
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

3-1-2015

Integrating Data Transformation in Principal
Components Analysis
Mehdi Maadooliat
Marquette University

Jianhua Z. Huang
Texas A & M University - College Station

Jianhua Hu
University of Texas M.D. Anderson Cancer Center

Accepted version. Journal of Computational and Graphical Statistics, Vol. 24, No. 1 (March 2015):
84-103. DOI. © 2015 Taylor & Francis. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213076873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1080/10618600.2014.891461

Integrating Data Transformation in Principal Components

Analysis

Mehdi Maadooliat, Jianhua Z. Huang and Jianhua Hu∗

Abstract

Principal component analysis (PCA) is a popular dimension reduction method to reduce

the complexity and obtain the informative aspects of high-dimensional datasets. When the

data distribution is skewed, data transformation is commonly used prior to applying PCA.

Such transformation is usually obtained from previous studies, prior knowledge, or trial-and-

error. In this work, we develop a model-based method that integrates data transformation

in PCA and finds an appropriate data transformation using the maximum profile likelihood.

Extensions of the method to handle functional data and missing values are also developed.

Several numerical algorithms are provided for efficient computation. The proposed method

is illustrated using simulated and real-world data examples.

Keywords: Functional PCA; Missing data; PCA; Profile likelihood; Transformation model

1 Introduction

Principal component analysis (PCA) and its extensions are commonly used dimension reduction

techniques that transform a collection of correlated variables into a small number of uncorre-

lated variables called principal components. Two common approaches of motivating the PCA

are (a) finding a small number of linear combinations of the variables that account for most

of the variance in the observed data (Hotelling, 1933); and (b) obtaining best low-rank ma-

trix approximation of the data matrix (Pearson, 1901; Jolliffe, 2002, Section 3.5). These two

∗Mehdi Maadooliat (mehdi@mscs.mu.edu) is Assistant Professor, Department of Mathematics, Statistics and

Computer Science, Marquette University, WI; Jianhua Z. Huang is Professor, Department of Statistics, Texas

A&M University, College Station, TX; and Jianhua Hu is Associated Professor, Department of Biostatistics,

Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX.

1

approaches boil down respectively to computation of the spectral decomposition of the sample

covariance matrix and the singular value decomposition (SVD) of the data matrix, and give the

same result. PCA has also been used as an important tool for unsupervised functional data

analysis (Ramsay and Silverman, 2005). In the functional PCA (FPCA), some regularization

is needed to take into account the underlying smoothness of the functional data. Rice and

Silverman (1991) and Silverman (1996) presented two alternative formulations of FPCA by reg-

ularized variance maximization, and Huang et al. (2008) formulated the FPCA using penalized

low-rank approximation.

It is known that the standard PCA may not be the suitable technique to apply when the

data distribution is skewed or there are outliers. Several extensions of PCA have been developed

to handle such situations; see, for example, Croux and Ruiz-Gazen (2005), Higuchi and Eguchi

(2004), Hubert et al. (2002), Locantore et al. (1999), Maronna (2005) and Hubert et al. (2009).

Alternatively, data transformations have been used prior to applying PCA and functional PCA

(e.g., Hu et al., 2006; Huang et al., 2008). Data transformations have also been applied when

investigating the structure of the covariance matrix (e.g., Zimmerman and Núñez Antón, 2009),

which is highly related to PCA. However, the choice of the transformation usually comes from

previous studies, prior knowledge, or trial-and-error. The goal of this paper is to develop an

automatic, data-driven method for finding an appropriate data transformation and obtaining

the principal components simultaneously.

We make use of the connection of PCA and a probabilistic model to obtain such an automatic

procedure. Consider the following fixed effects model

Y = UV> + E, (1)

where Y is an n×m data matrix whose (i, j) entry yij is the ith observation of the jth variable,

U and V are respectively n × d and m × d nonrandom matrices (d ≤ min(m,n)), and E is an

n×m matrix of random errors. We assume that εij ’s, the entries of E, are independent random

variables from a normal distribution with mean 0 and constant variance σ2. For identifiability,

it is required that (a) U>U is a diagonal matrix; and (b) V>V is the identity matrix. Under

model (1), the MLE of U and V minimizes the reconstruction error ‖Y−UV>‖F where ‖ · ‖F is

the Frobenius norm. According to the formulation of PCA as seeking the best low-rank matrix

approximation, the kth column of V is the kth principal component weight vector and the kth

column of U contains the corresponding principal component (PC) scores. Tipping and Bishop

2

(1999) proposed a closely related random effects model where U is assumed to be random and

showed that up to a scale change, the MLE of their model is equivalent to the PCA. We adopt

the fixed effect model (1) in this paper because it is exactly equivalent to the best low-rank

approximation formulation of the PCA.

To incorporate data transformation, we modify the model (1) to

f(Y|η) = UV> + E, (2)

where f(·|η) is a monotonic function defined over the entries of Y, and η is the unknown vector

of transformation parameters. Here, we use the notational convention that when a function is

applied to a matrix, it is an elementwise operation. The MLE will yield simultaneous estimation

of the transformation parameters, the principal component weights and scores. In particular, the

transformation parameters can be estimated using the maximum profile likelihood. This model

can also easily incorporate functional data. When the rows of Y represent discretely sampled

functions, we can introduce a roughness penalty on each column of V to ensure the desired

smoothness on the functional principal component weight functions and apply the maximum

penalized likelihood for parameter estimation.

Since missing observations are often encountered in real applications, another goal of the

paper is to extend our integrated approach of PCA with data transformation to handle miss-

ing data. Having a probabilistic model, the solution is conceptually simple—we just need to

focus on the observed data likelihood. However, computation of the profile likelihood of the

transformation parameters is not straightforward. We developed two algorithms to facilitate

the computation. One algorithm iteratively imputes the missing data and then resorts to the

complete data procedures. It is essentially an implementation of the expectation-maximization

(EM) algorithm. The other algorithm is an extension of the power iteration (e.g., Appendix A

of Jolliffe, 2002). Both algorithms are also extended to deal with functional data.

The rest of the papers is organized as follows. The details of the proposed methods in-

cluding computational algorithms are given in Sections 2 and 3, which treat the ordinary and

functional data structure respectively. In Section 4, we use simulations and two real datasets to

demonstrate the applicability of the proposed methods. Some concluding remarks are given in

Section 5. The appendix contains detailed derivations of the algorithms presented in the main

text.

3

2 Ordinary data structure

We present our methods in two consecutive sections; this section focuses on the ordinary data

structure and the next section considers the functional data structure.

2.1 Integrating the data transformation to PCA by profile likelihood

Denote Θ = (η>, vec(U), vec(V), σ2)>. The log-likelihood function for the transformation model

(2) is

`(Θ) = − 1

2σ2
||f(Y|η)− UV>||2 − nm

2
log(σ2) +

n∑
i=1

m∑
j=1

{
log |f ′(yij |η)|

}
. (3)

We estimate the transformation parameter η by the maximum profile likelihood and then obtain

the principal component weight vectors and scores using the MLE when fixing η at its MLE.

The profile log-likelihood function of η has the expression

`p(η) = − 1

2σ̂2η
||f(Y|η)− ÛηV̂>η ||2 −

nm

2
log(σ̂2η) +

n∑
i=1

m∑
j=1

{
log |f ′(yij |η)|

}
, (4)

where Ûη, V̂η, and σ̂2η are the MLEs when fixing the transformation parameter at η.

For fixed η, the MLEs of U and V minimize the reconstruction error ‖f(Y|η) − ÛηV̂>η ‖.

The solution can be found by applying the Eckart-Young theorem (or approximation theorem;

see Stewart (1993) for its history). The explicit forms of the MLEs of Uη, Vη, and σ2η are

Ûη = UdΣd, V̂η = Vd, (5)

σ̂2η =
1

nm
||f(Y|η)− ÛηV̂>η ||2,

where using the SVD of the f(Y|η) = UΣV>, Ud and Vd are the first d columns of U and

V, respectively, corresponding to the d largest singular values, recorded in the diagonal matrix,

Σd. We do not need to compute the full SVD; an efficient algorithm for the truncated SVD can

be used to speed up the calculation of the leading singular vectors (e.g., Wu and Simon, 2000).

The following is the algorithm for the proposed method of integrating the data transforma-

tion and the PCA. This algorithm is referred to as “PCA.t”.

1. Start from an initial estimate of η, denoted by η0 (t = 0). Usually we pick the initial

estimate corresponding to the model with no transformation.

4

2. At the tth iteration, let Xt be the n×m matrix with the (i, j)th entry f(yij |ηt). Obtain

the rank-d truncated SVD of Xt as UdΣdVd
> and use equation (5) to obtain Ût, V̂t, and

σ̂2t , where Ût, V̂t, and σ̂2t are Ûη, V̂η, and σ̂2η at η = ηt.

3. Obtain the updated value of ηt+1 via an optimization algorithm to increase the value of

the profile log-likelihood function `p(ηt) defined in equation (4).

4. Iterate between the last two steps until convergence is reached.

The algorithm may converge to a local maximum. It is advisable to rerun the algorithm

several times with different initial values of η0 and use the one that gives the maximum value

of the profile likelihood.

A variety of optimization techniques, such as the downhill simplex algorithm or gradient-

based algorithms (e.g., Avriel, 1976) can be used in Step 3 to maximize the profile likelihood.

While the algorithm is general enough to incorporate various transformation families, our im-

plementation has focused on the widely used power (Box-Cox) transformation family (Box and

Cox, 1964). The power transform is parameterized by a non-negative parameter β that in-

cludes the logarithm, square root, and multiplicative inverse as special cases. The Box-Cox

transformation for each element of Y is defined as

f(yij |β) =

yβij − 1

β
, β 6= 0,

log(yij) , β = 0.

(6)

We used the L-BFGS-B algorithm (Byrd et al., 1994) in our implementation to maximize the

profile likelihood for the univariate parameter in the power transformation family.

2.2 Handling missing data

We give extensions of the algorithm given in the previous subsection when there are missing

data. We assume that missing values are “missing at random”, that is, the cause of the missing

data is unrelated to both the observed values and the missing values. In this case, the sample

is an unbiased representation of the population of interest and observed data likelihood can be

used for statistical inference (Daniels and Hogan, 2008).

Denote Y as the complete data matrix including observed and missing data. Define the

indicator matrix Im such that the (i, j)th element of Im is set to be 1, if the data point has

been observed and to be 0, otherwise. We define the indicator matrix Icm to be 1m1>m − Im,

5

where 1m is a m-vector of ones. We use the symbol � for the Schur product, which is defined

as the entrywise product of two matrices of the same dimension. In the presence of missing

observations, the observed data log-likelihood function has the following form:

`(Θ) = − 1

2σ2
||Im �

(
f(Y|η)− UV>)||2 − N(Im)

2
log(σ2) +

∑
(i,j):Im(i,j)=1

{
log |f ′(yij |η)|

}
, (7)

where N(Im) is the number of actual observations. Equation (7) can be seen as an extension of

(3) that excludes the missing data and focuses on the remaining observed-data points.

Now, we extend the profile likelihood approach in Section 2.1 to estimate η. However, for

a fixed η, there is no direct solution like (5) to maximize the given log-likelihood function in

the presence of missing observations. We propose two iterative algorithms for maximizing the

profile log-likelihood of η. The first algorithm iteratively imputes the missing data and then

apply the SVD of a complete data matrix. The second algorithm avoids imputing the missing

observations and updates the singular vectors and the singular values using modified power

iterations.

To describe the first algorithm, for fixed transformation parameter η, define Xη to be

the complete n × m data matrix so that the observed elements are Im � f(Y|η) and the

missing elements are Icm�Xη. The algorithm starts from zero imputation (replacing the missing

observations with zeros) and subsequently replaces the missing values with the associated values

from the low-rank approximation of the complete data matrix from the previous iteration step.

Algorithm 1:

1. Set t← 0, and let Xt = Im �Xη.

2. Repeat the following steps until convergence.

(a). Obtain the rank-d truncated SVD of the matrix Xt as UdΣdVd
>

(b). Define Xt+1 = Im �Xη + Icm � (UdΣdVd
>).

(c). Set t← t+ 1.

3. After convergence, record Ud, Vd, and Σd as the output of this algorithm.

This algorithm is not new; Hastie et al. (1999) showed that the maximizer of (7) is a fixed

point of this algorithm. Beckers and Rixen (2003) used a similar algorithm to impute the

missing observations in incomplete oceanographic data sets. The contribution here is to show

this algorithm is essentially an EM algorithm (Dempster et al., 1977) to obtain the MLEs of

6

U and V in presence of missing observations for a fixed η (see Appendix for derivation). The

Algorithm 1 has the advantage of obtaining the first d components of the SVD simultaneously

based on maximizing the complete data log-likelihood function. However, similar to application

of the EM in other contexts, the convergence of the algorithm could be very slow.

The second algorithm cyclically updates the singular vectors. In each cycle, we update the

kth singular vector (where 1 ≤ k ≤ d) based on one iteration of the power algorithm with respect

to the associated observed residual matrix (subtract the subspace spanned by the remaining

d−1 singular vectors from the observed-data matrix). This algorithm does not require imputing

missing data. Derivation of the algorithm can be found in the Appendix.

Algorithm 2:

1. Set t← 0, and obtain the rank-d truncated SVD of the matrix Im �Xη as UdΣdVd
>.

2. Repeat the following steps until convergence.

(a). For k = 1, · · · , d,

i. Let Xt,k = Im � (Xη −U−kΣ−kV
>
−k).

ii. Set ut,k = {diag(ImV2
·k)}−1Xt,kV·k, and vt,k = {diag(I>mU2

·k)}−1X>t,kU·k.

iii. Normalize ut,k and vt,k to norm one vectors.

iv. Update U·k = ut,k, V·k = vt,k and Σkk =
(u>t,kXt,kvt,k)

(u2>
t,k Imv2t,k)

.

(b). Set t← t+ 1

3. After convergence, record Ud, Vd, and Σd as the output of this algorithm.

In this algorithm, Σ−k is a submatrix of Σd after removing the kth row and column, Σkk

denotes the (k, k)th element of the matrix Σ, U·k stands for the kth column of U, U−k is the

submatrix formed by removing the kth column of Ud, and we define U2
·k as U·k � U·k. We

consider similar definitions for V·k, V−k, V2
·k, v

2
t,k and u2

t,k. Moreover, the operator diag(·) is

defined on vectors, and the output is a diagonal matrix whose diagonal elements equal to the

input vector. The latter algorithm is the generalization of the power algorithm based on the

observed values to obtain the first d components of SVD sequentially. It is much faster than

the first algorithm; mainly due to the fact of omitting the calculation of the truncated SVD in

each iteration. Note that, Algorithm 2 can not be easily extended to simultaneously obtain the

singular vectors. The reason is that the QR decomposition, which is necessary at the end of

7

each power iteration (Trefethen and Bau, 1997), does not take into account the missing data

structure.

Let Ud, Vd, and Σd be the output of either Algorithm 1 or 2 in presence of missing values.

Following the model (2) and the log-likelihood function (7), for a fixed parameter η, the MLEs

for the rest of parameters are

Ûη = UdΣd, V̂η = Vd, (8)

σ̂2η =
1

N(Im)
||Im �

(
f(Y|η)− ÛηV̂>η

)
||2.

The derivation of (8) is given in the Appendix. As a direct consequence of (8), we obtain the

profile log-likelihood function of η as

`p(η) = − 1

2σ̂2
η

||Im �
(
f(Y|η)− ÛηV̂>

η

)
||2 − N(Im)

2
log(σ̂2

η) +
∑

(i,j):Im(i,j)=1

{
log |f ′(yij |η)|

}
. (9)

Using either Algorithm 1 or 2 mentioned above and equation (9), we can modify the PCA.t

algorithm to handle the missing data. We refer to the modified algorithm as “PCA.tm”. The

main differences between the algorithms PCA.tm and PCA.t are (a) the Ûη, V̂η, and σ̂2η are not

the direct solution of the SVD of the data matrix, and we may use either the Algorithm 1 or 2

to obtain these quantities in the second step; (b) the objective function in the third step is not

the profile log-likelihood (4) based on the complete data but the profile log-likelihood (9) based

on the incomplete data.

3 Functional data structure

3.1 Integrating the data transformation in functional PCA

For functional data, we still use the model (2) to integrate data transformation to PCA. The

functional structure of the data suggests that each PC weight vector, i.e., each column of V,

should be evaluations of a smooth function at a grid. To ensure the smoothness of the FPC

weight vector, we consider the penalized log-likelihood

p`(Θ) = `(Θ)− pen(V; Ω),

where `(Θ) is the log-likelihood function given in (3), and Ω is a non-negative definite roughness

penalty matrix.

8

Following Huang et al. (2008), we define the penalty term based on a common penalty

parameter α̃ for all of the FPC weight vectors as follows:

p`(Θ) = `(Θ)− α̃tr(U>UV>ΩV). (10)

Similar to the previous section, we estimate the transformation parameter η based on the pe-

nalized profile log-likelihood. Specifically, denoting α = α̃/2σ2, we maximize p`(Θ) in equation

(10) for fixed parameters η and α with respect to U and V. This maximization problem is

equivalent to minimizing the following penalized reconstruction error criterion

||Xη − UV>||2 + αtr
(
U>UV>ΩV

)
, (11)

for a fixed η and α, where Xη = f(Y|η). This is the penalized low-rank approximation

formulation of FPCA in Huang et al. (2008).

To see the connection between the above formulation and the maximum variance formulation

of Silverman (1996), one observes that for a fixed V, the value of U that minimizes the penalized

reconstruction error is

U = XηV{V>(I + αΩ)V}−1.

Plugging this U back into criterion function (11), one can see that minimizing the resulting

criterion function is same as maximizing

tr
(
V>X>η XηV{V>(I + αΩ)V}−1

)
,

with respect to V, which is essentially the approach of Silverman (1996).

Fixing the parameters η and α, and using the half-smoothing technique (Silverman, 1996;

Huang et al., 2008), we can rewrite the penalized reconstruction error (11) as

||Xη||2 − ||X̃η||2 + ||X̃η − UṼ>||2,

where X̃η = XηS
1/2
α and Ṽ = S

−1/2
α V for Sα = (I + αΩ)−1. Clearly the minimizer of the

reconstruction error may be obtained by the rank-d truncated SVD of X̃η. Interpreting S
1/2
α as

a half-smoothing operator, the transformed matrix X̃η is obtained by half-smoothing the rows

of the transformed data matrix Xη. After Ṽ is calculated as the first d right singular vectors of

X̃η, we half-smooth it to obtain the smoothed PC function V = S
1/2
α Ṽ. Note that the resulting

U and V are the minimizer of the criterion (11). Therefore, by considering the truncated SVD

9

of X̃η as UdΣdṼd
>

, and fixing the parameters η and α, the explicit forms of the penalized

MLEs for the rest of the parameters are

Ûη = UdΣd, V̂η = S1/2
α Ṽd, (12)

σ̂2η =
1

nm
{||f(Y|η)− ÛηV̂>η ||2 + αtr(Û>η ÛηV̂>η ΩV̂η)}.

Consequently, the penalized profile log-likelihood function is

p`p(η) = − 1

2σ̂2η
{||f(Y|η)− ÛηV̂>η ||2 + αtr(Û>η ÛηV̂>η ΩV̂η)}

−nm
2

log(σ̂2η) +
n∑
i=1

m∑
j=1

{
log |f ′(yij |η)|

}
. (13)

We present the functional version of PCA.t algorithm, referred to as FPCA.t, as follows:

1. Start from an initial estimate of η, denoted by η0 (t = 0). Usually we pick the initial

estimate associated with the model with no transformation.

2. Let Xt be the n×m matrix with the (i, j)th entry f(yij |ηt).

(a). Use the cross-validation technique given in Section 3.2 to obtain the α for fixed ηt.

(b). Define X̃t = XtS
1/2
α . Obtain the rank-d truncated SVD of X̃t as UdΣdṼd

>
and use

equations (12) to obtain Ût, V̂t, and σ̂2t , where Ût, V̂t, and σ̂2t are Ûη, V̂η, and σ̂2η at

η = ηt.

3. Obtain the updated value of ηt+1 via an optimization algorithm to increase the value of

the penalized profile log-likelihood function p`p(ηt) defined in (13).

4. Iterate between the last two steps until convergence is reached.

3.2 Choosing the penalty parameter

To select the penalty parameters, we adopt the cross-validation (CV) and generalized cross-

validation (GCV) criteria developed in Huang et al. (2008). For a fixed parameter η, consider

the SVD of XηS
1/2
α = UΣṼ and define V = S

1/2
α Ṽ. Let Ud and Vd be the first d columns

of U and V respectively, and Σd be a diagonal matrix formed based on the first d diagonal

elements of Σ or the d largest singular values of XηS
1/2
α . The CV and GCV criteria are defined

as follows:

CV (α) =
1

m

m∑
j=1

[{(I− Sα)(X>η Ud)}jj]
(1− {Sα}jj)

, GCV (α) =
||VdΣd −X>η Ud||2/m
{1− tr(Sα)/m}2

.

10

Huang et al. (2008) showed that these CV and GCV criteria can be derived from the basic idea

of cross-validation and generalized cross-validation of Craven and Wahba (1979).

3.3 Missing data and the functional data structure

Missing values commonly occur in practice due to the unavailability of the subjects over time

sequences, deficiency of the measurement devices in some locations, and other limits and con-

straints. One may ignore the functional structure and use the PCA.tm algorithms in Section 2.2

to find the transformation parameter and impute the missing data, then calculate the functional

PCA. This two-step procedure is however ad-hoc. Here, we provide a solution that uses the

penalized likelihood function (10) in the presence of missing observations.

As in Section 3.1, consider the penalized reconstruction error for a fixed η and α, with

respect to the observed-data points. The penalized reconstruction error has the following form

O(U,V) = ||Im �
(
Xη − UV>

)
||2 + αtr(UU>VΩV>). (14)

Due to the presence of missing observations, finding the Û and V̂ that minimize (14) is not

straightforward. Therefore, we present two iterative algorithms to find the smoothed SVD of

the incomplete data matrix. These two algorithms are extensions of Algorithms 1 and 2 to

functional data.

Algorithm 3 below requires imputation of missing data and can be derived as a majorization-

minimization (MM) algorithm (see Appendix for derivation). In general, the MM algorithm can

be considered as a class of algorithms that contains the EM algorithm as a special case (Hunter

and Lange, 2004). In the majorization step, a surrogate function has been obtained so as to

be tangent to the criterion function at (Ut,Vt), but larger than this criterion function for any

other values of (U,V). The minimization step consists of minimizing the surrogate function

with respect to U and V to obtain (Ut+1,Vt+1), which results in O(Ut+1,Vt+1) ≤ O(Ut,Vt).

Repeating the iterations will lead to a local minimum; see Hunter and Lange (2004) for details.

Algorithm 3

1. Set t← 0, and let Xt = Im �Xη.

2. Repeat the following steps until convergence.

(a). Let X̃t = XtS
1/2
α . Obtain the rank-d truncated SVD of the matrix X̃t as UdΣdṼd

>
.

Let Vd = S
1/2
α Ṽd.

11

(b). Define Xt+1 = Im �Xη + Icm � (UdΣdVd
>).

(c). Set t← t+ 1.

3. After convergence record Ud, Vd, and Σd as the output of this algorithm.

Although the above MM algorithm has a nice property of simultaneously obtaining the

dominant smoothed principal components, similar to Algorithm 1 presented in Section 2.2, it

may suffer from slow convergence. We thus develop an extension of Algorithm 2 as follows (see

Appendix for derivation):

Algorithm 4:

1. Set t← 0, and obtain the rank-d truncated SVD of the matrix Im �Xη as UdΣdVd
>.

2. Repeat the following steps until convergence.

(a). For k = 1, · · · , d,

i. Let Xt,k = Im � (Xη −U−kΣ−kV
>
−k).

ii. Set ut,k = {diag(ImV2
·k + αV>·kΩV·k1)}−1XkV·k,

and vt,k = {diag(I>mU2
·k) + αΩ}−1X>k U·k.

iii. Normalize the vectors ut,k and vt,k to have unit length.

iv. Update U·k = ut,k, V·k = vt,k and Σkk =
(u>t,kXt,kvt,k)

(u2>
t,k Imv2t,k + αv>t,kΩvt,k)

.

(b). Set t← t+ 1.

3. After convergence, record Ud, Vd, and Σd as the output of this algorithm.

Similar to Algorithm 2, this is an extension of the power algorithm for computing singular

vectors. This algorithm differs from Algorithm 2 in that (a) different weight matrices are

premultiplied in Step 2(a)-ii and (b) different normalizing factors are used to obtain the singular

values in Step 2(a)-iv.

Let Ud, Vd, and Σd be the output of either Algorithm 3 or 4 in presence of missing values.

Following the model (2) and the penalized log-likelihood function (10), for a fixed parameter η,

the penalized MLEs for the rest of parameters are

Ûη = UdΣd, V̂η = Vd, (15)

σ̂2η =
1

N(Im)
{||Im �

(
f(Y|η)− ÛηV̂>η

)
||2 + αtr(Û>η ÛηV̂>η ΩV̂η)},

12

The derivation of (15) is given in the Appendix. As a direct consequence of (15), we obtain the

penalized profile log-likelihood function as

p`p(η) = − 1

2σ̂2η
{Im � ||f(Y|η)− ÛηV̂>η ||2 + αtr(Û>η ÛηV̂>η ΩV̂η)}

−N(Im)

2
log(σ̂2η) +

∑
(i,j):Im(i,j)=1

{
log |f ′(yij |η)|

}
. (16)

The FPCA.t algorithm can then be easily modified to handle the missing data. We refer to the

modified algorithm as “FPCA.tm”. The main differences between the algorithms FPCA.tm and

FPCA.t are (a) equation (15) is used to compute the MLEs Ûη, V̂η, and σ̂2η for fixed η; (b)

equation (16) is used to compute the profile log-likelihood.

4 Data Examples

In this section we illustrate the proposed methods using simulations and two real datasets.

4.1 Simulation

We considered the following data generating model:

xij = ui1v1(tj) + ui2v2(tj) + εij , i = 1, . . . , n; j = 1, . . . ,m, (17)

where ui1
i.i.d∼ πN(µ1, σ

2) + (1 − π)N(−µ1, σ2), ui2
i.i.d∼ πN(µ2, σ

2) + (1 − π)N(−µ2, σ2), and

εij
i.i.d∼ N(0, σ2). The parameters were set as n = m = 101, π = 0.95, µ1 = 3000, µ2 = 200,

σ = 10, and the 101 grid points tj are equally distanced from −1 to 1. We specified the

underlying functional principal components as follows:

v1(t) =
1

s1
{t+ sin(πt)} and v2(t) =

1

s2
cos(3πt),

where s1 and s2 are the normalizing constants to make v1 and v2 unit vectors. We considered

five different values of β, {2, 1, 0.5, 0.25, 0.1}, in the Box-Cox transformation (6) and generated

simulated datasets for each β from

yij = f−1(xij |β), i = 1 . . . n, j = 1 . . .m. (18)

We compared the FPCA results obtained from three methods: (a) ignoring the transfor-

mation and obtaining the FPCA results for non-transformed data using the FPCA procedure

13

of Huang et al. (2008); (b) a two-step procedure that first estimates the best Box-Cox trans-

formation using raw data and then obtains the functional PCA; and (c) the proposed FPCA.t

procedure.

0 20 40 60 80 100

−
0.

2
0.

0
0.

2
FPC 1 (Regular FPCA)

Time

F
P

C
 1

TRUE
PCA
FPCA

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

FPC 2 (Regular FPCA)

Time

F
P

C
 2

TRUE
PCA
FPCA

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

FPC 1 (Transformation > FPCA)

Time

F
P

C
 1

TRUE
Trans. > PCA
Trans. > FPCA

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

FPC 2 (Transformation > FPCA)

Time

F
P

C
 2

TRUE
Trans. > PCA
Trans. > FPCA

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

FPC 1 (FPCA.t)

Time

F
P

C
 1

TRUE
PCA.t
FPCA.t

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

FPC 2 (FPCA.t)

Time

F
P

C
 2

TRUE
PCA.t
FPCA.t

Figure 1: The estimated FPC weight functions for a simulated data set. Top row: results from the regular FPCA

model; middle row: results from the two-step procedure; bottom row: results from the FPCA.t procedure. The

gray dashed lines are the true FPC weight functions. The noisy black curves are the results of the PCA (PCA.t)

and the smooth black dashed lines are the results of the FPCA (FPCA.t).

Figure 1 displays the first two FPC weight functions obtained by applying the three methods

to a randomly selected dataset simulated from (18) with β = 0.25. The first row of the figure

indicates that without data transformation, the FPC weight functions can not be recovered.

The second and third rows show that both the two-step procedure and the proposed FPCA.t

procedure can recover the first FPC weight function well, but the two-step procedure may

miss the true structure of the second FPC weight function. The plots also suggests that the

14

penalization used in FPCA is necessary for obtaining a smooth FPC weight functions. In our

study, we also observed that the difference of results between the two-step procedure and the

proposed FPCA.t gets larger when the value of β gets closer to zero (plots not shown).

To give a more systematic comparison of the three methods, we considered two measures of

the quality of estimating the FPC weight functions. The first measure is the canonical angle

between the column space of V̂ and V, defined as maximum angle between any two vectors

from the two spaces. Mathematically it can be computed as angle = cos−1(ρ) × 180/π, where

ρ is the minimum singular value of the matrix Q>
V̂

QV, where QV̂ and QV are orthonormal

matrices obtained by the QR decomposition of matrices V̂ and V, respectively (Golub and

Van Loan, 2013). The second measure is the squared out-of-sample reconstruction error using

the estimated FPC weight functions as the basis. Specifically, we generate a test dataset X(test)

from (17), and calculate the discrepancy between X(test) and its projection to the subspace

spanned by the FPC weight functions obtained from the training set, quantified as the sum

of squared errors SSE = ||X(test) − X(test)V̂(V̂>V̂)−1V̂>||2. Smaller values of angle and SSE

indicate better estimation of the FPC weight functions.

Table 1 reports the summary statistics of using the above two performance measures to

compare the three methods on 100 simulated datasets for each of the five different values of β.

For the case β = 1 when the data transformation is not needed, the proposed FPCA.t method

estimates β to be close to 1 and performs similarly to FPCA. In all other cases, the FPCA.t

works consistently better than other two methods, producing smaller values of angle and SSE.

When the value of β gets smaller, the data distribution is more skewed—this is the reason why

application of the regular FPCA without data transformation gets worse as β decreases. While

the FPCA.t estimates β very well, the two-step procedure usually gives biased estimation. A

good illustration of the bias problem of the two-step procedure is the case of β = 1, where

estimated β has the mean value of 0.4068. The bias of two-step procedure can be explained by

that the transformation step focuses on the marginal distribution which contains information

from both the signal and noise. Because of the biased estimation of β, the two-step procedure

can not provide good estimation of FPCA weight functions, as confirmed by the bigger values

of angle and SSE shown in Table 1. (Note that it is not an error that the numbers in some

columns are the exactly the same; there are indeed small variations that cannot be seen in the

reported significant digits.)

15

The simulation study was conducted on a computer with Core i7-2600 processor @ 3.4 GHz

speed with 16 GB of RAM. The summary statistics reported in Table 1 on computation time

suggests that the time of running the proposed FPCA.t method is significantly longer than the

regular FPCA procedure. Our tracking of the timing of the algorithm reveals that the bottleneck

of the FPCA.t algorithm is the repeated application of the half-smoothing operation; when no

penalization is used, the run time of the PCA.t algorithm is no greater than double of the run

time of the regular PCA procedure.

Table 1: Comparison of three FPCA methods (the regular FPCA, the two-step procedure of transformation

followed by FPCA, and the FPCA.t) under different values of β, based on 100 simulation runs on each of five

values of β. Reported are the mean and standard errors (in parentheses) of the principal angle, SSE, and the run

time (in seconds).

FPCA transformation → FPCA FPCA.t

True Par. angle SSE time β̂ angle SSE time β̂ angle SSE time

β = 2.00
29.2 1700.2 0.1967 0.8133 33.9 1907.3 0.3679 2.0062 2.8 1020.9 3.3871

(0.3) (12.6) (0.0036) (9e-04) (0.3) (13.7) (0.0045) (1e-03) (0.1) (0.5) (0.0650)

β = 1.00
2.8 1021.0 0.1810 0.4067 33.9 1907.0 0.3665 1.0031 2.8 1020.9 3.459

(0.1) (0.50) (0.0016) (4e-04) (0.3) (13.7) (0.0041) (7e-04) (0.1) (0.5) (0.1638)

β = 0.50
33.9 2235.4 0.2029 0.2034 33.9 1906.6 0.3660 0.5015 2.8 1020.8 4.8038

(0.3) (24.0) (0.0032) (2e-04) (0.3) (13.7) (0.0038) (3e-04) (0.1) (0.5) (0.3271)

β = 0.25
47.0 5244.4 0.2218 0.1017 33.9 1906.1 0.3730 0.2508 2.8 1020.8 5.7202

(0.1) (42.0) (0.0037) (1e-04) (0.3) (13.7) (0.0043) (2e-04) (0.1) (0.5) (0.4391)

β = 0.10
52.4 13262.6 0.2237 0.0407 33.8 1905.2 0.3720 0.1003 2.8 1020.8 6.2781

(0.1) (59.5) (0.0037) (5e-05) (0.3) (13.7) (0.0044) (1e-04) (0.1) (0.5) (0.4781)

Next, we evaluate the performance of FPCA.tm in obtaining the FPC weight functions in

the presence of missing observations. For each simulated dataset used in producing Table 1,

we randomly removed either 10% or 25% of the observations in two separate runs. We applied

the following three methods: (a) impute the missing data using the method of Hastie et al.

(1999) (i.e., Algorithm 1) followed by applying the FPCA algorithm (imputation → FPCA);

(b) impute the missing data using the method of Hastie et al. (1999) followed by implementing

the FPCA.t algorithm (imputation → FPCA.t); and (c) use the proposed FPCA.tm procedure

(with Algorithm 4 for computing the profile likelihood). Method (a) does not consider data

transformation at all. method (b) considers data transformation not in the missing data im-

putation step but in the FPCA step. Our method (c) contains missing data handling, data

16

transformation, and FPCA in one unified procedure. Table 2 shows that the FPCA.tm method

consistently outperforms other two methods, excepts for the case of β = 1 where method (a)

and method (b) work equally well. On the other hand, when data transformation is needed, by

ignoring data transformation entirely, method (a) does not produce good results. method (b)

works comparably well with the proposed method for some β but its performance deteriorates

quickly when β gets closer to 0. This is due to the fact when β approaches zero, the observed

yij ’s obtained from (18) converge to the log-normal distribution; hence imputing the missing

values using the method of Hastie et al. (1999) (i.e., Algorithm 1) becomes less reliable for

smaller βs, since Algorithm 1 essentially maximizes the Gaussian likelihood (see Appendix).

Table 2: Comparison of three FPCA methods for dealing with missing data (“imputation → FPCA”, “imputation

→ FPCA.t”, and FPCA.tm) under five different values of β and two different missing rates. Reported values are

the mean and standard errors (in parentheses) of the principal angle, SSE, and the run time (in seconds).

imputation → FPCA imputation → FPCA.t FPCA.tm

Rate of True
angle SSE time β̂ angle SSE time β̂ angle SSE time

Missing Par.

10%

β = 2.00
30.021 1724.0 0.2436 2.0080 4.444 1028.0 3.5259 2.0081 4.443 1027.7 5.2407

(0.348) (12.8) (0.0115) (1e-03) (0.127) (0.9) (0.2759) (2e-03) (0.126) (0.9) (0.2781)

β = 1.00
4.521 1028.3 0.2441 1.0041 4.443 1027.7 3.7358 1.0041 4.443 1027.7 6.1054

(0.126) (0.90) (0.0036) (8e-04) (0.126) (0.9) (0.0919) (8e-04) (0.126) (0.9) (0.1363)

β = 0.50
33.843 2252.8 0.2542 0.5020 4.447 1027.7 4.1414 0.5020 4.443 1027.7 6.1434

(0.335) (21.8) (0.0041) (4e-04) (0.128) (0.9) (0.1855) (4e-04) (0.126) (0.9) (0.2404)

β = 0.25
47.127 5297.5 0.2710 0.1046 17.694 1705.0 5.3535 0.2510 4.443 1027.7 6.7732

(0.069) (35.0) (0.0036) (2e-03) (0.337) (14.3) (0.3808) (2e-04) (0.126) (0.9) (0.3698)

β = 0.10
52.245 13483 0.4280 0.0054 33.526 2807.3 5.1642 0.1004 4.443 1027.7 7.1433

(0.162) (48.5) (0.0044) (5e-04) (0.482) (16.0) (0.4314) (1e-04) (0.126) (0.9) (0.5833)

25%

β = 2.00
29.827 1701.5 0.2226 2.0345 7.011 1066.2 3.3910 2.0043 6.486 1042.3 5.2706

(0.394) (14.1) (0.0025) (3e-02) (0.406) (21.3) (0.2058) (2e-03) (0.203) (1.9) (0.1034)

β = 1.00
6.594 1043.3 0.2313 1.0022 6.487 1042.3 3.2043 1.0022 6.486 1042.3 5.6459

(0.201) (1.90) (0.0018) (1e-03) (0.203) (1.9) (0.0347) (1e-03) (0.203) (1.9) (0.1012)

β = 0.50
34.034 2243.0 0.2460 0.5005 6.772 1053.4 3.7602 0.5011 6.486 1042.3 6.5995

(0.347) (21.6) (0.0022) (8e-04) (0.316) (4.1) (0.1596) (5e-04) (0.203) (1.9) (0.3471)

β = 0.25
47.324 5308.2 0.3916 0.1101 21.672 1825.4 5.2073 0.2506 6.487 1042.3 7.2528

(0.122) (36.1) (0.0078) (1e-03) (0.489) (16.4) (0.3499) (3e-04) (0.203) (1.9) (0.5509)

β = 0.10
52.47 13715 0.4484 0.0285 40.507 3383.1 7.1208 0.1002 6.487 1042.3 9.1735

(0.168) (51.9) (0.0036) (7e-03) (0.576) (296) (0.6831) (1e-04) (0.203) (1.9) (0.8433)

17

4.2 Real data

We applied the proposed methods to two datasets from the literature. While sensible data

transformations were decided manually in previous work before further analysis, our methods

obtained suitable transformations automatically while performing PCA/FPCA.

4.2.1 Fruit Fly Mortality Data

To illustrate and assess the performance of the proposed approach in the presence of missing

data, we considered the “fruit fly mortality” (FFM) data (Zimmerman and Núñez Antón,

2009). The dataset contains age-specific measurements of mortality for 112 cohorts of a common

fruit fly, Drosophila melanogaster. Every day, dead flies were counted for each cohort, and

these counts were pooled into 11 five-day intervals. The raw mortality rate was recorded as

− log(N(t+ 1)/N(t)), where N(t) is the number of flies alive in the cohort at the beginning

of time t(t = 0, 1, . . . , 10). For unknown reasons, 22% of the data are missing. We target

estimating the data transformation while performing PCA and systematically imputing the

missing values.

Considering that the 22% of the data are missing, one can use either (a) a two-step procedure

that imputes the missing data using the method in Hastie et al. (1999) (i.e., Algorithm 1) and

then applies the regular PCA; or (b) the proposed method PCA.tm (with Algorithm 2 for

computing the profile likelihood). When we applied method (a), however, Algorithm 1 did

not work well for d > 1, specifically some imputed values were inflated towards infinity in

magnitude. In contrast, PCA.tm consistently performs reasonable data imputation regardless

of the d value. To make a square comparison of the two methods, we only present here the

results for d = 1. From Figure 2, it is clear that the distribution of imputed values obtained

from method (a) does not follow the distribution of the observed values, in particular at the

right end of the time interval. The PCA.tm procedure obtained the estimate of β̂ = 0.0147,

which is very close to the logarithmic transformation that was suggested by Zimmerman and

Núñez Antón (2009). We also observed that the residuals obtained from the PCA.tm algorithm

behave closer to a normal distribution with constant variability.

18

●●● ●●
●
●● ●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●

●●●
●
●●●●●●●●●●●●●●●
●
●●
●●

●●

●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●
●
●●●●
●●●
●

●

●●●●●●●●●●●
●
●●●●●●
● ●

●●●●●●
●
●

●●

●●●●
●
●●●
●●●●●
●●●●●●●●●●●●
●●●
●●●●
●●●●●●●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●

●

●●●●●
●

●

●●

●

●●●●●●●●●
●
●●
●
●●●
●●●
● ●

●●●●●●
●
●
●

●●●●●

●

●●●●
●
●
●

●●
●
●●●●●●●●●●●

●
●●
●●
●●●●●●
●
●

●
●
●

●

●
●●●●●●●●●●●●●●●●●●
●
●

●
●
●●

●

●
●●
●
●

●●●●
●
●
●●

●

●●

●

●●
●●●
●

●
●●●
●●●●
●

●
●
●●●●●
●
●●●●●
●●●●
●
●●

●

●●●●●
●
●●

●
●
●●
●●●●●●●●●
●
●
●

●●
●●
●●●●●
●
●
●●●●●●●●

●

●
●

●
●

●

●●●
●
●●●●
●●
●

●

●

●
●●●
●
●●

●

●
●
●●
●●●●
●
●
●
●●●●●
●●●●
●●●●●

●

●●●●●

●
●●●●
●●

●

●
●●
●
●
●
●
●●●●●
●
●●●
●

●

●

●

●
●●●●●●

●

●●●●●
●
●

●
●●

●

●
●
●
●●

●
●
●

●
●
●
●●
●
●
●
●
●●●●●
●●●●●●●

●

●
●●
●●●●
●
●●●
●●
●
●
●
●
●●●●
●●●

●

●●●
●
●●

●●●●●●●●●●
●
●●●
●●
●

●●
● ●●●●●●●●●●●●

●●
●●●●●●●
●●
●●●●
●
●●●
●
●
●●
●
●
●
●
●●
●

●●
●●
●
●●●
●●
●●●●●●●
●●●●●●
●●

●●

●●
●●●●●
●
●●

●

●
●●
●●●

●

●●
●●●●●●●
●●●●●●●
●
●
●●●
●●●
●
●
●
●
●

●●●●●●●

2 4 6 8 10

0
5

10
15

20
25

30

(Imputed) Dataset

Time

V
al

ue
s

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●

●●

●●●●

●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●●
●●
●
●●
●

●

●

●
●

●

●

●

●

●
●

●●●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●
●●
●
●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

observed
imputed

●●●●●●●●●
●●
●●
●
●●●●
●
●●●●●●●
●●●●●●●●●
●
●●●●●●●
●

●

●●

●

●●
●
●●●●●●●
●●●
●
●●
●
●●●●●●●●●

●

●
●●●●●●
●
●●

●●●●●●●
●●
●
●●●●
●
●●
●

●

●●
●
●●
●●●●●●
●
●●●

●

●●●
●
●
●

●●

●
●

●

●
●●●●●●●●
●●●●
●
●●
●
●●

●
●

●●●
●
●

●
●

●

●●●●
●
●●●●●

●

●

●

● ●●●●●
●●
●

●
●

●●●●●●●

●

●

●●●●

●

●●●●●
●●

●

●

●

●

●

●

●●●
●
●●

●

●●

●
●

●

●●
●●●●●

●

●
●
●●●●●

●
●

●●●
●●

●

●●

●

●●
●
●●

●

●
●
●

●

●
●
●
●●●

●

●

●

●

●●●●
●●
●

●

●

●

●●●●

●

●●

●

●

●

●
●

●
●●

●

●●●
●
●
●●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●
●●●

●

●

●

●●
●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●
●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●
●

●●

●●●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●
●
●●●
●

●

●●●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

2 4 6 8 10

−
1.

0
0.

0
0.

5
1.

0
1.

5

(Imputed > PCA) Residual Plot

Time

R
es

id
ua

l
●

●
●●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●●

●
●

●

●
●
●●●

●

●●
●

●

●

●

●

●●

●●

●
●
●
●

●●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●●●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●●

●●
●

●

●
●●
●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●
●

●

●

●●
●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●●
●
●

●●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●
●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●●●
●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●●●●

2 4 6 8 10

−
8

−
6

−
4

−
2

0

(PCA.t_m) Dataset

Time

V
al

ue
s ●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●
●●
●●●
●
●

●●
●
●
●●●●
●●●
●●
●●●
●
●●●
●●●●●
●
●

●●●
●
●●
●●●●
●●

●
●●
●●
●●●

●●
●
●
●●●●
●
●

●●
●●
●
●
●
●
● ●●●●

●
●●●
●●●●
●●●●
●●●
●
●●
●●●
●●
●
●
●
●●
●
●
●
●

●●
●●
●
●
●
●
● ●●●●●

●●
●●●●
●●●●●●
●●
●●●●●●●
●●
●
●
●●●
●●●
●
●
●●●
●
●
●●
●●●●●
●
●●
●
●●

●

●

observed
imputed

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

2 4 6 8 10

−
3

−
2

−
1

0
1

2

(PCA.t_m) Residual Plot

Time

R
es

id
ua

l

Figure 2: FFM data. Left panels: imputation of missing values in the original scale (top row) and using the

PCA.tm method (bottom row); the gray and dark lines indicate the pointwise means for the observed data and

after including the imputed data. Right panels: residual plot for the two-step procedure (top row) and for the

PCA.tm method.

4.2.2 Call Center Data

The source of the second dataset is a small call center for an anonymous bank in Israel (Brown

et al., 2005). This dataset provides the exact time of the calls that were connected to the call

center between January 1 and December 31 in the year 1999. We would like to study the trend

and variability of call volumes over time of the day. To do so we aggregate the data into time

intervals to obtain a data matrix. More precisely, the ith, row jth column of our data matrix

contains the call volume during the jth time interval on day i. Brown et al. (2005) used the

square-root transformation to stabilize the variance and make the distribution close to normal.

The same transformation was also used by Huang et al. (2008), Shen and Huang (2008) prior

to application of PCA and SVD in the analysis of a different dataset of call arrival volumes.

We applied the FPCA.t algorithm to automatically find the appropriate data transformation

19

and to obtain the FPC weight functions. We considered 10 different time interval lengths: 6, 8,

10, 12, 15, 20, 30, 45, 60, and 90 minutes, and studied consistency of the FPC weight for different

levels of aggregation. As comparison, we also applied the regular FPCA without transformation

and the two-step procedure that first finds a data transformation and then applies the regular

FPCA to the transformed data.

Table 3: Estimated transformation parameter by the two-step procedure (“transformation → FPCA”) and

FPCA.t for different level of data aggregation.

Time intervals in min 6 8 10 12 15 20 30 45 60 90

transformation → FPCA 0.13 0.15 0.16 0.16 0.17 0.18 0.19 0.21 0.21 0.23

FPCA.t 0.19 0.23 0.25 0.27 0.29 0.31 0.35 0.38 0.39 0.42

FPC1

 R
eg

ul
ar

 F
P

C
A

FPC2 FPC3 FPC4

 T
ra

ns
fo

rm
at

io
n

>
 F

P
C

A
 F

P
C

A
.t

0 3 6 9 12 16 20 24 0 2 4 6 8 11 14 17 20 23 0 2 4 6 8 11 14 17 20 23 0 2 4 6 8 11 14 17 20 23

time

Figure 3: Call center data: The first four FPC weight functions obtained by three methods: the regular FPCA

(first row), the two-step procedure (middle row), and the FPCA.t method (last row). In each panel, different

lines correspond to different level of data aggregation.

Table 3 shows that FPCA.t estimated transformation parameter β̂ is bigger than that pro-

duced by the two-step procedure but is still smaller than 0.5, the value used in the square-root

transformation. The average of β̂ over different level of data aggregation from FPCA.t is 0.31

with the standard error 0.02, while this average for the two-step procedure is 0.18 with the

standard error 0.01. Furthermore, we have seen that the FPC weight obtained from FPCA.t

20

resemble the associated FPC weight from the square-root of the call volume (as suggested in

literature by Brown et al., 2005; Huang et al., 2008; Shen and Huang, 2008) better than the

two-step procedure. Figure 3 displays the first four FPC weight functions obtained by the three

methods for each of the 10 different data aggregation levels. The first row of the figure indicates

that when applying the regular FPCA to the untransformed data, the resulting FPCA weight

functions are not very smooth. This may be contributed to the right-skewness of the data—

there are many big values that influence the results. The data transformation helps improve

the smoothness of the FPCA weight functions, as shown in the second and third row of the

figure. On the other hand, while the two-step procedure manifests large variability particularly

for the last two FPC weight functions, the proposed FPCA.t procedure produces more con-

sistent estimates of FPCA weight functions across different data aggregation levels. Figure 4

suggests that with the same number of FPCs, the proposed FPCA.t method tends to explain

more percentage of variance than other two methods.

5 Discussion

We propose a model-based approach to simultaneously obtain an appropriate data transfor-

mation and perform principal components analysis/functional principal components analysis.

The model assumes that the transformed data matrix has a signal-plus-noise representation

where the signal part is a low-rank matrix and the noise part contains independent zero-mean

normally distributed random variables. In our approach, the normality of distribution only

serves as a working assumption and its use is motivated by the consideration that after data

transformation, the noise terms should have a less skewed distribution and close to constant

variance. A similar normality assumption was used in maximum likelihood estimation of the

Box-Cox transformation (Box and Cox, 1964). Our model-based approach is also convenient

for handling missing data while performing principal components analysis together with data

transformation.

Our method estimates the transformation parameter by the maximum profile likelihood

and is very general to incorporate any parametric monotone transformations. We focus on

the Box-Cox transformation in our presentation because it is commonly used in practice. The

proposed method is most relevant when the variables in consideration are of similar nature (e.g.,

functional data) as in our two real data examples, and so the same transformation applied to

21

60
70

80
90

FPC1

P
er

ce
nt

ag
e

●
●

●
●

●
●

●
●

●
●

6 8 10 15 20 30 45 60 90

●

regular FPCA
transformation FPCA
FPCA.t

60
70

80
90

FPC2

●

●
●

●
●

●
●

●
●

●

6 8 10 15 20 30 45 60 90

60
70

80
90

FPC3

Interval length (min)

P
er

ce
nt

ag
e

●

●
●

●
●

●

●
●

●
●

6 8 10 15 20 30 45 60 90

60
70

80
90

FPC4

Interval length (min)

●

●
●

●
●

●

●
●

●
●

6 8 10 15 20 30 45 60 90

Figure 4: Call center data. Cumulative percentage of explained variance by the first four FPCA functions for

three methods: the regular FPCA on untransformed data, the two-step procedure (“transformation → FPCA”),

and FPCA.tm for different level of data aggregation (note that the x-axis is in log scale).

all variables is desirable. In principle, it is possible to use different transformations to different

variables but a careful investigation is beyond the scope of this paper and left for future research.

Acknowledgment

We would like to thank an associate editor and two anonymous referees for their constructive

and thoughtful comments which helped us tremendously in revising the manuscript. Maadooliat

and Hu were partially supported by the National Science Foundation (grants DMS-0706818), the

National Institutes of Health (grants R01GM080503-01A1, R21CA129671), and the National

Cancer Institute (grant CA97007). Huang was partially supported by the National Science

Foundation (grants DMS-0606580, DMS-0907170). Huang and Maadooliat were partially sup-

ported by King Abdullah University of Science and Technology (grant KUS-CI-016-04).

22

Supplementary Materials

Appendices: Technical Appendices A-D. (webAppendix.pdf; pdf file)

Software: R code to implement FPCA.t, along with the call center data, fruit fly mortality

data and the simulation study. Tested for R version 3.0.1; see readme.txt in the base

directory for instructions on use. (FPCA.t code&data.zip, zip file)

References

Avriel, M. (1976), Nonlinear Programming: Analysis and Methods, Englewood Cliffs, New

Jersey: Prentice-hall.

Beckers, J. M. and Rixen, M. (2003), “EOF Calculations and Data Filling from Incomplete

Oceanographic Datasets*,” Journal of Atmospheric and Oceanic Technology, 20, 1839–1856.

Box, G. E. P. and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal

Statistical Society. Series B (Methodological), 26, pp. 211–252.

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., and Zhao, L. (2005),

“Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective,” Journal

of the American Statistical Association, 100, 36–50.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1994), “A Limited Memory Algorithm for Bound

Constrained Optimization,” SIAM Journal on Scientific Computing, 16, 1190–1208.

Craven, P. and Wahba, G. (1979), “Smoothing noisy data with spline functions. Estimating the

correct degree of smoothing by the method of generalized cross-validation,” Numer. Math.,

31, 377–403.

Croux, C. and Ruiz-Gazen, A. (2005), “High breakdown estimators for principal components:

the projection-pursuit approach revisited,” Journal of Multivariate Analysis, 95, 206 – 226.

Daniels, M. J. and Hogan, J. W. (2008), Missing data in longitudinal studies: strategies for

Bayesian modeling and sensitivity analysis; electronic version, Monographs on Statistics and

Applied Probability, Hoboken, NJ: Taylor & Francis Ltd.

23

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete

Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodolog-

ical), 39, pp. 1–38.

Golub, G. and Van Loan, C. (2013), Matrix Computations, Johns Hopkins Studies in the Math-

ematical Sciences, Johns Hopkins University Press, 4th ed.

Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., and Botstein, D. (1999), “Imput-

ing Missing Data for Gene Expression Arrays,” Tech. rep., Stanford Statistics Department.

Higuchi, I. and Eguchi, S. (2004), “Robust Principal Component Analysis with Adaptive Selec-

tion for Tuning Parameters,” J. Mach. Learn. Res., 5, 453–471.

Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables with Principal Compo-

nents,” Journal of Educational Psychology, 24, 498–520.

Hu, J., Wright, F. A., and Zou, F. (2006), “Estimation of Expression Indexes for Oligonucleotide

Arrays Using the Singular Value Decomposition,” Journal of the American Statistical Asso-

ciation, 101, 41–50.

Huang, J. Z., Shen, H., and Buja, A. (2008), “Functional principal components analysis via

penalized rank one approximation,” Electronic Journal of Statistics 2008, Vol. 2, 678-695.

Hubert, M., Rousseeuw, P., and Verdonck, T. (2009), “Robust PCA for skewed data and its

outlier map,” Computational Statistics & Data Analysis, 53, 2264 – 2274, the Fourth Special

Issue on Computational Econometrics.

Hubert, M., Rousseeuw, P. J., and Verboven, S. (2002), “A fast method for robust principal

components with applications to chemometrics,” Chemometrics and Intelligent Laboratory

Systems, 60, 101 – 111.

Hunter, D. R. and Lange, K. (2004), “A Tutorial on MM Algorithms,” The American Statisti-

cian, 58.

Jolliffe, I. T. (2002), Principal Component Analysis, Springer, 2nd ed.

Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen, K., Boente, G., Fraiman,

R., Brumback, B., Croux, C., Fan, J., Kneip, A., Marden, J., and P, D. (1999), “Robust

24

principal component analysis for functional data,” TEST: An Official Journal of the Spanish

Society of Statistics and Operations Research, 8, 1–73.

Maronna, R. (2005), “Principal Components and Orthogonal Regression Based on Robust

Scales,” Technometrics, 47, 264–273.

Pearson, K. (1901), “On Lines and Planes of Closest Fit to Systems of Points is Space,” Philo-

sophical Magazine, 2, 559–572.

Ramsay, J. and Silverman, B. (2005), Functional Data Analysis (2nd Edition), Springer - Verlag.

Rice, J. A. and Silverman, B. W. (1991), “Estimating the mean and covariance structure non-

parametrically when the data are curves,” Journal of the Royal Statistical Society. Series B

(Methodological), 233–243.

Shen, H. and Huang, J. Z. (2008), “Interday Forecasting and Intraday Updating of Call Center

Arrivals,” Manufacturing & Service Operations Management, 10, 391–410.

Silverman, B. W. (1996), “Smoothed functional principal components analysis by choice of

norm,” The Annals of Statistics, 24, 1–24.

Stewart, G. W. (1993), “On the early history of the singular value decomposition,” SIAM Rev.,

35, 551–566.

Tipping, M. E. and Bishop, C. M. (1999), “Probabilistic Principal Component Analysis,” Jour-

nal of the Royal Statistical Society, Series B, 61, 611–622.

Trefethen, L. N. and Bau, D. (1997), Numerical Linear Algebra, SIAM: Society for Industrial

and Applied Mathematics.

Wu, K. and Simon, H. (2000), “Thick-Restart Lanczos Method for Large Symmetric Eigenvalue

Problems,” SIAM J. Matrix Anal. Appl., 22, 602–616.

Zimmerman, D. L. and Núñez Antón, V. (2009), Antedependence Models for longitudinal Data,

Chapman & Hall / CRC Press, New York.

25

	Marquette University
	e-Publications@Marquette
	3-1-2015

	Integrating Data Transformation in Principal Components Analysis
	Mehdi Maadooliat
	Jianhua Z. Huang
	Jianhua Hu

	tmp.1435256191.pdf.JGbjw

