$O_I = I_2 \otimes S_m \leftarrow \text{Image smoothing}$$

Nencka, Hahn, Rowe: JNSM, 181:268-282, 2009.



Induced Correlation: Mean and Covariance

If $E(f)=f_0$, then for Of, $E(Of)=Of_0$.

If $cov(f) = \Gamma$, then for Of, $cov(Of) = O\Gamma O^T$.

This means that with $v=O_I\Omega_aO_kf$.

$$E(v) = O_I \Omega_a O_k f_0$$

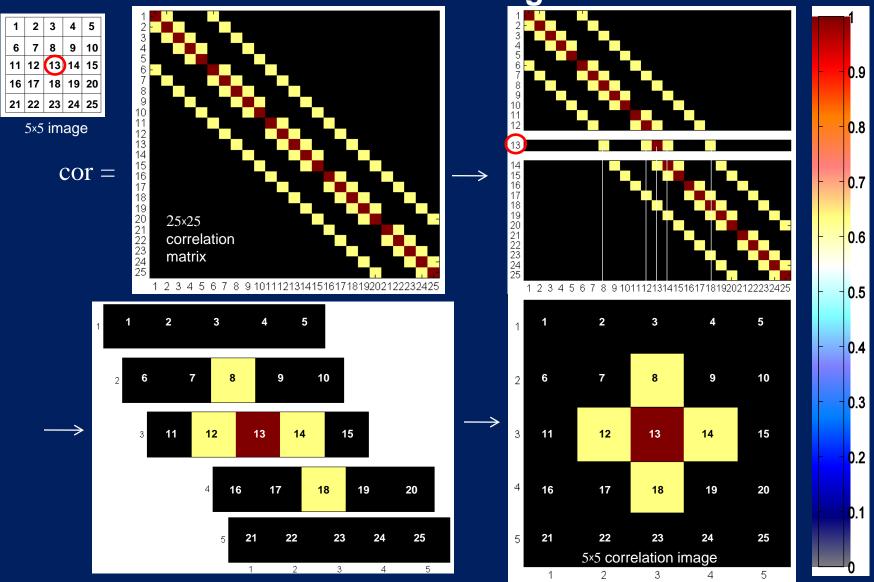
$$\operatorname{cov}(\boldsymbol{\nu}) = (O_I \Omega_a O_k) \Gamma(O_k^T \Omega_a^T O_I^T) = \sum_{2p \times 2p} \quad \longleftarrow \quad \text{Spatial Covariance}$$

$$\mathrm{cor}(
u) = R_{\scriptscriptstyle \Sigma} \longleftarrow_{\scriptscriptstyle \mathrm{Spatial\ Correlation}}$$

So even if $\Gamma = \sigma_k^2 I$, it is not necessarily true that $\Sigma = \sigma_I^2 I$!

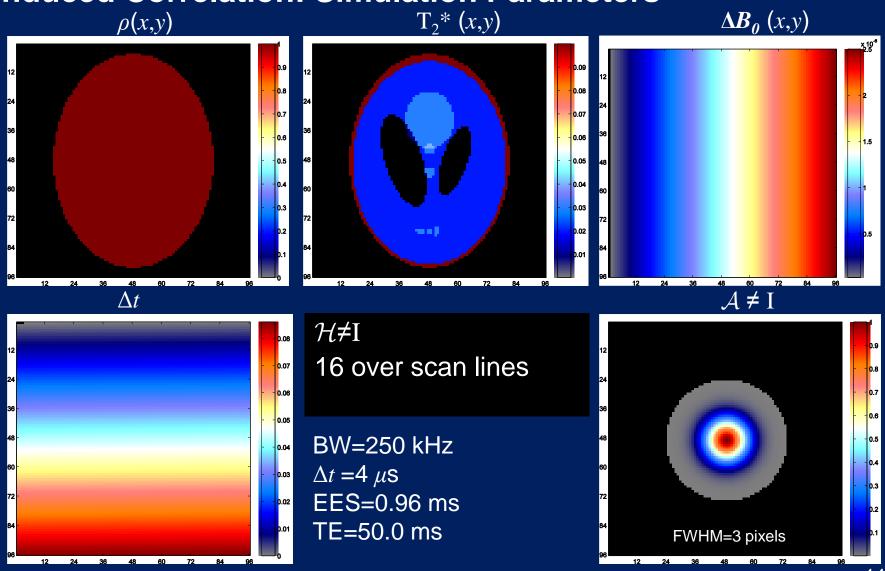
This has H_0 fMRI noise and fcMRI connectivity implications!

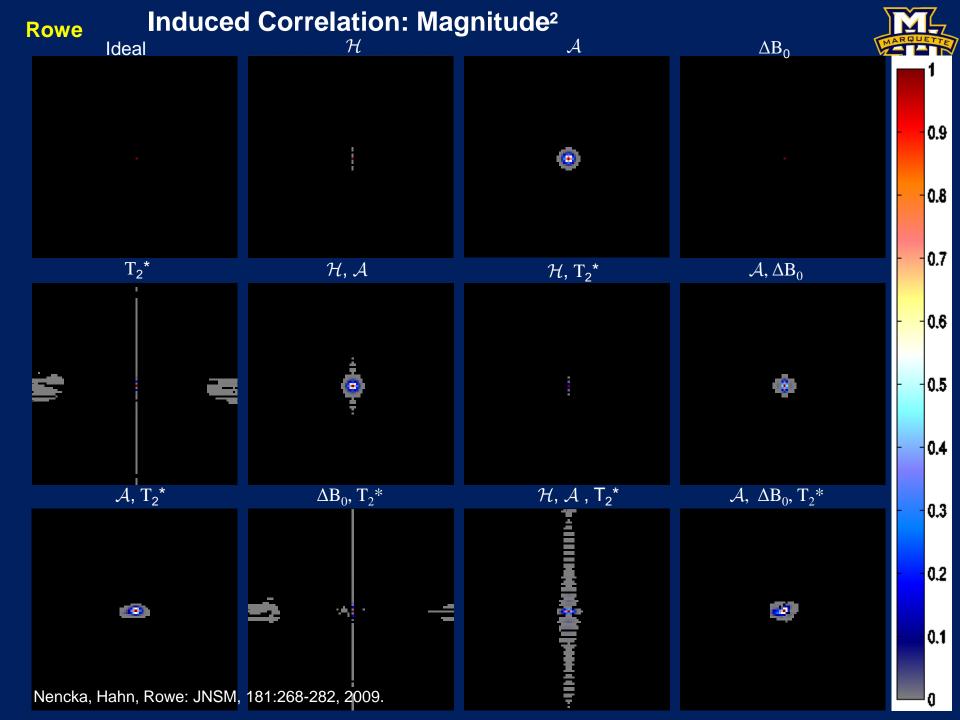
Induced Correlation: Matrix to Image

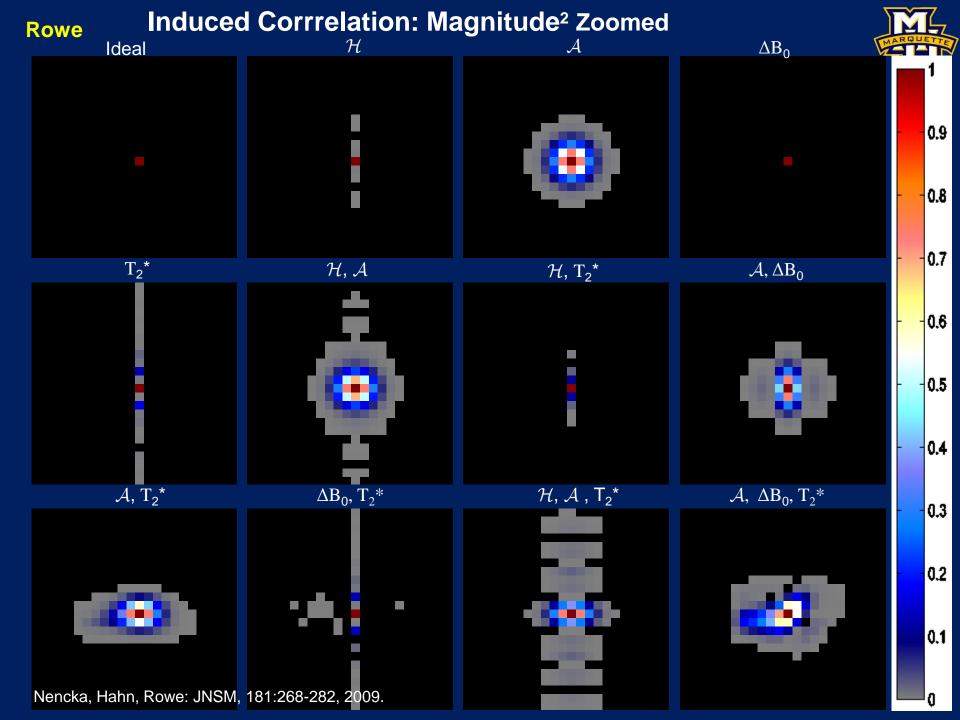


$f(t) = \iint \rho(x, y) e^{-t/T_2^*(x, y)} e^{-i\gamma \Delta B(x, y)t} e^{-i2\pi (k_x x + k_y y)} dxdy$

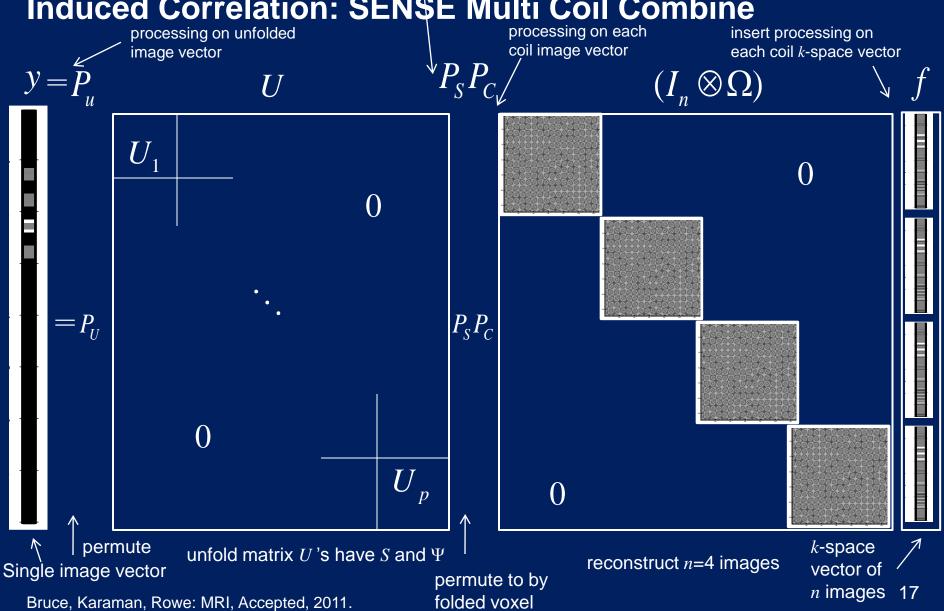
Induced Correlation: Simulation Parameters







Induced Correlation: SEN\$E Multi Coil Combine



Induced Correlation: SENSE Multi Coil Combine

$$y = O_{I} P_{u} U P_{S}P_{C} (I_{n} \otimes \Omega_{a}O_{k}) f$$

where

$$f = (f_1, ..., f_n)'$$
 are coil k -space

 O_k is k-space preprocessing

$$f = P_C \mathcal{R} C \mathcal{F}$$
 permute

$$O_k = \mathcal{A} \mathcal{Z} \mathcal{H} P_R^{-1} \Omega_{row}^{-1} \Phi \Omega_{row} P_R$$

$$\Omega_a$$
 is adj. inverse Fourier matrix $\Omega_a = \Omega$ adjusted for ΔB and for T_2^*

 P_u , P_S , P_C , permutation matrices

U SENSE unfolding matrix

 O_{i} is image space preprocessing

$$O_I = I_2 \otimes S_m$$

Image smoothing

k-space vector censor uturns

row reverse

Induced Correlation: SENSE Multi Coil Combine Statistical Expectation and Covariance.

If
$$E(f)=f_O$$
, then for Mf , $E(Mf)=Mf_O$.

If $cov(f) = \Gamma$, then for Mf, $cov(Mf) = M\Gamma M'$.

This means that with y = Of,

$$E(y) = Of_0$$
 and $cov(y) = O\Gamma O' = \Sigma$

2*p*×**2***p*

$$\Rightarrow \operatorname{cor}(\nu) = D_{\Sigma}^{-1/2} \Sigma D_{\Sigma}^{-1/2}$$

So even if $\Gamma = \sigma^2 I$, it is not necessarily true that $\Sigma = \sigma^2 I$!

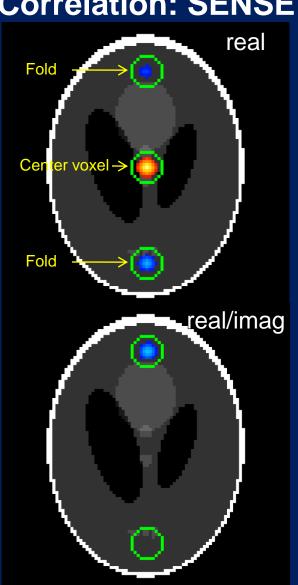
This has H_0 fMRI noise and fcMRI connectivity implications!

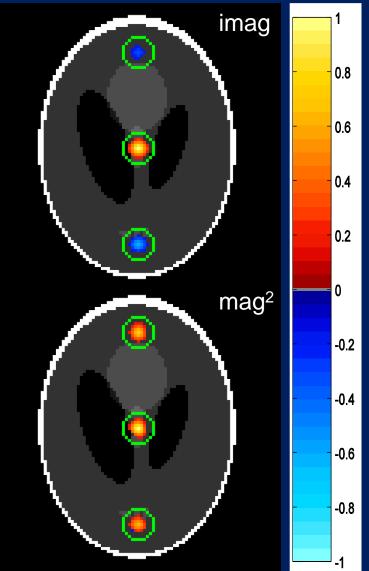
Correlations induced about the center voxel.

Induced Correlation: SENSE Multi Coil Combine

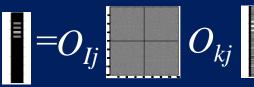
 N_X =96 N_Y =96 n = 4 A = 3FWHM=3

Functional connectivity implications





TH=0.01

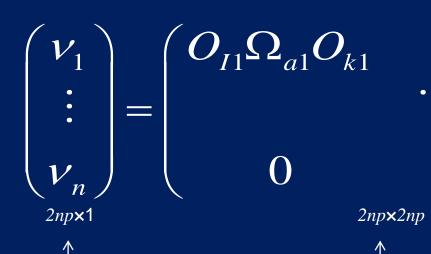


Induced Correlation: Extend to Time Series

Reconstruction of *n* images described as:

$$\nu = I R K f$$
diagonal

$$egin{array}{lll} K & = & BlkDiag(O_{Kt}) \ R & = & BlkDiag(\Omega_{at}) \ I & = & BlkDiag(O_{It}) \end{array}$$



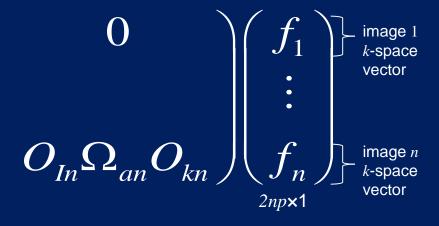
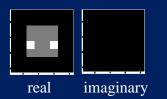


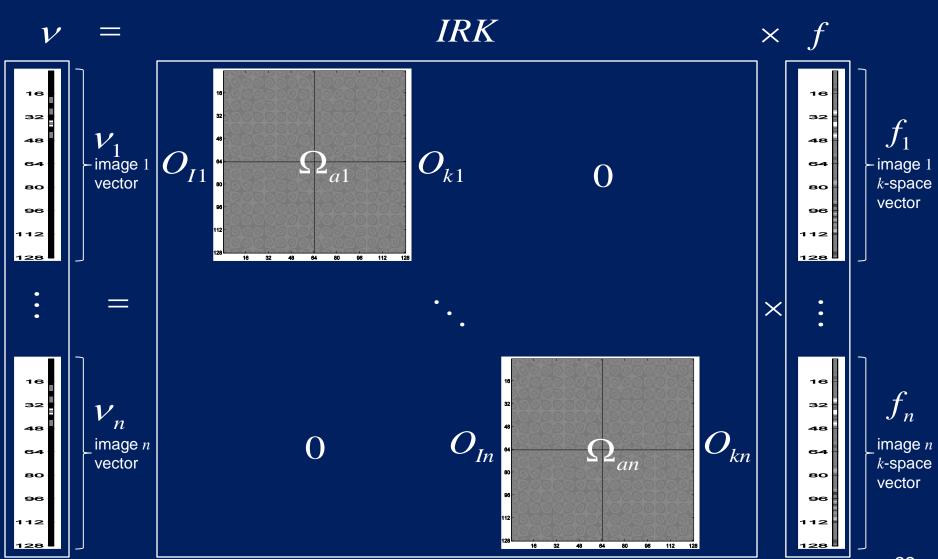
image-space vector of *n* images

Reconstruction *k*-space operation matrix for *n* images

k-space vector of n images



Induced Correlation: Extend to Time Series



Nencka, Rowe: In Progress.

Induced Correlation: Extend to Time Series

(dyn ΔB_0 , Δx , Δt , freq filt)

$$y = T \cdot P \cdot IRK \cdot f$$

 $\begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix} = \begin{pmatrix} O_{T1} & 0 \\ \ddots & \\ 0 & O_{Tp} \end{pmatrix} P \begin{pmatrix} O_{I1}\Omega_{a1}O_{k1} & 0 \\ & \ddots & \\ 0 & O_{Tp} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$ $2np \times 2np \qquad 2np \times 2np \qquad 2np \times 2np$

voxel p series filter

permute from measurements by image to by voxel

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \longleftrightarrow \text{voxel 1 temporally processed series}$$

$$y_j = \begin{pmatrix} y_{Rj} \\ y_{lj} \end{pmatrix} \xrightarrow{n \text{ reals}}$$

$$y_j = \begin{pmatrix} y_{Rj} \\ y_{lj} \end{pmatrix} \xrightarrow{n \text{ neals}}$$

$$y_j = \begin{pmatrix} y_{Rj} \\ y_{lj} \end{pmatrix} \xrightarrow{n \text{ neals}}$$

Nencka, Rowe: In Progress.

Induced Correlation: Mean and Covariance

If
$$E(f)=f_0$$
, then for $E(Of)=Of_0$.

If
$$cov(f) = \Gamma$$
, then for $cov(Of) = O\Gamma O^T$.

This means that with y = TPIRKf.

$$E(y) = TPIRKf_0$$
 Spatio-Temporal Covariance HUGE $\cot(y) = (TPIRK)\Gamma(K^TR^TI^TP^TT^T) = \sum_{2np \times 2np}$

 $\mathrm{cor}(y) = R_{\scriptscriptstyle{\Sigma}}$ Spatio-Temporal Correlation

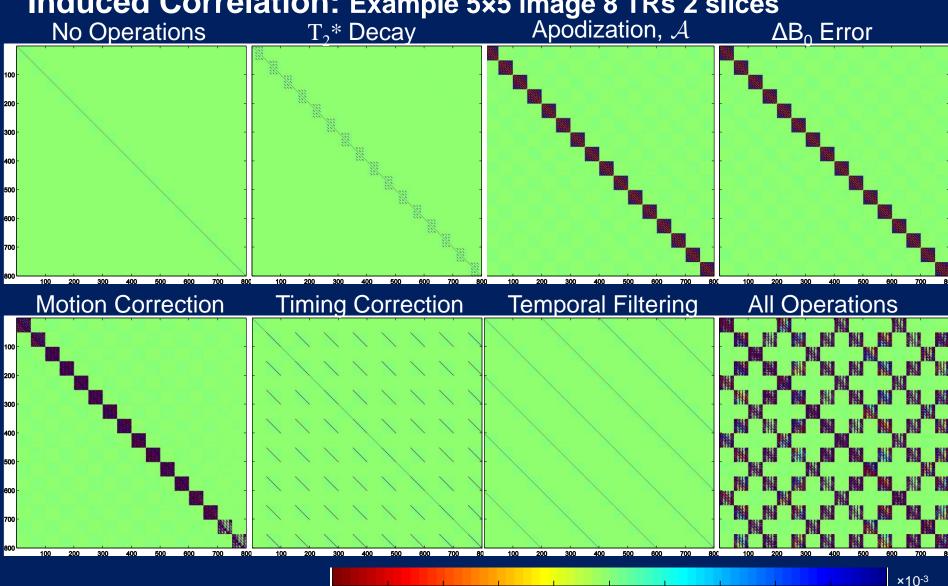
So even if $\Gamma = \sigma_k^2 I$, it is not necessarily true that $\Sigma = \sigma_I^2 I$!

This has H_0 fMRI noise and fcMRI connectivity implications!

O = TPIRK

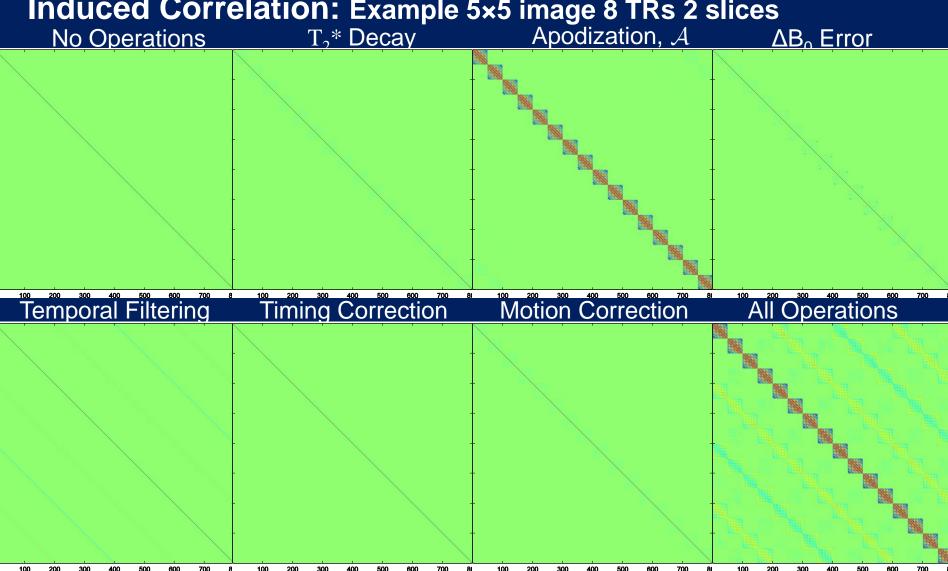
800×800

Induced Correlation: Example 5×5 image 8 TRs 2 slices

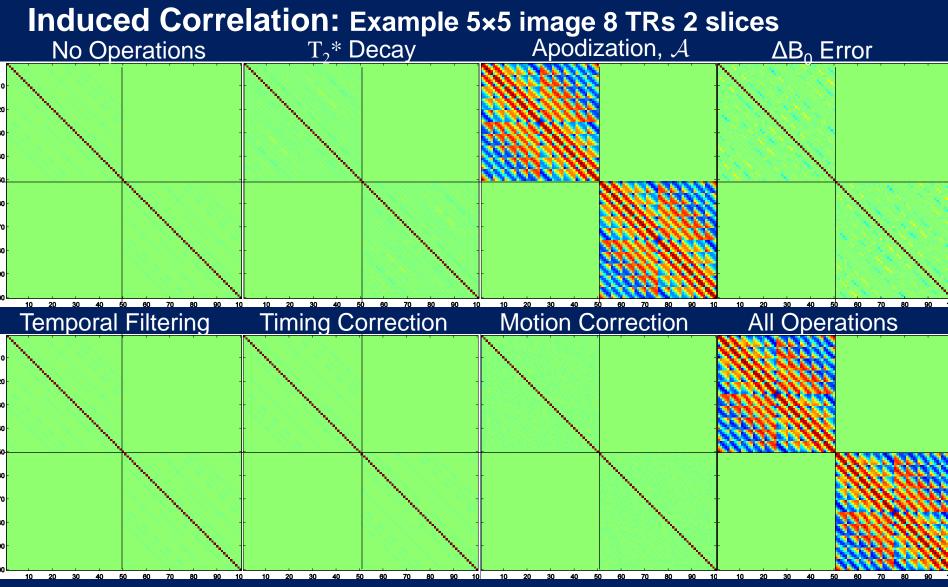


25

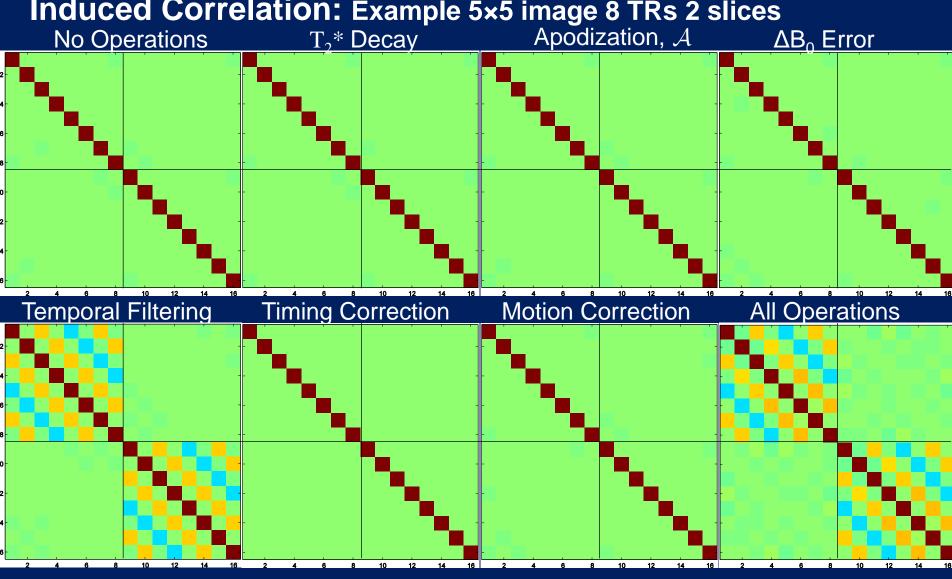
Induced Correlation: Example 5×5 image 8 TRs 2 slices



$\Sigma = OIO^T \rightarrow R_S$



Induced Correlation: Example 5×5 image 8 TRs 2 slices



Utilizing Induced Correlation:

Since for all voxels

Then for voxel j, the R-I cov

$$\Sigma = egin{pmatrix} \Sigma_{1} & \Sigma_{jk} & \Sigma_{jk} \\ \Sigma_{2np imes 2np} & \Sigma_{jk} & \Sigma_{p} \end{pmatrix} \Rightarrow \Sigma_{j} = egin{pmatrix} \Sigma_{jR} & \Sigma_{jRI} \\ \Sigma'_{jRI} & \Sigma_{jI} \end{pmatrix}$$

and the magnitude² covariance is

$$\delta_{j} = tr(\Sigma_{j}) + \mu'_{j}\mu_{j}$$

$$\Lambda_{jj} = 2tr(\Sigma'_{j}\Sigma_{j}) + 4\mu'_{j}\Sigma_{j}\mu_{j} ,$$

$$\Lambda_{jk} = 2tr(\Sigma'_{jk}\Sigma_{jk}) + 4\mu'_{j}\Sigma_{jk}\mu_{k}$$

Utilizing Induced Correlation:

Complex-Valued

$$C_{j} = \begin{pmatrix} \cos \theta_{j1} & 0 \\ & \ddots & \\ 0 & \cos \theta_{jn} \end{pmatrix} S_{j} = \begin{pmatrix} \sin \theta_{j1} & 0 \\ & \ddots & \\ 0 & \sin \theta_{jn} \end{pmatrix}$$

$$\begin{pmatrix} y_{jR} \\ y_{jI} \end{pmatrix} = \begin{pmatrix} C_j X \beta_j \\ S_j X \beta_j \end{pmatrix} + \begin{pmatrix} \eta_{jR} \\ \eta_{jI} \end{pmatrix}, \qquad \eta_j \sim N(0, \Sigma_j)$$

Compute activation individually for each voxel.

Magnitude-Only (assuming high SNR)

$$m_j = X\beta_j + \varepsilon_j,$$

Compute activation individually for each voxel.

Can form larger spatio-tempporal model.

$$oldsymbol{\eta}_{j} \sim N(0, \Sigma_{j})$$

$$\uparrow$$
 Incorporate

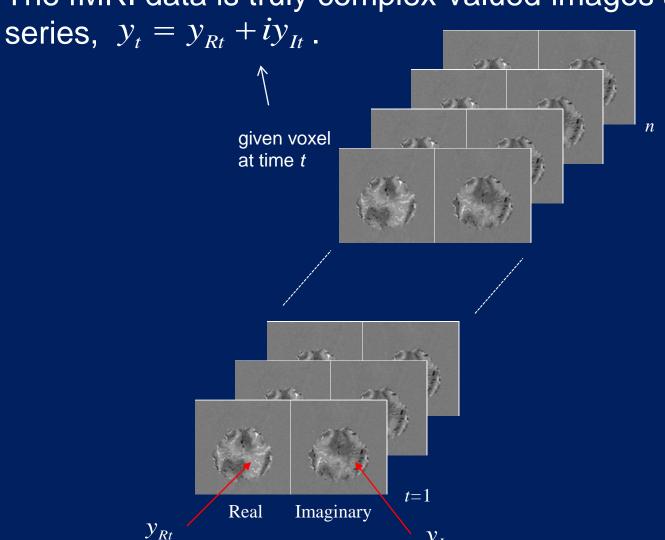
Induced Covariance

$$\varepsilon_j \sim N(0, \Lambda_j)$$

Utilizing Induced Correlation: Complex fMRI

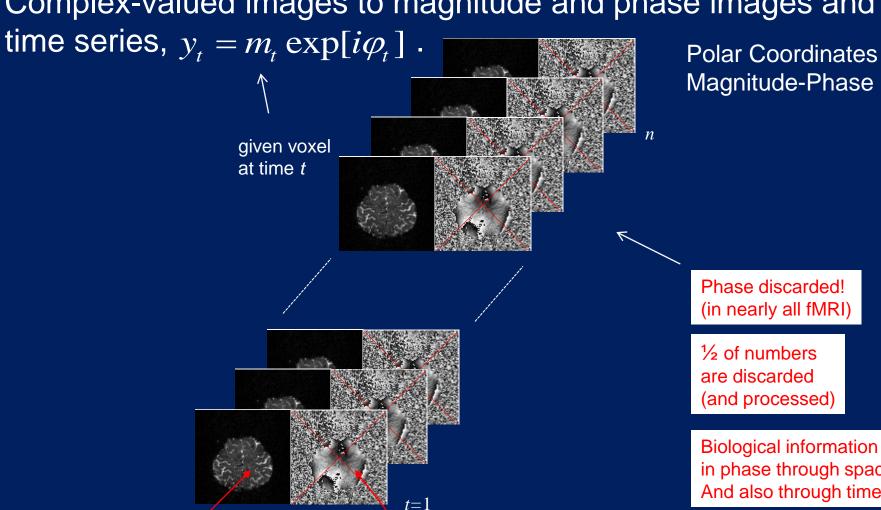
The fMRI data is truly complex-valued images and voxel time

 y_{It}



Cartesian coordinates Real-Imaginary

Utilizing Induced Correlation: Magnitude-Only fMRI Complex-valued images to magnitude and phase images and



 φ_{t}

Magnitude

Phase discarded!

½ of numbers (and processed)

Biological information in phase through space! And also through time.

Utilizing Induced Correlation: Magnitude-Only fMRI Complex-valued images to magnitude and phase images and

time series, $y_t = m_t \exp[i\varphi_t]$. given voxel at time t

Magnitude

Phase

Magnitude-Only

 $\overline{m_t}$

Phase discarded! (in nearly all fMRI)

½ of numbers are discarded (and processed)

Biological information in phase through space! And also through time.

MO PO MP

Results: Independent

20s off+16x(8 s on 8 s off), 276 TRs 12 axial slices, 96×96 , FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 34.6 msFA = 45°, BW = 125 kHz, ES = .708 ms

20s off+16x(8 s on 8 s off), 276 TRs 10 axial slices, 96×96 , FOV = 24 cm TH = 2.5 mm, TR = 1 s, TE = 42.8 msFA = 45°, BW = 125 kHz, ES = .768 ms

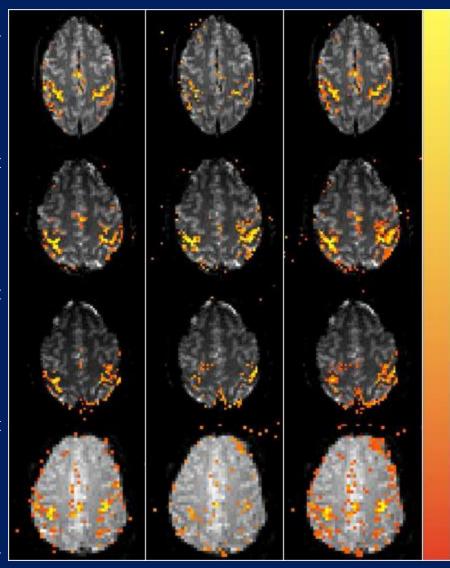
20s off+16×(8 s on 8 s off), 276 TRs 10 axial slices, 96×96 , FOV = 24 cm, TH = 2.5 mm, TR = 1 s, TE = 42.8 ms $FA = 45^{\circ}$, BW = 125 kHz, ES = . 768 ms

 $20s \text{ off} + 10 \times (8 \text{ s on } 8 \text{ s off}), 180 \text{ TRs}$ 9 axial slices, 64×64 , FOV = 24 cm TH = 3.8 mm, TR = 1 s, TE = 26.0 ms $FA = 45^{\circ}$, BW = 125 kHz, ES = .680 ms

tınger Bi finger Breathing

Bi finge none

thresh= 5x10⁻⁴



Rowe: NIMG, 25:1310-1324, 2005.

Rowe: MRM, to appear, 2009.

Hahn, Nencka, Rowe: NIMG, 742-752, 2009. Hahn, Nencka, Rowe: HBM, Online, 2011.

$$\Delta B_{t} = \frac{\arg\left(I_{t} \sum_{j=1}^{n} \left(\frac{I_{j}^{*}}{\mid I_{j} \mid}\right)\right)}{\gamma \text{TE}}$$

Discussion:

When DATA ANLYSTS preprocess RESEARCHERS data,

THEY change the mean and covariance structure.

Many preprocessing operations have been shown

to modify or induce a correlation.

WE need to utilize this correlation in OUR analysis model!

Thank You

Acknowledgements:

Marquette University Iain P. Bruce, M.S. M. Muge Karaman, M.S.

Medical College of Wisconsin Andrew S. Nencka, Ph.D Andrew D. Hahn, Ph.D.