Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science,
Faculty Research and Publications \quad Department of

6-1-2015

Extremal H-Colorings of Graphs with Fixed Minimum Degree

John Engbers
Marquette University, john.engbers@marquette.edu

Accepted version. Journal of Graph Theory, Vol. 79, No. 2 (June 2015): 103-124. DOI. © 2015 Wiley. Used with permission.
This is the peer reviewed version of the following article: Extremal H-Colorings of Graphs with Fixed Minimum Degree. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Extremal H-colorings of graphs with fixed minimum degree

John Engbers
Department of Mathematics, Statistics and Computer Science, Marquette University
Milwaukee, WI

Abstract

:

For graphs G and H , a homomorphism from G to H , or H -coloring of G , is a map from the vertices of G to the vertices of H that preserves adjacency. When H is composed of an edge with one looped endvertex, an H -coloring of G corresponds to an independent set in G. Galvin showed that, for sufficiently large n , the complete bipartite graph $\mathrm{K}_{\delta ; \mathrm{n}-\delta}$ is the n -vertex graph with minimum degree δ that has the largest number of independent sets.

In this paper, we begin the project of generalizing this result to arbitrary H . Writing hom (G, H) for the number of H -colorings of G , we show that for fixed H and $\delta=1$ or $\delta=2$, $$
\operatorname{hom}(G, H) \leq \max \left\{\operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{n}{\delta+1}}, \operatorname{hom}\left(K| |_{\rho}, \delta, H\right)^{\frac{n}{2 \delta}}, \operatorname{hom}\left(K_{\delta, n-\delta}, H\right)\right\}
$$ for any n -vertex G with minimum degree δ (for sufficiently large n). We also provide examples of H for which the maximum is achieved by hom $\left(\mathrm{K}_{\delta+1}, \mathrm{H}\right)^{n / \delta+1}$ and other H for which the maximum is achieved by hom ($\left.\mathrm{K}_{\delta, \delta,} \mathrm{H}\right)^{\mathrm{n} / 2 \delta}$. For $\delta \geq 3$ (and sufficiently large n), we provide a infinite family of H for which hom $(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{\delta, n-\delta}, \mathrm{H}\right)$ for any n -vertex G with minimum degree δ. The results generalize to weighted H -colorings.

[^0]
1 Introduction and statement of results

Let $G=(V(G), E(G))$ be a finite simple graph. A homomorphism from G to a finite graph $H=(V(H), E(H))$ (without multi-edges but perhaps with loops) is a map from $\mathrm{V}(\mathrm{G})$ to $\mathrm{V}(\mathrm{H})$ that preserves edge adjacency. We write

$$
\operatorname{Hom}(G, H)=\left\{f: V(G) \rightarrow V(H) \mid v \sim_{G} w \Longrightarrow f(v) \sim_{H} f(w)\right\}
$$

for the set of all homomorphisms from G to H, and hom (G, H) for $|\operatorname{Hom}(\mathrm{G}, \mathrm{H})|$. All graphs mentioned in this paper will be finite without multiple edges. Those denoted by G will always be loopless, while those denoted by H may possibly have loops. We will also assume that H has no isolated vertices.

Graph homomorphisms generalize a number of important notions in graph theory. When $\mathrm{H}=\mathrm{H}_{\text {ind }}$, the graph consisting of a single edge and a loop on one endvertex, elements of Hom(G,Hind) can be identified with the independent sets in G . When $\mathrm{H}=\mathrm{K}_{\mathrm{q}}$, the complete graph on q vertices, elements of $\operatorname{Hom}\left(\mathrm{G}, \mathrm{K}_{\mathrm{q}}\right)$ can be identified with the proper q -colorings of G . Motivated by this latter example, elements of $\operatorname{Hom}(\mathrm{G}, \mathrm{H})$ are sometimes referred to as H -colorings of G , and the vertices of H are referred to as colors. We will utilize this terminology throughout the paper.

In statistical physics, H -colorings have a natural interpretation as configurations in hard-constraint spin systems. Here, the vertices of G are thought of as sites that are occupied by particles, with the edges of G representing pairs of bonded sites (for example by spatial proximity). The vertices of H represent the possible spins that a particle may have, and the occupation rule is that spins appearing on bonded sites must be adjacent in H . A valid configuration of spins on G is exactly an H -coloring of G . In the language of statistical physics, independent sets are configurations in the hard-core gas model, and proper q-colorings are configurations in the zero-temperature q-state antiferromagnetic Potts model. Another example comes from the Widom-Rowlinson graph $H=H_{W R}$, the fully-looped path on three vertices. If the endpoints of the path represent different particles and the middle vertex represents empty space, then the Widom-Rowlinson

[^1]graph models the occupation of space by two mutually repelling particles.

Fix a graph H . A natural extremal question to ask is the following: for a given family of graphs G, which graphs G in G maximize hom (G, H) ? If we assume that all graphs in G have n vertices, then there are several cases where this question has a trivial answer. First, if $\mathrm{H}=K_{q}^{\text {loop }}$, the fully looped complete graph on q vertices, then every map f: $\mathrm{V}(\mathrm{G})->\mathrm{V}(\mathrm{H})$ is an H -coloring (and so hom($\mathrm{G}, K_{q}^{\text {loop }}$) $=\mathrm{q}^{\mathrm{n}}$). Second, if the empty graph \bar{K}_{n} is contained in G, then again every map f:V $\left(\bar{K}_{n}\right)$-> $\mathrm{V}(\mathrm{H})$ is an H-coloring (and so hom $\left.\left(\bar{K}_{n}, \mathrm{H}\right)=|\mathrm{V}(\mathrm{H})|^{\mathrm{n}}\right)$. Motivated by this second trivial case, it is interesting to consider families G for which each $G \in G$ has many edges.

For the family of n-vertex m-edge graphs, this question was first posed for $\mathrm{H}=\mathrm{K}_{\mathrm{q}}$ around 1986, independently, by Linial and Wilf. Lazebnik provided an answer for q = 2 [15], but for general q there is still not a complete answer. However, much progress has been made (see [16] and the references therein). Recently, Cutler and Radcliffe answered this question for $H=H_{\text {ind }}, H=H_{w R}$, and some other small H [2,3]. A feature of the family of n-vertex, m-edge graphs emerging from the partial results mentioned is that there seems to be no uniform answer to the question,"which G in the family maximizes hom(G;H)?", with the answers depending very sensitively on the choice of H .

Another interesting family to consider is the family of n-vertex d-regular graphs. Here, Kahn [13] used entropy methods to show that every bipartite graph G in this family satisfies hom $\left(G, H_{\text {ind }}\right) \leq$ hom $\left(K_{d, d} ; H_{i n d}\right)^{n / 2 d}$, where $K_{d, d}$ is the complete bipartite graph with d vertices in each partition class. Notice that when $2 d / n$ this bound is achieved by $\frac{n}{2 d} \mathrm{~K}_{\mathrm{d}, \mathrm{d}}$, the disjoint union of $\mathrm{n} / 2 \mathrm{~d}$ copies of $\mathrm{K}_{\mathrm{d}, \mathrm{d}}$. Galvin and Tetali [11] generalized this entropy argument, showing that for any H and any bipartite G in this family,

$$
\begin{equation*}
\operatorname{hom}(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{\mathrm{d}, \mathrm{~d}}, \mathrm{H}\right)^{\mathrm{n} / 2 \mathrm{~d}} . \tag{1}
\end{equation*}
$$

Kahn conjectured that (1) should hold for $\mathrm{H}=\mathrm{H}_{\text {ind }}$ for all (not necessarily bipartite) G, and Zhao [19] resolved this conjecture affirmatively, deducing the general result from the bipartite case.

[^2]Interestingly, (1) does not hold for general H when biparticity is dropped, as there are examples of n, d, and H for which $\frac{n}{d+1} K_{d+1}$, the disjoint union of $n /(d+1)$ copies of the complete graph K_{d+1}, maximizes the number of H -colorings of graphs in this family. (For example, take H to be the disjoint union of two looped vertices; here $\log _{2}($ hom $(\mathrm{G}, \mathrm{H}))$ equals the number of components of G.) Galvin proposes the following conjecture in [8].

Conjecture 1.1. Let G be an n-vertex d-regular graph. Then, for any H,

$$
\operatorname{hom}(G, H) \leq \max \left\{\operatorname{hom}\left(K_{d+1}, H\right)^{\frac{n}{d+1}}, \operatorname{hom}\left(K_{d, d}, H\right)^{\frac{n}{2 d}}\right\} .
$$

When $2 \mathrm{~d}(\mathrm{~d}+1) \mid \mathrm{n}$, this bound is achieved by either $\frac{n}{2 d} \mathrm{~K}_{\mathrm{d}, \mathrm{d}}$ or $\frac{n}{d+1} \mathrm{~K}_{\mathrm{d}+1}$. Evidence for this conjecture is given by Zhao [19, 20], who provided a large class of H for which hom $(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{\mathrm{d}, \mathrm{d}}, \mathrm{H}\right)^{\mathrm{n} / 2 \mathrm{~d}}$. Galvin [8, 9] provides further results for various H (including triples ($\mathrm{n}, \mathrm{d}, \mathrm{H}$) for which hom $(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{\mathrm{d}+1}, \mathrm{H}\right)^{\mathrm{n} / \mathrm{d}+1}$) and asymptotic evidence for the conjecture.

It is clear that Conjecture 1.1 is true when $\mathrm{d}=1$, since the graph consisting of $\mathrm{n} / 2$ disjoint copies of an edge is the only 1 -regular graph on n vertices. We prove the conjecture for $\mathrm{d}=2$ and also characterize the cases of equality.

Theorem 1.2. Let G be an n-vertex 2 -regular graph. Then, for any H,

$$
\operatorname{hom}(G, H) \leq \max \left\{\operatorname{hom}\left(C_{3}, H\right)^{\frac{n}{3}}, \operatorname{hom}\left(C_{4}, H\right)^{\frac{n}{4}}\right\} .
$$

If $H \neq K_{q}^{\text {loop }}$, the only graphs achieving equality are $G=\frac{n}{3} C_{3}$ (when $\left.\operatorname{hom}\left(\mathrm{C}_{3}, \mathrm{H}\right)^{n / 3}>\operatorname{hom}\left(\mathrm{C}_{4}, H\right)^{n / 4}\right), G=\frac{n}{4} C_{4}\left(\operatorname{hom}\left(\mathrm{C}_{3}, H\right)^{n / 3}<\operatorname{hom}\left(\mathrm{C}_{4}, H\right)^{n / 4}\right)$, or the disjoint union of copies of C_{3} and copies of C_{4} (when $\left.\operatorname{hom}\left(C_{3}, H\right)^{n / 3}=\operatorname{hom}\left(C_{4}, H\right)^{n / 4}\right)$.

It is possible for each of the equality conditions in Theorem 1.2 to occur. The first two situations arise when H is a disjoint union of two looped vertices and $\mathrm{H}=\mathrm{K}_{2}$, respectively. For the third situation, we utilize that if G is connected and H is the disjoint union of H_{1} and H_{2}, then $\operatorname{hom}(\mathrm{G}, \mathrm{H})=\operatorname{hom}\left(\mathrm{G}, \mathrm{H}_{1}\right)+\operatorname{hom}\left(\mathrm{G}, \mathrm{H}_{2}\right)$. Letting H be the disjoint

[^3]union of 8 copies of a single looped vertex and and 4 copies of K_{2} gives hom $\left(\mathrm{C}_{3}, \mathrm{H}\right)^{1 / 3}=\operatorname{hom}\left(\mathrm{C}_{4}, \mathrm{H}\right)^{1 / 4}=2$.

Another natural and related family to study is $\mathbf{G}(\mathrm{n}, \delta)$, the set of all n -vertex graphs with minimum degree δ. Our question here becomes: for a given H, which $G \in \mathbf{G}(\mathrm{n}, \delta)$ maximizes hom (G, H) ? Since removing edges increases the number of H -colorings, it is tempting to believe that the answer to this question will be a graph that is δ-regular (or close to δ-regular). This in fact is not the case, even for $\mathrm{H}=\mathrm{H}_{\text {ind }}$. The following result appears in [7].

Theorem 1.3. For $\delta \geq 1, n \geq 8 \delta^{2}$, and $G \in G(n, \delta)$, we have

$$
\operatorname{hom}\left(G, H_{\text {ind }}\right) \leq \operatorname{hom}\left(K_{\delta, n-\delta}, H_{\text {ind }}\right),
$$

with equality only for $G=K_{\delta, n-\delta}$.
Recently, Cutler and Radcliffe [4] have extended Theorem 1.3 to the range $\mathrm{n} \geq 2 \delta$. Further results related to maximizing the number of independent sets of a fixed size for $G \in G(n, \delta)$ can be found in e.g. [1, $6]$.

With Conjecture 1.1 and Theorem 1.3 in mind, the following conjecture is natural.

Conjecture 1.4. Fix $\delta \geq 1$ and H . There exists a constant $\mathrm{c}(\delta, \mathrm{H})$ (depending on δ and H) such that for $\mathrm{n} \geq \mathrm{c}(\delta, \mathrm{H})$ and $\mathrm{G} \in \mathrm{G}(\mathrm{n}, \delta)$,

$$
\operatorname{hom}(G, H) \leq \max \left\{\operatorname{hom}\left(K_{\delta+1}, H\right)^{\frac{n}{\delta+1}}, \operatorname{hom}\left(K_{\delta, \delta}, H\right)^{\frac{n}{25}}, \operatorname{hom}\left(K_{\delta, n-\delta}, H\right)\right\}
$$

This conjecture stands in marked contrast to the situation for the family of n-vertex m-edge graphs, where each choice of H seems to create a different set of extremal graphs. Here, we conjecture that for any H, one of exactly three situations can occur. For $2(\delta+1) \mid n$ and n large, this represents the best possible conjecture, since for H consisting of a disjoint union of two looped vertices, $\mathrm{H}=\mathrm{K}_{2}$, and $\mathrm{H}=$ $H_{\text {ind }}$, the number of H -colorings of a graph $\mathrm{G} \in G(\mathrm{n}, \delta)$ is maximized by $\mathrm{G}=\frac{n}{\delta+1} \mathrm{~K}_{\delta+1}, \mathrm{G}=\frac{n}{2 \delta} \mathrm{~K}_{\delta, \delta}$, and $\mathrm{G}=\mathrm{K}_{\delta, n-\delta}$, respectively.

The purpose of this paper is to make progress toward Conjecture 1.4. We resolve the conjecture for $\delta=1$ and $\delta=2$, and characterize the graphs that achieve equality. We also find an infinite

[^4]family of H for which hom $(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{\delta, \mathrm{n}-\delta, \delta} \mathrm{H}\right)$ for all $\mathrm{G} \in \mathrm{G}(\mathrm{n}, \delta)$ (for sufficiently large n), with equality only for $G=K_{\delta, n-\delta}$. Before we formally state these theorems, we highlight the degree conventions and notations that we will follow for the remainder of the paper.

Convention. For $v \in V(H)$, let $d(v)$ denote the degree of v, where loops count once toward the degree. While δ will always refer to the minimum degree of a graph G, Δ will always denote the maximum degree of a graph H (unless explicity stated otherwise).

Theorem 1.5. $(\delta=1)$. Fix $H, n \geq 2$ and $G \in G(n, 1)$.

1. Suppose that $\mathrm{H} \neq K_{\Delta}^{\text {loop }}$ satisfies $\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v) \geq \Delta^{2}$. Then

$$
\operatorname{hom}(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{2}, \mathrm{H}\right)^{\mathrm{n} / 2},
$$

with equality only for $G=\frac{n}{2} K_{2}$.
2. Suppose that H satisfies $\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v) \geq \Delta^{2}$, and let $\mathrm{n}_{0}=\mathrm{n}_{0}(\mathrm{H})$ be the smallest integer in $\{3,4, \ldots\}$ satisfying $\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v)<\left(\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v)^{n_{0}-1}\right)^{\frac{2}{n_{0}}}$
(a) If $2 \leq \mathrm{n}<\mathrm{n}_{0}$, then

$$
\operatorname{hom}(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{2}, \mathrm{H}\right)^{\mathrm{n} / 2},
$$

with equality only for $\mathrm{G}=\frac{n}{2} \mathrm{~K}_{2}$ [unless $\mathrm{n}=\mathrm{n}_{0}-1$ and $\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v)=$ $\left(\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v)^{n_{0}-1}\right)^{\frac{2}{n_{0}-1}}$ in which case $\mathrm{G}=\mathrm{K}_{1, n-1}$ also achieves equality].
(b) If $\mathrm{n} \geq \mathrm{n}_{0}$, then

$$
\operatorname{hom}(\mathrm{G}, \mathrm{H}) \leq \operatorname{hom}\left(\mathrm{K}_{1, n-1}, \mathrm{H}\right),
$$

with equality only for $G=K_{1, n-1}$.
Remark. Notice that hom $\left(\mathrm{K}_{2}, \mathrm{H}\right)=\sum_{v \in \mathrm{~V}(\mathrm{H})} d(v)$, so the conditions on H in Theorem 1.5 may also be written as hom $\left(\mathrm{K}_{2}, \mathrm{H}\right)^{1 / 2} \geq \Delta$ and hom $\left(\mathrm{K}_{2}, \mathrm{H}\right)>\Delta$.

Theorem 1.6. $(\delta=2)$. Fix H.

1. Suppose that $\mathrm{H} \neq K_{\Delta}^{\text {loop }}$ satisfies max $\left\{\operatorname{hom}\left(\mathrm{C}_{3}, \mathrm{H}\right)^{1 / 3}\right.$, hom $\left.\left(\mathrm{C}_{4}, \mathrm{H}\right)^{1 / 4}\right\} \geq \Delta$. Then for all $n \geq 3$ and $G \in G(n, 2)$

$$
\operatorname{hom}(\mathrm{G}, \mathrm{H})=\max \left\{\operatorname{hom}\left(\mathrm{C}_{3}, \mathrm{H}\right)^{1 / 3}, \operatorname{hom}\left(\mathrm{C}_{4}, \mathrm{H}\right)^{1 / 4}\right\},
$$

with equality only for $\mathrm{G}=\frac{n}{3} \mathrm{C}_{3}\left(\right.$ when $\left.\operatorname{hom}\left(\mathrm{C}_{3}, \mathrm{H}\right)^{1 / 3}>\operatorname{hom}\left(\mathrm{C}_{4}, \mathrm{H}\right)^{1 / 4}\right), \mathrm{G}=\frac{n}{4} \mathrm{C}_{4}$ (when hom(C3;H)

[^5]NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.
n
$3<\operatorname{hom}(\mathrm{C} 4 ; \mathrm{H})$
n
4), or the disjoint union of copies of C3
and copies of C4 (when hom (C3;H)
n
3 = hom(C4;H)
n

4).
2. Suppose that H satis_es maxfhom(C3;H)

1
3 ; hom(C4;H)
1
$4 \mathrm{~g}<\ldots$. Then there
exists a constant cH such that for $\mathrm{n}>\mathrm{cH}$ and $\mathrm{G} 2 \mathrm{G}(\mathrm{n} ; 2)$,
hom(G;H) _ hom(K2;n■2;H);
with equality only for $\mathrm{G}=\mathrm{K} 2 ; \mathrm{n} \square 2$.
[Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page.

About the Authors

Author name: Text.

[^0]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

[^1]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

[^2]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

[^3]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

[^4]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

[^5]: [Journal of Graph Theory, Vol. 79, No. 2 (yyyy): pg. 103-124. DOI. This article is © [Publisher's Name] and permission has been granted for this version to appear in e-Publications@Marquette. [Publisher] does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from [Publisher].]

