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Abstract: 
The purpose of this study was to use high density surface EMG recordings to quantify stroke-related 

abnormalities in motor unit firing behavior during repeated sub-maximal knee extensor contractions. A 

high density surface EMG system (sEMG) was used to record and extract single motor unit firing 

behavior in the vastus lateralis muscle of 6 individuals with chronic stroke and 8 controls during 

repeated sub-maximal isometric knee extension contractions. Paretic motor unit firing rates were 

increased with subsequent contractions (6.19±0.35 pps vs 7.89±0.66 pps, P <; 0.05) during task phases 

of torque decline as compared to controls (6.95±0.40 pps vs 6.68±0.41 pps). In addition, corresponding 

rates of torque decline were decreased for the paretic leg as compared to the non-paretic leg. These 

results suggest that regulation of declining forces may be impaired post stroke due to prolonged firing 

of paretic motor units. 

SECTION I. Introduction 
Many stroke survivors have long term motor impairments of their legs that limit walking at home and 

in the community[1]. Although the mechanisms of motor impairments are multi-factorial, deficits in 

force generating capabilities of the paretic leg have been associated with abnormalities in the 

kinematics and kinetics of walking [2]–[3][4]. After stroke, there is an obvious loss in force production 

in the muscle [5] due to altered net descending drive from the damaged motor cortex[6]–

[7][8][9][10][11][12][13]. In addition, there is indirect evidence of plastic changes to the intrinsic 

electrical properties of motoneurons post stroke that result in inappropriate activation of the 

musculature and force generation, during resting conditions and during relaxation phases of 

contraction [14], [15]. The authors attribute the prolonged activation of paretic musculature to 

motoneuron hyperexcitability due to dysregulated persistent inward currents. 

In humans, motoneuron firing behavior cannot be directly measured, however, measurements of 

muscle fiber motor unit firing is representative of spinal motoneuron firing behavior because they fire 

in a 1: 1 manner [16]. One mechanism of force regulation of the muscle is through rate coding of the 

motor units (increasing or decreasing the rate of motor unit firing). Studies examining motor unit firing 

behavior in chronic stroke survivors during non-fatiguing contractions have shown abnormalities [17]–

[18][19][20] compared with controls and the non-paretic leg that could interfere with descending 



commands such as (1) lower recruitment thresholds, (2) more depolarized resting membrane potential 

and (3) spontaneous firing. 

Many of the previous studies have focused on alterations in paretic motor unit firing behavior during 

single repetitions of a force matching task. Less is known about paretic motor unit firing behavior 

across multiple repetitions. Quantifying the firing behavior over multiple repetitions of sub-maximal 

contractions is not only functionally relevant (i.e. walking, ascending stairs), but may expose changes in 

paretic motoneuron excitability due to a wind-up phenomenon seen in other patient 

populations[21], [22]. 

SECTION II. Methods 

A. Subjects 
The experimental procedures involving human subjects described in this paper were approved by the 

Institutional Review Board. All participants gave informed consent before participating in the study 

activities. Six subiects with chronic hemiparetic stroke (4 male, 2 female, 58.67±3.91 years, LE Fugl-

Meyer 25/34±3 and eight age matched neurologically intact subj ects participated in the study (5 male, 

3 female, 60.63±3.43 years). Stroke subject inclusion criteria included: single, unilateral stroke 

(obtained through verbal communication from the physician and consistent with neurological physical 

examination); able to ambulate at least 30 feet (with or without an assistive devicej. ≥6 months post 

stroke. Stroke subject exclusion criteria included: history of multiple stroke; brainstem stroke; any 

uncontrolled medical condition; contractures of any lower extremity joints; inability to follow 2–3 step 

commands. 

B. Torque Measurements 
Participants sat on a Biodex chair with their knee flexed to 70° and the leg securely attached to the 

Biodex attachment four cm above the lateral malleolus. This enabled the testing of isometric knee 

contractions. The isometric torque was measured with a six degree-of-freedom load cell (JR3 force-

torque transducer) sampled at 2048 Hz. An EMG-USB2+ amplifier (256-channel regular plus 16-

auxiliary channels, OT Bioelettronica, Turino, Italy) was used to record the force channel. This set-up 

was used to accurately measure the torque (Nm) produced by the knee extensor muscles in the sagittal 

plane (z-axis). 

C. Surface EMG Measurements 
Surface EMG was obtained using a 64 channel 2-D electrode array (13 rows, 5 columns). A double sided 

adhesive sticker designed for and compatible with the array was placed over the array. The holes 

within the adhesive sticker were filled with conductive electrode paste. The array was placed over the 

vastus lateralis, midway between the patella and the greater trochanter. The signals for each channel 

were bandpass filtered between 10 and 500 Hz and amplified by 1000 (v/v) using the EMG-USB2+ 

amplifier. The signal was then sampled at 2048 Hz and recorded using the OT Biolab software 

throughout the duration of the experimental protocol. 



D. Experimental Protocol 
All control subjects performed the protocol with the right leg, and all stroke subjects performed the 

protocol with the paretic leg. Each participant first performed 3-5 baseline maximum voluntary 

contractions (MVC) of the knee extensor muscles. The peak force of all the trials was used as the MVC. 

After at least one minute rest period following the final MVC, subjects performed the ramp and hold 

protocol. The subjects were instructed to contract their knee extensors and generate torques in order 

to trace a trapezoid trajectory displayed on a computer screen. Real-time visual feedback was provided 

to the subject indicating the torque produced by the knee extensor muscles. The trapezoid was 16 s in 

duration consisting of a 4 s rising phase (“Incline,” beginning at 5% of MVC), 4 s hold phase (“Hold,” 

20% of MVC), a 4 s decline phase (back to 5% of MVC), and a 4 s “valley” phase (holding at 5% of MVC). 

One trapezoid cycle was repeated 5 times before completely relaxing the muscle. At least 1 week prior 

to the testing session, subjects completed a familiarization session where they were allowed to 

practice all study procedures. 

E. Data Processing and Statistical Analysis 
Data was processed with Matlab. Torque was zero phased lowpass filtered at 10Hz using a 2nd order 

Butterworth filter prior to analysis. The torque was normalized to the ratio of the torque value (Nm) 

over the max torque value of a ramp and hold cycle. A linear fit was performed over the 4 s phases of 

each trapezoid trajectory and the slope was recorded for each phase. 

Individual EMG channels were visually examined to remove noisy channels. The remaining channels 

were decomposed to attain information of single motor units. Motor unit discharge rates were 

extracted from the surface EMG recordings. Multichannel blind source separation using convolution 

kernel compensation (CKC)[23] was used to identify the motor unit discharge patterns. Identified 

motor units with a pulse-to-noise ratio (PNR) [24]of less than 35 dB were removed from further 

processing. 

Firing rates (pulses per second - pps) of single motor units were calculated by taking the inverse of the 

inter-spike interval. The mean and coefficient of variation of the firing rates for each motor unit were 

determined. Further, the mean and coefficient of variation of the firing rates were determined for each 

4 s phase (incline, hold, decline, and valley) of the trapezoid trajectory for the ramp and hold cycles. 

The firing rates of all the motor units were combined and smoothed using a 4th order, loWpass 

Butterworth filter with a cutoff frequency of 2 Hz. The mean firing rate and coefficient of variation was 

determined. The smoothed data was normalized to the ratio of the firing rate over the max firing rate 

and time locked with the torque trace. A linear fit was performed on the smoothed data coinciding 

with each 4s section of the trapezoid trajectory and the slope was recorded for each phase. 

Data are reported as the mean ± standard error. Separate t-tests (α=0.05) Were performed to compare 

the following variables for the first and fifth cycles of the trapezoid trajectory for both groups (stroke 

and control): mean firing rates during the (1) Incline, (2) Hold, and (3) Decline phase, and the 

normalized slope during the Decline phase. 



SECTION III. Results 
The average number of motor units processed after decomposition for the pre-fatigue and post-fatigue 

ramp and hold cycles were greater for the controls than for the stroke subjects. An average of 10.75 

and 8.20 motor units were processed for the ramp and hold cycles for the controls and stroke subjects, 

respectively (Table 1). 

Figure 1 shows the average firing frequencies for cycle 1 and cycle 5 of the ramp and hold cycles for 

both stroke and controls. The motor unit average firing frequency for stroke subjects significantly 

increased during the decline phase of cycle 5 when compared to the decline phase of cycle 1 for the 

ramp and hold (P<0.05). The decline phase of cycle 1 had an average firing frequency of 6.19±0.35 pps 

compared to 7.89±0.35 pps for the decline phase of cycle 5. Cycle 1 had firing frequencies 

of 7.96±0.41 pps and 8.07±0.36 pps for the incline and hold phases, respectively. Cycle 5 had firing 

frequencies of 8.86±0.35 pps and 8.91±0.53 pps for the incline and hold phases, respectively. The 

incline and hold phases for the stroke subjects were not significantly different for cycle 1 and cycle 5. 

Motor unit firing frequencies for control subjects were not significantly different between cycle 1 and 

cycle 5 of the ramp and hold cycles. Control's incline firing frequencies for cycle 1 and cycle 5 

were 7.74±0.36 and 8.02±0.34, respectively. The hold phase firing frequencies 

were 9.82±0.37 and 9.89±0.36 for cycles 1 and 5, respectively. Cycle 1 had a decline phase firing 

frequencies of 6.95±0.40 compared to a firing frequency of 6.68±0.41 for cycle 5. 

 
Figure 1. A comparison of the firing frequency rates for subsequent contractions for stroke and control subjects. 
(a) Paretic motor unit firing frequency increased during the torque decline phase with subsequent 
contractions (6.19±0.35 pps VS 7.89±0.66 pps, P<0.5);. (b) Control motor unit firing frequency rates were not 
significantly different during the torque decline phase with subsequent contractions (6.95±0.40 pps 
VS 6.68±0.41 pps) 
 

Table 1. Average number of processed motor units 

Number of Motor Units Processed  

Controls Stroke 

10.75 ± 3.61 8.20 ± 1.77 

 

The average decrease in percent task torque per second for the decline phase was significantly greater 

in cycle 1 compared to cycle 5 of the ramp and hold for stroke subjects (P < 0.05). Stroke subjects 

decreased task torque by 13.51±1.66 %/s in cycle 1 compared to 12.34±0.94 %/s in cycle 5. Control 

subjects were not significantly different in decreasing task torque between cycles 1 and 5 of the 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7302811/7318236/7319420/7319420-fig-1-source-large.gif


decline phase for the ramp and hold. On average, controls decreased task torque by 12.05±1.16 %/s 

for cycle 1 compared to 12.66±0.74 %/S for cycle 5 of the decline phase. Figure 2 shows the percent 

decline in task torque per second for the decline phase of the ramp and hold cycles 1 and 5 for both 

stroke and control. 

 
Figure 2. The average decrease in percent task torque per second during the decline phase in subsequent 
contractions for stroke and control subjects. Stroke subjects significantly decreased task torque in cycle 1 
compared to cycle 5 (13.51±1.66%/svs12.34±0.94%/s,P<0.05). Control subjects decreased task torque with no 
significant difference between cycle 1 and cycle 5 12.05±1.16 %/s VS 12.66±0.74. %/s). 
 

SECTION IV. Discussion 
The novel findings of this study are that during repeated sub-maximal knee extensor contractions (1) 

paretic motorunits exhibit increased firing rates during volitional declines in torque as compared to 

control motor units and (2) increasing impairment in the ability to decrease knee extension torque as 

compared to control legs. 

Our findings in the knee extensors are consistent with previous studies showing motoneuron 

hyperexcitability in the arm and hand musculature during tasks involving decreased volitional drive. As 

discussed in these papers, a plausible mechanism for paretic motoneuron hyperexcitability is that 

following a stroke there is decreased activity in corticomotor/corticobulbar descending pathways and 

increased activity in descending monoaminergic pathways originating from the brainstem[14], [15]. 

The monoamines are known to have a strong neuromodulatory effect on motoneurons - amplifying 

synaptic inputs to motoneuron and causing self-sustained firing[25]. We did not see effects of repeated 

contractions on the paretic motor unit firing behavior during the Incline or Hold phases. During both of 

these phases, descending drive is either increasing or being held steady and our findings may reflect a 

saturation in paretic motor unit firing rates seen by others[23],[24][25][26]. 

From a clinical standpoint, these data suggest that prolonged/inappropriate muscle activation may be 

worse when the individual is engaging in activities that require repeated contraction/relaxation of the 

musculature. Future studies will address whether this abnormal firing response can be modulated in 

order to improve force regulation post stroke. 
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