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Summary: In many practical cases of multiple hypothesis problems, it can be 

expected that the alternatives are not symmetrically distributed. If it is known 

a priori that the distributions of the alternatives are skewed, we show that 

this information yields high power procedures as compared to the procedures 

based on symmetric alternatives when testing multiple hypotheses. We 

propose a Bayesian decision theoretic rule for multiple directional hypothesis 

testing, when the alternatives are distributed as skewed, under a constraint 

on a mixed directional false discovery rate. We compare the proposed rule 
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with a frequentist’s rule of Benjamini and Yekutieli (2005) using simulations. 

We apply our method to a well-studied HIV dataset. 

 

Key words: Bayes rule; Directional hypotheses; False discovery rate; Gene 

expressions; Skew normal distribution. 

1. Introduction 
 

In many biomedical applications such as in microarray data 

analysis, problems are stated in terms of multiple hypotheses. Since 

the number of hypotheses is very large in these applications, usually 

false discovery rate (FDR) is used to control the error rate. For 

directional hypotheses problems, mixed direction false discovery rate 

(mdFDR) or directional false discovery rate (DFDR) are used; see 

Schaffer (2002) and Benjamini and Yekutieli (2005). It turns out that 

the optimal procedures controlling DFDR (or mdFDR) use two- 

tailed procedures with decision about the direction made based on the 

sign of the test statistics. Implicitly this assumes that directional 

alternatives are symmetrically distributed in a random setting of null 

and alternative hypotheses. In many experiments where the effect of 

an intervention on multiple components (e.g., multiple genes) is 

sought, it would be unreasonable to assume that the left and right 

directional hypotheses are symmetrically distributed. This paper 

formulates and develops statistical procedure for experiments where 

the distribution of the alternative hypotheses is possibly skewed. 

 

Let 𝑿 =  (𝑋1, 𝑋2,· · · , 𝑋𝑚) be a collection of test statistics such 

that 𝑋𝑖  ∼  𝑓(𝑥𝑖|𝜃𝑖). We consider the problem of directional hypotheses  

 

𝐻𝑖
(0)

∶  𝜃𝑖  =  0 𝑣𝑠. 𝐻𝑖
(−1)

∶  𝜃𝑖  <  0 𝑜𝑟 𝐻𝑖
(+1)

∶  𝜃𝑖  >  0, 𝑖 =

 1, 2,· · · 𝑚.  
(1) 

 

If 𝑓(· |𝜃) is symmetric around θ, and possesses a monotone 

likelihood ratio (MLR) property, then it can be expected that an 

optimal decision rule is of the form  
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Select 𝐻 𝑖
(−1)

 if 𝑋𝑖  <  −𝑐; select 𝐻 𝑖
(+1)

 if 𝑋𝑖  >  𝑐; otherwise select 𝐻 𝑖
(0)

 , 

(2) 

where constant c is chosen on the basis of DFDR (or mdFDR). Schaffer 

(2002) and Benjamini and Yekutieli (2005) showed that hypotheses 

(1) can be viewed as first testing two-sided hypotheses  

𝐻𝑖
(0)

∶  𝜃𝑖  =  0 𝑣𝑠. 𝐻𝑖
(𝑎)

∶  𝜃𝑖  ≠ 0, 𝑖 =  1, 2,· · · , 𝑚; and upon rejection of 

𝐻𝑖
(0)

 , the 𝐻𝑖
(−1)

or 𝐻𝑖
(+1)

 can be selected on the basis of the sign of 𝑋𝑖. 

 

In a Bayesian setting, 𝜃𝑖 , 𝑖 =  1, 2,· · · , 𝑚 would be randomly 

generated from some prior. If the prior is symmetric around 0, then 

one would expect a Bayes rule to be of the form (2). In many cases, 

however, it is unlikely that the prior distribution is symmetric. For 

example, in gene expression analysis involving microRNA, where the 

objective is to detect under and over expressed genes, the prior 

distribution is usually skewed (Bansal and Miescke, 2013). Bansal and 

Miescke (2013) considered the prior of the form 

 

𝜋(𝜃𝑖)  =  𝑝 − 𝜋 − (𝜃𝑖)  +  𝑝0𝐼(𝜃𝑖  =  0)  +  𝑝 + 𝜋 + (𝜃𝑖), (3) 

 

where 𝑝−  ≠  𝑝+, and 𝜋+(𝜃)(=  𝜋−(−𝜃)) is a density with support (0, ∞). 

They showed that the selection rule (2) is not optimal, and the optimal 

rule is of the form 

 

Select 𝐻𝑖
(−1)

 if 𝑋𝑖  <  −𝑐1; select 𝐻𝑖
(+1)

 if 𝑋𝑖  >  𝑐2; otherwise select 𝐻𝑖
(0)

 , 

(4) 

 

where c1 and c2 are some positive constants, and need not be the 

same. This makes sense since if 𝑝−  =  0, then we essentially have one 

sided tests, and in such cases c1 should be ∞. 

 

In this paper, we consider a skew normal prior instead of (3) 

and develop Bayesian methodology for testing hypotheses (1). Skew 

normal priors have been shown to have many applications (Azzalini 

and Capitanio, 1999; Gottardo et al., 2006; Huang and Dagne, 2010; 

Chen et al., 2014). The following Theorem, which is essentially due to 

(Azzalini, 1985), gives a motivation behind the choice of skew normal 

priors for many practical examples. 

https://dx.doi.org/10.1111/biom.12430
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Theorem 1: Let (𝜃, 𝜉) be jointly distributed as  

 

𝑔(𝜃, 𝜉)  =  𝑔1(𝜃)𝑔2(𝜉 −  𝛽𝜃), (5) 

 

where g1 and g2 are continuous and symmetric densities with support 

(−∞, ∞), and 𝛽 is a parameter. Then the conditional distribution of θ 

given 𝜉 >  0 is 

 

𝑔 + (𝜃)  =  2𝑔1(𝜃)𝐺2(𝛽𝜃), (6) 

where G2 is the distribution function corresponding to g2. 

 

Proof of Theorem 1 can be seen easily by direct computation, 

and by noticing that the symmetry of g1 and g2 implies that the 

distribution of ξ is symmetric and thus 𝑃(𝜉 >  0)  =  1/2. 

 

Note that for bivariate normal variates (𝜃, 𝜉) with means 0 and 

variances and correlation parameters 𝜎1
2,  𝜎2

2, 𝜌, the joint density can be 

written in the form of (5) with 

 

𝑔1(𝜃) =  
1

𝜎1
𝜙 (

𝜃

𝜎1
) , and 𝑔2(𝜉)

=  
1

𝜎2√1 −  𝜌2
 𝜙 (

𝜉

𝜎2√1 −  𝜌2
). 

 

Here and thereafter 𝜙(·) denotes the density of 𝑁(0, 1). 

 

Theorem 1 implies that the conditional distribution of θ given 𝜉 >  0 is 

given by 

 

𝑔 + (𝜃) =  2
1

𝜎1
𝜙 (

𝜃

𝜎1
) Φ (

𝜌

𝜎1√1 − 𝜌2
𝜃), (7) 

 

where Φ(·) denotes the distribution function of 𝑁(0, 1). The distribution 

with density (7) is called the skew normal distribution (Azzalini, 1985). 

https://dx.doi.org/10.1111/biom.12430
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The implication of Theorem 1 is that if a mediation is infused in 

a normal system and if the effect of the mediation is positive (or 

negative), then the effective result is a skewed distribution. Many 

genetic experiments involve this phenomenon. For example, consider a 

HIV study by van’t Wout et al. (2003) in which a CD4+ - T-cell line was 

inoculated with HIV-1 virus, and the gene expression levels of 7680 

cellular RNA transcripts of the infected cells were compared with the 

gene expression of uninfected cells. Theorem 1 and equation (7) 

suggest that instead of assuming that the effects due to HIV infection 

is distributed as normal, we should assume them to be distributed as 

skew normal. The data of this study has been previously investigated; 

see, for example Efron (2007a,b) and Gottardo et al. (2006). We will 

analyze this data by using a Bayesian methodology assuming a 

skewed normal prior for the affected genes. We will consider the 

problem in the form of hypotheses testing (1), where the true gene 

expression levels 𝜃𝑖 , 𝑖 =  1, 2,· · · , 𝑚 are either null (𝜃𝑖  =  0) or non-null 

(𝜃𝑖  ≠  0) with non-null 𝜃𝑖𝑠 generated from a skew normal distribution 

with density 

 

𝑔+(𝜃) =  2
1

𝜎1
𝜙 (

𝜃

𝜎1
) Φ (𝜆

𝜃

𝜎1
),  (8) 

 

where λ is a skewed parameter ranging from −∞ to ∞. Note that 

 𝜆 =  0 yields the 𝑁(0, 𝜎1
2) prior. 

 

The skewed normal prior can also be justified for microRNA 

microarray data. MicroRNAs (miRNAs) are short non-coding RNA 

molecules that are believed to play an important role in regulating 

protein-coding genes in plant and animals including cancer genes. The 

miRNAs are attached to the targeted messenger RNAs (mRNAs) near 

their 5′-dominant region at seed position 2-8, and thus prevent the 

translation of the mRNAs (Lim et al., 2005). Research studies on 

miRNAs generally involve experiments in which specific microRNAs are 

either silenced or transfected. The problem of interest is to identify the 

targeted genes that are regulated by the microRNA. Lim et al. (2005) 

studied the effect of a miRNA, miR-124, by transfecting it in brain cells 

where it is expressed at very low level. They observed that a larger 

number of mRNAs were downregulated than upregulated as it can be 

expected. This makes sense since the transfection of miR-124 is likely 

https://dx.doi.org/10.1111/biom.12430
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to result in gene suppression. Thus, as Theorem 1 suggests, the use of 

skewed prior (8) would be appropriate. We analyzed this data using 

methodologies developed in this paper. The results are similar to the 

ones for HIV data, and are presented in the supplementary materials. 

 

In Section 2, we develop a Bayesian decision theoretic 

methodology for testing hypotheses (1) under a constraint on a mixed 

directional false discovery rate mdFDR (Benjamini and Yekutieli, 

2005). We show that the optimal Bayes rule under skewed prior is of 

the form (4). We further prove theoretically that a skewed prior 

permits a higher power in number of correct discoveries than if the 

prior is symmetric. This result can be viewed analogously to one-tailed 

versus two-tailed hypothesis testing in which one-tailed test is more 

powerful than two-tailed test if it is known a priori that one-tailed 

alternative is true. 

 

The rest of the paper is organized as follows. In Section 3, we 

discuss how to compute the Bayes rule and derive Bayes rule for the 

normal density 𝑓(𝑥|𝜃). In Section 4, we discuss EM algorithm to 

estimate the parameters. A simulation study comparing the proposed 

rule with a frequentist’s rule of Benjamini and Yekutieli (2005) is 

presented in Section 5. Analysis of the HIV data is presented in 

Section 6. We end with some concluding remarks in Section 7. 

 

2. Decision Theoretic Formulation and Bayes rules 
 

Let 𝑑 =  (𝑑1,  𝑑2,· · · ,  𝑑𝑚) with 𝑑𝑖  ∈  {−1, 0, 1} denote a selection 

rule, where 𝑑𝑖  =  −1 means that 𝐻𝑖
(−1)

 is selected, 𝑑𝑖  =  0 means 𝐻𝑖
(0)

 

is selected, and 𝑑𝑖  =  1 means 𝐻𝑖
(+1)

 is selected. Denoting 𝜃 =  (𝜃1, 𝜃2,·

 · · ,  𝜃𝑚), we consider the loss function of the form 

 

𝐿(𝜃, 𝑑) =  ∑ 𝐿(𝜃𝑖 , 𝑑𝑖),𝑚
𝑖=1  (9) 

 

where 𝐿(𝜃𝑖, 𝑑𝑖) is the loss for testing each individual hypothesis 𝐻𝑖
(0)

 vs. 

𝐻𝑖
(−1)

 or 𝐻𝑖
(+1)

. If 𝐿(𝜃𝑖 , 𝑑𝑖) is the “0-1” loss, then 𝐿(𝜃, 𝑑) is the total 

number of false discoveries. We will mainly consider “0-1” loss; 

however, non-“0-1” loss functions can be considered without many 

https://dx.doi.org/10.1111/biom.12430
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alterations in our results; see Bansal and Miescke (2013) for the 

general approach. 

 

We now discuss that if distribution of non-null 𝜃𝑖𝑠 is skewed 

then this information would yield a high power in terms of correct 

discoveries. Suppose 𝜃𝑖 , 𝑖 =  1, 2,· · · , 𝑚 are generated from the prior 

distribution 

 

𝜋𝜆(𝜃𝑖)  =  𝑝 𝐼(𝜃𝑖  =  0)  + (1 −  𝑝) 2𝑔(𝜃𝑖) 𝐺(𝜆𝜃𝑖), 
 

where 𝑔(·) is a symmetric density, 𝐺(·) is its distribution function and _ 

is the skewed parameter. Note that 𝜆 =  0 yields a symmetric prior. 

 

The Bayes rule can be obtained by minimizing the average risk 

 

𝑟(𝑑)  = ∑ 𝑟𝑖(𝑑𝑖)

𝑚

𝑖=1

, 

 

where 𝑟𝑖(𝑑𝑖) is the individual average risk of individual 𝑑𝑖. 𝑟(𝑑) can be 

written as 

 

𝑟(𝑑)  =  𝑟−(𝑑)  +  𝑟0(𝑑)  +  𝑟+(𝑑),           (10) 

 

where 𝑟−(𝑑) =  ∑ ∫ 𝑅(𝜃𝑖,  𝑑𝑖)𝜋(𝜃𝑖)𝑑𝜃𝑖 , 𝑟+(𝑑)
0

−∞
𝑛
𝑖=1  = ∑ ∫ (𝜃𝑖,  𝑑𝑖)𝜋(𝜃𝑖)𝑑𝜃𝑖

∞

0
𝑛
𝑖=1   

and 𝑟0(𝑑)  = ∑ 𝑅(0, 𝑑𝑖)
𝑛
𝑖=1  . Here 𝑅(𝜃𝑖 , 𝑑𝑖) denotes the risk function of 𝑑𝑖, 

i.e. the expected loss with respect to X given θ. For the “0-1” loss, 

𝑟−(𝑑) is the average number of falsely selected 𝐻𝑖
(0)

 and 𝐻𝑖
(+1)

 when 

𝐻𝑖
(−1)

 is true, 𝑖 =  1, 2,· · · , 𝑚; 𝑟0(𝑑) is the average number of falsely 

rejected 𝐻 𝑖
(0)

, 𝑖 =  1, 2,· · · , 𝑚; and 𝑟+(𝑑) is the average number of 

falsely selected 𝐻𝑖
(−1)

 and 𝐻𝐼
(0)

 when 𝐻𝑖
(+1)

 is true, 𝑖 =  1, 2,· · · , 𝑚. 

Now, suppose we want to find an optimal Bayes rule subject to 

the constraint that the average number of falsely rejected 𝐻𝑖
(0)

 , 𝑖 =

 1, 2,· · · , 𝑚 is some predetermined value, say q, i.e, 𝑟0(𝑑)  =  𝑞. Let  

𝑑𝜆
𝐵  =  (𝑑𝜆1

𝐵 ,  𝑑𝜆2
𝐵 ,· · · , 𝑑𝜆𝑚

𝐵 ) denote the optimal Bayes rules subject to 

𝑟0(𝑑)  =  𝑞 under the prior πλ. We will use the notation 𝑟𝜆(𝑑) (and 

https://dx.doi.org/10.1111/biom.12430
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similarly 𝑟−
𝜆 ,  𝑟0

𝜆 , and 𝑟+
𝜆) to denote the Bayes risk (i.e. the average 

risk) of a decision rule d with respect to the prior πλ. Thus 𝑟𝜆(𝑑𝜆
𝐵 ) is 

the optimal Bayes risk with respect to the prior πλ. 

 

The following Theorem implies that if 𝜃𝑖𝑠 are generated from a 

skewed prior πλ, then a higher number of discoveries is possible than 

if 𝜃𝑖𝑠 are generated from the symmetric prior 𝜋0. 

 

Theorem 2: Suppose 𝐿(𝜃𝑖 , −1)  =  𝐿(−𝜃𝑖 , 1). Let 𝑑0
𝐵 and 𝑑𝜆

𝐵 be the 

optimal Bayes rules under the priors 𝜋0 and πλ respectively subject to 

the constraint 𝑟0(𝑑)  =  𝑞, and let 𝑟0(𝑑0
𝐵 ) and 𝑟𝜆(𝑑𝜆

𝐵 ) be the 

corresponding Bayes risks. If 𝜃𝑖𝑠 are generated from πλ, then 

 

(i) 𝑟𝜆(𝑑0
𝐵  )  =  𝑟0(𝑑0

𝐵  ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆. 

(ii) 𝑟𝜆(𝑑𝜆
𝐵  )  ≼ 𝑟0(𝑑0

𝐵  ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆. 
 

Proof of Theorem 2 is given in the Web Appendix A. 

 

Remarks 1: 

 

1. Although, in Theorem 2, we are using the constraint on 𝑟0(𝑑) 

(the number of falsely rejected nulls for the “0-1” loss), we 

believe that similar result will hold for different error rates such 

as mdFDR or other DFDRs. We will demonstrate this in our 

simulation study. 

2. The result (i) of Theorem 2 says that the Bayes risk of optimal 

rule 𝑑0
𝐵 is the same under prior 𝜋0 or any other prior πλ. This 

would imply that for the “0-1” loss, the expected number of 

correct discoveries would be the same for 𝑑0
𝐵 whether 𝜃𝑖𝑠 are 

generated from the symmetric prior 𝜋0 or from skewed prior πλ. 

 

We will now discuss the optimal Bayes rule subject to the constraint 

on a directional false discovery rate. Note that for directional 

hypotheses, we need to also consider false discoveries in the wrong 

directions. Various types of false discovery rates have been defined to 

tackle the issue of false directional discoveries; see, for example 

Schaffer (2002), Benjamini and Yekutieli (2005) and Bansal and 

https://dx.doi.org/10.1111/biom.12430
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Miescke (2013). We will concentrate on mixed directional false 

discovery rate (mdFDR) as defined by Benjamini and Yekutieli (2005), 

which is the expected proportion of falsely selecting 𝐻𝑖
(−1)

𝑠 or 𝐻𝑖
(+1)

𝑠. 

Formally, it can be defined as  

 

𝑚𝑑𝐹𝐷𝑅 =  𝐸 [
∑ {𝐼(𝑑𝑖 = −1)𝐼(𝜃𝑖 ≽ 0) + 𝐼(𝑑𝑖 = +1)𝐼(𝜃𝑖 ≼ 0)}𝑚

𝑖=1

(|𝐷−| + |𝐷+|)⋁1
 ] , (11)    

 

where 𝐷− is the set of indices of selected 𝐻𝑖
(−1)

𝑠, and 𝐷+ is the set of 

indices of selected 𝐻𝑖
(+1)

𝑠, and |  ·  | denotes the cardinality of the set. 

In a Bayesian setting, the expectation in (11) is with respect to the 

distribution of X given θ and the marginal distribution of θ. 

 

If we consider the posterior version of (11), then we have.  

𝑚𝑑𝑃𝐹𝐷𝑅 =  
∑ {𝐼(𝑑𝑖 = −1)(𝑣𝑖

(0)
 + 𝑣𝑖

(+)
)+𝐼(𝑑𝑖 = +1)(𝑣𝑖

(0)
 + 𝑣𝑖

(−)
)}𝑚

𝑖=1 

(|𝐷−| + |𝐷+|)⋁1
,  (12) 

 

where 

 

𝑣𝑖
(0)

 =  𝑃(𝜃𝑖  =  0|𝑥), 𝑣𝑖
(−)

 =  𝑃(𝜃𝑖  <  0|𝑥), 𝑣𝑖
(+)

 =

 𝑃(𝜃𝑖  >  0|𝑥).  (13) 

 

Since 𝑣𝑖
(−)

 +  𝑣𝑖
(0)

 +  𝑣𝑖
(+)

 =  1, (12) can be written as 

 

𝑚𝑑𝑃𝐹𝐷𝑅 =  1 −
∑ {𝐼(𝑑𝑖  =  −1)𝑣𝑖

(−)
 +  𝐼(𝑑𝑖  =  +1)𝑣𝑖

(+)
}𝑚

𝑖=1

(|𝐷−| + |𝐷+|) ⋁ 1
. (14) 

 

Without any constraint on the false discovery rate, the Bayes rule 

based on the “0-1” loss selects indices 𝐷𝐵
−  = {𝑖 ∶  𝑣𝑖

(−)
 >  𝑣𝑖

(0)
 , 𝑣𝑖

(+)
} 

corresponding to 𝐻𝑖
(−1)

, 𝐷𝐵
+  = {𝑖 ∶  𝑣𝑖

(+)
 >  𝑣𝑖

(0)
 , 𝑣𝑖

(−)
} corresponding to 

𝐻𝑖
(+1)

 and 𝐷𝐵
0 = {𝑖 ∶  𝑣𝑖 

(0)
>  𝑣𝑖

(−)
 , 𝑣𝑖

(+)
} corresponding to 𝐻𝑖

(0)
. 
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The Bayes rule subject to the constraint that 𝑚𝑑𝑃𝐹𝐷𝑅 ≼  𝛼 can 

be described by the following procedure (see, Bansal and Miescke, 

2013): 

 

Procedure A 
 

Define 𝜉𝑖  =  𝑣𝑖
(−)

 , for 𝑖 ∈  𝐷𝐵
− and 𝜉𝑖  =  𝑣𝑖

(+)
 for 𝑖 ∈  𝐷𝐵

+. Now rank all  

𝜉𝑖  ∈  𝐷𝐵
−  ∪  𝐷𝐵

+ from the lowest to the highest. Let the ranked values be 

denoted by 𝜉[1]  ≼  𝜉[2]  ≼ · · · ≼  𝜉[�̂�], where �̂�  =  |𝐷𝐵
−  ∪  𝐷𝐵

+|. Denote 

 

𝑖0̂  =  max {𝑗 ≼  �̂� ∶
1

𝑗
 ∑ 𝜉[�̂�−𝑖+1]  ≽  1 −  𝛼

𝑗

𝑖=1

} . (15) 

 

Let 𝐷𝜉 denote the set of indices corresponding to 𝜉[�̂�]  ≽  𝜉[�̂�−1]  ≽ · · · ≽

 𝜉[�̂�−�̂�0+1]. Now select 𝐻𝑖
(−1)

 for 𝑖 ∈  𝐷𝐵
−  ∩  𝐷𝜉 and 𝐻𝑖

(+1)
 for 𝑖 ∈  𝐷𝐵

+  ∩  𝐷𝜉. 

 

3. Computation of the Bayes Rule 
 

We will now assume that 𝑋1, 𝑋2,· · · , 𝑋𝑚 are independent with 

probability density function 𝑓(𝑥|𝜃), which is symmetric around θ and 

has MLR property. 

 

Note that 𝐷𝐵
− and 𝐷𝐵

+ can be written as 

 

𝐷𝐵
−  = {𝑖 ∶  𝑇−(𝑥𝑖)  >

𝑝

1 −  𝑝
, 𝑇−(𝑥𝑖)  >  𝑇+(𝑥𝑖)}, 

𝐷𝐵
+  = {𝑖 ∶  𝑇+(𝑥𝑖)  >

𝑝

1 − 𝑝
, 𝑇+(𝑥𝑖)  >  𝑇−(𝑥𝑖)}, (16) 

 

Where 

 

𝑇−(𝑥𝑖)  = ∫
𝑓(𝑥𝑖|𝜃)

𝑓(𝑥𝑖|0)
2𝑔(𝜃)𝐺(𝜆𝜃)𝑑𝜃

0

−∞

 , 
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𝑇+(𝑥𝑖)  = ∫
𝑓(𝑥𝑖|𝜃)

𝑓(𝑥𝑖|0)
2𝑔(𝜃)𝐺(𝜆𝜃)𝑑𝜃

∞

0
 .   (17) 

 

Since 𝑓(𝑥|𝜃) has MLR property, 
𝑓(𝑥|𝜃)

𝑓(𝑥|0)
 is increasing in x for 𝜃 >  0 and 

decreasing in x for 𝜃 <  0. This implies that 𝑇−(𝑥) is a decreasing 

function and 𝑇+(𝑥) is an increasing function. Thus 𝑇−(𝑥𝑖)  >
𝑝

(1 − 𝑝)
 

implies 𝑥𝑖  <  𝑐− for some constant 𝑐− and 𝑇+(𝑥𝑖)  >
𝑝

(1 − 𝑝)
 implies 

𝑥𝑖  >  𝑐+ for some constant 𝑐+. 

 

3.1 Normal Density 𝑓(𝑥|𝜃) 
 

Suppose the density 𝑓(𝑥|𝜃) is normal, i.e. 𝑋𝑖  ∼  𝑁(𝜃𝑖 , 𝜎2).We 

consider a skew normal prior for the non-null 𝜃𝑖𝑠,  𝜋1(𝜃)  =

 2𝑔1(𝜃)𝐺1(𝜆𝜃), where 𝑔1(𝜃)  =  𝜎1
−1 𝜙 (

𝜃

𝜎1
) and 𝐺1 is its distribution 

function. It is easy to see from (17) that 

 

𝑇+(𝑥𝑖)  =
2

𝜎1
∫ 𝑒𝑥𝑝 (

𝑥𝑖𝜃

𝜎2
) 𝜙 (√

1

𝜎1
2 +

1

𝜎2
𝜃)  Φ (

𝜆𝜃

𝜎1
) 𝑑𝜃

∞

0

 , 

𝑇−(𝑥𝑖) =
2

𝜎1
∫ 𝑒𝑥𝑝 (

𝑥𝑖𝜃

𝜎2
) 𝜙 (√

1

𝜎1
2 +

1

𝜎2
𝜃) Φ (

𝜆𝜃

𝜎1
) 𝑑𝜃

0

−∞

. 

(18) 

 

Figure 1 shows the plots of 𝑇+(𝑥) and 𝑇−(𝑥). Because of monotonicity 

of 𝑇+(𝑥) and 𝑇−(𝑥), it is easy to see from Figure 1 that 𝐷𝐵
− and 𝐷𝐵

+ can 

be written as 

 

𝐷𝐵
−  =  {𝑖 ∶  𝑥𝑖  <  −𝑐1} and 𝐷𝐵

+  =  {𝑖 ∶  𝑥𝑖  >  𝑐2},      (19) 

 

where 𝑐1  >  0 and 𝑐2  >  0 are determined as shown in Figure 1 by 

considering the point of intersections of 𝑦 =
𝑝

(1 − 𝑝)
 and 𝑦 =  𝑇−(𝑥), and 

𝑦 =  
𝑝

(1 − 𝑝)
  and 𝑦 =  𝑇+(𝑥) respectively. Note that when 𝜆 >  0, the 
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intersection point Q (as shown in the figure) will be to the left of 𝑥 =

 0, and when 𝜆 <  0, Q will be to the right of 𝑥 =  0. Thus when 𝜆 >  0,

𝑐1  >  𝑐2 and the opposite is true when 𝜆 <  0. When 𝜆 =  0, 𝑇−(𝑥)  =

 𝑇+(−𝑥) and thus 𝑐1  =  𝑐2. If 𝜆 →  ∞, 𝑇−(𝑥)  →  0 and thus 𝐷𝐵
− is an 

empty set which is equivalent to a one-tailed test. 

 

[Figure 1 about here.] 

 

To implement Procedure A, note that 𝑣𝑖
(−)

 and 𝑣𝑖
(+)

 (written as 

functions) are given by 

 

𝑣(−)(𝑥𝑖)  =
(1 −  𝑝)𝑇−(𝑥𝑖)

 𝑝 +  (1 −  𝑝){𝑇−(𝑥𝑖)  +  𝑇+(𝑥𝑖)}
, 

 

 

𝑣(+)(𝑥𝑖) =
(1 −  𝑝)𝑇+(𝑥𝑖)

𝑝 + (1 −  𝑝){𝑇−(𝑥𝑖) +  𝑇+(𝑥𝑖)}
. (20) 

 

Since 𝑇−(𝑥) is decreasing and 𝑇+(𝑥) is increasing, it is easy to see from 

(20) that 𝑣(−)(𝑥) is a decreasing function and 𝑣(+)(𝑥) is an increasing 

function. Also, note that 𝑇−(𝑥) + 𝑇+(𝑥)  =
𝑚𝜆(𝑥)

𝑓(𝑥|0)
 where 𝑚𝜆(𝑥) is the 

marginal density under the skew normal prior 𝑆𝑁(0,  𝜎1
2, 𝜆). Azzalini 

(1985) showed that the marginal 𝑚𝜆 is also a skew normal density 

with 

 

𝑚𝜆(𝑥) =
1

√𝜎2  +  𝜎1
2

𝜙 (
𝑥

√𝜎2  +  𝜎1
2

) Φ (
𝜆𝜎1

𝜎2(1 +  𝜆2)  +  𝜎1
2  

𝑥

√𝜎2  +  𝜎1
2

) . (21) 

 

The following steps can be performed to implement Procedure A: 

 

Step 1: Determine first the values of −𝑐1 and 𝑐2 by determining 

the points of intersections of 𝑦 =  𝑇−(𝑥) and 𝑦 =  
𝑝

(1 − 𝑝)
 , and 𝑦 =

 𝑇+(𝑥) and 𝑦 =
𝑝

(1 − 𝑝)
 respectively. 
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Step 2: Rank all values 𝑥1, 𝑥2,· · · , 𝑥𝑚 from lowest to the highest, 

say 𝑥[1]  ≼  𝑥[2] ≼ · · · ≼ 𝑥[𝑚]. Record their indices. 

 

Step 3: Determine all indices corresponding to 𝐷𝐵
−  =

 {𝑖 ∶  𝑥[𝑖]  <  −𝑐1} and 𝐷𝐵
+  =  {𝑖 ∶ 𝑥[𝑖]  >  𝑐2}. Suppose the indices 

are denoted in order by 𝐷𝐵
−  =  {𝑖1

− ,  𝑖2
− ,· · · ,  𝑖|𝐷𝐵

−|
− } and 𝐷𝐵

+  =

 {𝑖1
+,  𝑖2

+,· · · ,  𝑖
|𝐷𝐵

+|
+ }. 

 

Step 4: Compute 𝜉𝑖𝑗
− =  𝑣(−)(𝑥𝑖𝑗

−) for 𝑖𝑗 
− ∈  𝐷𝐵

− and 𝜉𝑖𝑗
+ =  𝑣+(𝑥𝑖𝑗

+) 

for 𝑖𝑗
+  ∈  𝐷𝐵

+ using (20) and (21). 

 

Step 5: Rank all 𝜉𝑖𝑗
− and 𝜉𝑖𝑗

+ values from the lowest to the 

highest. Denote them by 𝜉[1]  ≼  𝜉[2]  ≼ · · · ≼  𝜉[�̂�], where �̂� =

|𝐷𝐵
−| + |𝐷𝐵

+|. 

 

Step 6: Determine 𝑖̂0 according to (15) and find the set of 

indices 𝐷𝜉 corresponding to 𝜉[�̂�]  ≽  𝜉[�̂�−1]  ≽ · · · ≽  𝜉[�̂�−�̂�0+1]. Select 

𝐻𝑖
(−1)

 for 𝑖 ∈  𝐷𝜉 ∩  𝐷𝐵
− and select 𝐻𝑖

(+1)
 for 𝑖 ∈  𝐷𝜉  ∩  𝐷𝐵

+. 
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Remarks 2: 

 

Note that if the non-null 𝜃𝑖𝑠 are generated from the skew normal 

distribution (8), then mdPFDR ≼  𝛼 also implies the Bayesian mdFDR ≼

 𝛼, where expectations are taken with respect to both X and θ. If the 

non-null 𝜃𝑖𝑠 are generated from other distributions, then the 

posterior mdPFDR ≼  𝛼 may not imply the Bayesian mdFDR ≼  𝛼. The 

procedure proposed by Benjamini and Yekutieli (2005) (BY) achieves 

Bayesian mdFDR ≼  𝛼 irrespective of the distribution of the non-null 

𝜃𝑖𝑠, and thus can be viewed as a nonparametric method. However, for 

the non-null skewed normal alternatives, BY procedure will be inferior 

to the Procedure A in terms of the power of discoveries as 

demonstrated by the Theorem 2 and the simulation results discussed 

in Section 5. Thus, we believe that in many practical situations, where 

the skewed normally distributed 𝜃𝑖𝑠 are appropriate non-null 

alternatives, Procedure A would perform better than BY. 

 

4. Parameter Estimation using EM Algorithm 
 

Parameter estimates can be found empirically by maximizing the 

marginal likelihood function using EM algorithm. A hierarchical 

Bayesian approach can also be used along the lines of Bansal et al. 

(2008), but here we will only consider empirical approach. Note that, 

marginally, under the null, 𝑋𝑖  ∼  𝑁(0, 𝜎2), and under the non-null,  

𝑋𝑖  ∼  𝑆𝑁 (0, 𝜎2  +  𝜎1
2,

𝜆𝜎1

√(1 + 𝜆2)𝜎2 + 𝜎1
2
) (Azzalini, 1985). This implies that, 

marginally, 𝑋𝑖, 𝑖 =  1, 2,· · · , 𝑚 are i.i.d. with a mixture of 𝑁(0, 𝜎2) and 

𝑆𝑁 (0,  𝜎2  +  𝜎1
2,

𝜆𝜎1

√(1 + 𝜆2)𝜎2 + 𝜎1
2
) with weights p and 1−p respectively. Lin 

et al. (2007) gave an EM algorithm to estimate the parameters of a 

mixture of skew normal distributions. Prates et al. (2013) provided an 

R subroutine, mixsmsn, for the EM algorithm to estimate the 

parameters of finite scale mixture of skew normal distributions. Since 

normal is a special case of skew normal, mixsmsn can be used to 

estimate the parameters in our case. Note that, in both Lin et al. 

(2007) and mixsmsn subroutine of Prates et al. (2013), components of 

https://dx.doi.org/10.1111/biom.12430
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Biometrics, Vol 72, No. 2 (June 2016): pg. 494-502. DOI. This article is © Wiley and permission has been granted for this 
version to appear in e-Publications@Marquette. Wiley does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Wiley. 

15 

 

the mixture distributions are not identified. However, in the case 

considered here, we know that one component is normal with mean 0, 

and the other component is skew normal with the location parameter 

0. Thus, some adjustments in mixsmsn are needed to force some 

parameters to be 0. With these adjustments, we estimate 𝑝, 𝜎2, 𝜎2  +

 𝜎1
2, and 

𝜆𝜎1

√(1 + 𝜆2)𝜎2 + 𝜎1
2
, and then find the estimates of 𝜎2, 𝜎1

2, and λ. For 

the initial estimates, to use in the subroutine mixsmsn, we use method 

of moments estimates. Since the moments of skew normals are well 

known (see, Lin et al., 2007), it is easy to see that the first four 

moments of the marginal distribution of 𝑋𝑖 are given by  

 

𝜇1
′  =  (1 −  𝑝)√

2

𝜋
𝛿𝜎1, 

 

𝜇2
′  =  𝑝𝜎2  +  (1 −  𝑝)(𝜎2  +  𝜎1

2), 

 

𝜇3
′  =  (1 −  𝑝)√

2

𝜋
𝛿𝜎1[3𝜎2  +  (3 −  𝜎2)𝜎1

2], 

 

𝜇4
′  =  2𝑝𝜎4  +  2(1 −  𝑝)(𝜎2  +  𝜎1

2)2, 

 

where 𝛿 =
𝜆

1 + 𝜆2
. In practice, our proposed Procedure A will thus be 

implemented by first estimating the parameters as described above, 

and then by following the steps 1-6 as described in Section 3. It 

should be noted that the same data is used twice: First by estimating 

the parameters, and second by implementing Procedure A. This is very 

common in empirical Bayesian methodology (Efron, 2007b). The effect 

of estimation may not matter much since for large m, as it will be the 

case in most applications, the maximum likelihood estimates are likely 

to be close to the true parameters. 
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5. Monte Carlo Simulations 
 

Through simulation studies, we compare the performance of the 

proposed Bayes method with the directional BY procedure. We 

simulate the test statistics 𝑧𝑖  ∼  𝑁(𝜃𝑖, 1), 𝑖 =  1, 2,· · · , 𝑚 with [mp] of 

𝜃𝑖  =  0 and the remaining 𝑚 −  [𝑚𝑝] of 𝜃𝑖𝑠 generated from skewed 

normal distribution 𝑆𝑁(0, 𝜎1
2, 𝜆). 

 

We consider different combinations of p, 𝜎1 and λ from the 

following ranges: (1) p =0.7, 0.8, 0.9, (2) σ1 = 2, 3, 5, and (3) 𝜆 =

 −2, −1.75, −1.5,· · · , 1.5, 1.75, 2. From each of the above combinations, 

we simulate 1000 data sets with m = 5000. For the proposed 

Procedure A as described in subsection 3.1, we first use the EM 

algorithm, as discussed in Section 4, to estimate 𝑝,  𝜎1 and λ. These 

estimates are then plugged in for the parameters before using 

Procedure A. The BY procedure is performed using p-values based on 

zi and the the sign of zi as described in Benjamini and Yekutieli (2005). 

 

For comparison, we use the following two measurements:  

 

(a) Correct Discovery: The expected number of correct 

discoveries.  

(b) False Discovery Rate: The expected ratio of false 

discoveries to total number of discoveries. 

 

To compare the procedures in left (right) directions, we further 

consider the expected number of correct left (right) discoveries and 

the expected rate of false left (right) discoveries. Figure 2 represents 

the aforementioned measurements for the proposed empirical Bayes 

and the BY procedure at 𝑝 =  0.8 and different combinations of 𝜎1 and 

𝜆. Expected number of right discoveries and the expected rate of false 

right discoveries are not presented since they can be interpreted from 

the results of the left discoveries. 

 

[Figure 2 about here.] 

 

Figure 2 shows that, overall, the results of the proposed Bayes 

rule is superior to BY procedure as the skewed parameter 𝜆 moves 

away from 0. There are higher number of correct discoveries by the 
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Bayes rule with false discovery rate close to pre-assigned rate of 0.05. 

Note that the expected number of false discoveries for BY are flat with 

varying 𝜆 as we conjectured in Remarks 1. The figures for left 

discoveries show a gain made in expected number of correct 

discoveries when 𝜆 is negative while keeping the false left discovery 

rates comparable with the BY procedure. Note also that the false left 

discovery rates are much higher under BY rule for positive 𝜆. 

 

Compared to BY procedure, the advantage of the proposed 

Bayes method is more prominent as 𝜆 gets further away from zero 

when the skewness becomes more evident. For further illustration, we 

compare the performance of the Bayes and the BY methods in Table 1 

based on 1000 simulations for 𝜆 =  −1, 0, 2, 𝑝 =  0.7, 0.8, 0.9 and 𝜎1  =

 2, 3, 5. Some notable results of Table 1 are singled out below: 

 

1. While mdFDR is controlled by 𝑞 =  0.05 level in both proposed 

Bayes and BY methods, the expected number of correct 

discoveries by the Bayes procedure is always higher than the BY 
procedure. 

2. For larger values of 𝑝 and/or smaller values of 𝜎1, expected 

number of discoveries are small by both methods, but the 
proposed Bayes method is still better. 

3. Although for 𝜆 near 0, the Bayes method performs only slightly 

better than BY, however, as 𝜆 gets further away from zero, the 

directional correct discovery rates by the proposed Bayes are 
more balanced and more reliable than by the BY procedure. 

More precisely, for negative (positive) 𝜆, the correct left (right) 

discovery rates are comparable by both BY and the Bayes, but 
the right (left) discovery rates are significantly lower by the BY 

procedure than by the proposed Bayes method. 
 

[Table 1 about here.] 

 

6. HIV Data 
 

The HIV-data (van’t Wout et al., 2003), that has been 

previously studied in Efron (2007a,b), is revisited here. The data 

consists of eight microarrays, four from cells of HIV infected subjects 

and four from uninfected subjects, each with expression levels of 7680 

genes. For each gene we obtain a two-sample t-statistic, comparing 

the infected versus the uninfected subjects, which is then transformed 
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to a z-value, where 𝑧𝑖  =  Φ−1{𝐹6(𝑡𝑖)}. Here 𝐹6(·) denotes the 

cumulative distribution function (cdf) of t-distribution with 6 degrees of 

freedom. The histogram of the z-values is given in the left panel of 

Figure 3 with a fit of skew normal distribution. Note that theoretically 

null distribution of zi should have a 𝑁(0, 1) distribution if ith gene is not 

affected by HIV infection. However, Efron (2007b) estimated the null 

distribution to be 𝑁(−0.11, 0.752). Thus, we formulate our problem as 

testing hypotheses (1) with test statistics 𝑍𝑖 ∼  𝑁(−0.11 +  𝜃𝑖 , 0.752). 

 

[Figure 3 about here.] 

 

BY procedure resulted in cutoffs (−3.94, 3.94), which resulted in 

18 total discoveries with 2 genes declared as under-expressed and 16 

as over-expressed. For the proposed Bayes rule, we first used the EM 

algorithm to obtain the parameter estimates as: �̂�  =  0.9, �̂� =  0.79,

�̂�1  =  1.54 and �̂�  =  0.22. Next, we followed the Procedure A, and we 

ended up with cut-off points (−2.82, 2.70) with total 86 discoveries 

(under-expressed genes: 23 and over-expressed genes: 63). 

 

In parallel to Efron’s local false discovery rate (Efron, 2007a), 

we define it as 

𝑙𝑓𝑑𝑟(𝑧)  =
𝑝𝑓0(𝑧)

𝑝𝑓0(𝑧) + (1 − 𝑝)𝑓1(𝑧)
  , (22) 

 

where 𝑓0(𝑧) is the null density, and 𝑓1(𝑧) is the non-null density, which 

in our case is the density of the 𝑆𝑁 (0.11, 𝜎2  +  𝜎1
2,

𝜆𝜎1

√(1 + 𝜆2)𝜎2 + 𝜎1
2
). The 

estimated functions of the 𝑙𝑓𝑑𝑟 (22) and the Efron’s 𝑙𝑓𝑑𝑟 are plotted in 

the right panel of Figure 3. The cutoff threshold 𝑙𝑓𝑑𝑟 ≼ 0.2 is used to 

discover infected genes (Efron, 2007a). Efron’s 𝑙𝑓𝑑𝑟 approach resulted 

in 160 discoveries (left: 54 and right:106), while the 𝑙𝑓𝑑𝑟 approach 

based on (22) resulted in 94 discoveries (left: 17 and right: 77). It is 

interesting to note that there is not a big difference, in terms of the 

total number of discoveries, between the proposed Bayes approach 

and the 𝑙𝑓𝑑𝑟 approach based on (22). Perhaps the Efron’s 𝑙𝑓𝑑𝑟 

approach overpredicts the number of discoveries as it was also pointed 
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out by Gottardo et al. (2006). Also note that the cut-off z-values of the 

BY procedure produces very low values of 𝑙𝑓𝑑𝑟. 

 

7. Concluding Remarks 
 

Generally, the hypotheses problems are stated in terms of either 

one-tailed or two-tailed tests. For directional hypotheses, two-tailed 

tests can still be used with decision about the direction made based on 

the sign of the test statistics, as long as the left and the right 

directional hypotheses are symmetrically distributed. Many practical 

situations would however dictate that one direction is more likely than 

the other direction under the alternative hypotheses. In such cases, 

one-tailed or two-tailed tests will not be appropriate. Bayesian 

approach seems to be an ideal approach to perform hypotheses testing 

in such situations, and the skew normal distribution can be an 

appropriate choice of the prior distribution under the alternative 

hypotheses. We showed in this paper that the use of such skewed 

distribution yields a better power theoretically and empirically. We 

developed a Bayesian decision theoretic methodology to obtain a 

Bayes rule obeying a control mixed directional false discovery rate 

(mdFDR). A local false discovery rate (Efron, 2007a) approach can also 

be implemented as a parametric alternative to Efron’s non-parametric 

𝑙𝑓𝑑𝑟 approach.  

 

We provide a complete procedure for directional hypotheses 

testing including (a) estimation of the parameters of the prior, and (b) 

derivation of the cut-off points of the test statistics. Any type of test 

statistics can be used as long as it can be converted back to the 

normal variates through the p-values. Our approach is parametric in 

the sense that we assume the distribution of the alternatives to be 

skew normal. However, this model can be further extended to 

incorporate a more general family of distributions (e.g. skew-t), or 

even relax the distribution assumption through a non-parametric 

framework. 
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8. Supplementary Materials 
 

The analysis of the microRNA dataset provided in Lim et al. 

(2005) referenced in Section 1, the Web Appendix A referenced in 

Section 2, and the implementation of the R codes are available with 

this paper at the Biometrics website on Wiley Online Library. 
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