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Summary 

The Malpighian tubule of Drosophila melanogaster is a useful model 

system for studying the regulation of epithelial ion transport. In acutely 

isolated tubules, the transepithelial potential (TEP) undergoes large 

oscillations in amplitude with a period of approximately 30s. The TEP 

oscillations are diminished by reductions in the peritubular chloride 

concentration in a manner consistent with their being caused by fluctuations 

in chloride conductance. The oscillations are eliminated by pretreating tubules 

with the calcium chelator BAPTA-AM, although removal of peritubular calcium 

has no effect, suggesting that the oscillations are a result of either the release 

of calcium from intracellular stores or the entry of calcium from the tubule 

lumen. Transcripts encoding two calcium-release channels, the ryanodine 

receptor and the inositol trisphosphate receptor, are detectable in the tubule 

by reverse transcription–polymerase chain reaction. To identify the cell type 

responsible for the oscillations, tubules were treated with diuretic hormones 

known to alter calcium levels in each of the two cell types. Leucokinin-IV, 

which increases calcium levels in the stellate cells, suppressed the 

oscillations, whereas cardioacceleratory peptide 2b (CAP2b), which increases 

calcium levels in the principal cells, had no effect. These data are consistent 

with a model in which rhythmic changes in transepithelial chloride 
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conductance, regulated by intracellular calcium levels in the stellate cells, 
cause the TEP oscillations.  

Introduction 

The insect Malpighian (renal) tubule has been a productive 

system for studying epithelial ion transport (Phillips, 1981; Beyenbach, 

1995; Dow et al., 1998). In the fruit fly Drosophila melanogaster, the 

Malpighian tubules secrete an iso-osmotic, potassium-rich urine into 

the digestive tract (Dow et al., 1994b; O’Donnell and Maddrell, 1995). 

The main segment of the tubule, in which the secretion of primary 

urine occurs, contains two morphologically defined cell types: principal 

cells (type I) and stellate cells (type II) (Wessing and Eichelberg, 

1978; Sözen et al., 1997). In the tubules of Drosophila, as in other 

insects, cations are actively transported into the lumen by the principal 

cells (Dow et al., 1994b; Beyenbach, 1995; O’Donnell et al., 1996; 

Linton and O’Donnell, 1999). This transport is driven by a vacuolar-

type proton-ATPase in the apical membrane; protons are then 

transported back into the cell and potassium secreted by an amiloride-

sensitive alkali metal/proton exchanger (Nicolson, 1993; Beyenbach, 

1995). Potassium enters the principal cells by way of a K+/Cl− 

cotransporter in the basolateral membrane, although a substantial 

potassium conductance is also present in this membrane; the fate of 

the cotransported chloride is unclear (O’Donnell et al., 1996; Linton 

and O’Donnell, 1999). Chloride moves passively into the lumen down 

its electrochemical gradient through a pathway that lies outside of the 

principal cells (Pannabecker et al., 1993; O’Donnell et al., 1996). The 

anatomical site of this chloride-shunt conductance has been debated; 

in Drosophila it is believed to be transcellular through the stellate cells, 

based primarily on studies of the increase in chloride permeability 

caused by the diuretic hormone leucokinin (O’Donnell et al., 1996; 

O’Donnell et al., 1998). Studies in the mosquito Aedes aegypti, 

however, support a paracellular route for chloride flux, based on an 

increased permeability of the tubule to sucrose and inulin following 

treatment with leucokinin (Wang et al., 1996) and on the behavior of 

the leucokinin-induced chloride conductance pathway as a single 

diffusion barrier (Pannabecker et al., 1993). This latter finding is also 

consistent with certain models of transcellular transport, and recent 

papers have reported chloride channels in the apical membranes of 
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stellate cells both in Aedes and Drosophila (O’Donnell et al., 1998; 

O’Conner and Beyenbach, 2001). 

The net effect of ion transport in the Drosophila tubule is the 

establishment of a lumen-positive transepithelial potential (TEP) with 

an amplitude of approximately 50–60mV. This TEP is not constant but 

undergoes large oscillations in amplitude (Davies et al., 1995). No 

function has yet been determined for these oscillations, but similar 

oscillations are seen in the tubules of other insect species, raising the 

possibility that they may be important for the regulation of normal ion 

transport (Pilcher, 1970; Morgan and Mordue, 1981; Williams and 

Beyenbach, 1984). A recent study in Aedes demonstrated that, in that 

species, the oscillations are the result of fluctuations in the 

conductance of the chloride-selective shunt (Beyenbach et al., 2000). 

The experiments in this paper were designed to determine whether the 

oscillations in the Drosophila tubule arise from a similar mechanism 

and to identify the cell type responsible for their generation. 

Materials and methods 

Drosophila maintenance 

Drosophila melanogaster (Canton-S) were maintained on a 

12h:12h L:D cycle at 25°C using standard procedures (Ashburner and 

Roote, 2000). 

Tubule isolation 

Posterior Malpighian tubules were dissected under dissecting saline 

from adults of both sexes 6–8 days post-eclosion, placed in a tissue 

culture dish in which a 100μl drop of 0.125mgml−1 poly-l-lysine had 

been dried in order to promote adhesion of the tubule to the dish, and 

the solution replaced with recording medium (O’Donnell et al., 1996). 

The dissecting saline contained (inmmoll−1): 85 NaCl, 20 KCl, 3 CaCl2, 

12 MgSO4, 7.5 NaHCO3, 4 NaH2PO4, 15 glucose, 10 Hepes, pH 6.75 

[osmolality=255–270mmolkg−1 as measured with a vapor pressure 

osmometer (Wescor, Logan, UT, USA)]. In most experiments, the 

recording medium consisted of a 1:1 mixture of Schneider’s Drosophila 

Medium (Life Technologies, Rockville, MD, USA) and a ‘diluting saline’ 
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containing 36 NaCl, 21 KCl, 15 MgCl2, 5 CaCl2, 4.8 NaHCO3, 2 

NaH2PO4, 11.1 glucose, 15 Hepes, pH 6.75. The osmolality of this 

solution was 255–270mmolkg−1. For the experiment involving removal 

of external calcium, the recording medium consisted of dissecting 

saline (either with or without CaCl2) containing 0.5mmoll−1 l-tyrosine. 

Tyrosine is required in the recording solution for TEP oscillations (E. 

Blumenthal, manuscript in preparation); it is present in Schneider’s 

medium, but must be added when recordings are conducted in saline 

alone. For the barium experiment, the recording medium consisted of 

dissecting saline (including 0.5mmoll−1 l-tyrosine) in which the MgSO4 

was replaced with MgCl2. For the chloride replacement experiment, the 

recording media consisted of various mixtures of dissecting saline and 

a saline containing 85mmoll−1 sodium isethionate, 10mmoll−1 K2SO4 

and 3mmoll−1 CaSO4 instead of NaCl, KCl and CaCl2, respectively. All of 

the resulting low-chloride salines also contained 0.5mmoll−1 l-tyrosine. 

Experiments were conducted within 2h of tubule dissection. 

For BAPTA loading, tubules were incubated for 1h at room 

temperature in standard recording medium containing 100μmoll−1 

BAPTA-AM (Molecular Probes, Eugene, OR, USA), 0.04% Pluronic F-

127 (Molecular Probes) and 0.2% dimethyl sulfoxide (DMSO). Control 

tubules were incubated in medium containing Pluronic F-127 and 

DMSO only. Pluronic F-127 was included to increase the solubility of 

the BAPTA-AM. 

Recording 

The tubule lumen and principal cells were impaled with a sharp 

electrode (R>35MΩ) pulled from theta-glass (Sutter Instruments, 

Novato, CA, USA) and filled with 3moll−1 KCl. Potentials were amplified 

(Axopatch 200B, Axon Instruments, Foster City, CA, USA), digitized at 

100Hz and stored online. Recording and analysis was conducted using 

pClamp and Axoscope software (Axon Instruments). The peritubular 

bath was continuously perfused during recording. 

Drugs were applied to and removed from the tubules during 

recording by switching perfusion lines; drugs used were niflumic acid 

(NA) (Sigma, St. Louis, MO, USA), 5-nitro-2-(3-

phenylpropylamino)benzoic acid (NPPB) (Calbiochem, La Jolla, CA, 

USA), 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) 
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(Calbiochem), diphenylamine-2-carboxylic acid (DPC) (Fluka, 

Milwaukee, WI, USA), dantrolene (Calbiochem), 2-aminoethoxy-

diphenylborate (2-APB) (Calbiochem), Xestospongin C (Calbiochem), 

3,4,5-trimethyloxybenzoic acid 8-(diethylamino)octyl ester (TMB-8) 

(Calbiochem), ryanodine (Calbiochem), leucokinin IV (Bachem, King of 

Prussia, PA, USA) and CAP2b (gift of Dr Nathan Tublitz, University of 

Oregon). 

Data analysis 

Because of the complex waveform of most of the TEP records, it 

is difficult to measure the amplitude of individual oscillations. As an 

alternative, I used the coefficient of variation of the TEP as a measure 

of overall variability. The TEP coefficient of variation was calculated as 

the standard deviation of the TEP divided by the mean. In most cases, 

the coefficient of variation was calculated for the entire record. For the 

BAPTA-loading experiment, each trace was divided into non-

overlapping 20s segments and the coefficient of variation was 

calculated for each segment. These values were averaged to give a 

value for the entire trace. 

For period analysis, individual TEP records were decimated 

tenfold and subjected to fast Fourier transform non-linear least-

squares analysis (Straume et al., 1991). This analysis reduces each 

record to a series of rhythmic components and returns an amplitude, 

period and relative uncertainty of the amplitude for each component. 

For each record, components with an amplitude of <1mV were 

discarded, as were those components with periods longer than half of 

the length of the record. The average period of each record was then 

calculated by taking a weighted average of the periods of the 

remaining components, using the inverse square of the amplitude 

uncertainty as the weighting factor. 

Reverse transcriptase–polymerase chain reaction 

For whole fly cDNA, RNA was isolated from adult female flies 

using Trizol reagent (Life Technologies, Rockville, MD, USA) and cDNA 

was synthesized using the Superscript Preamplification System (Life 

Technologies). For tubule-specific cDNA, anterior and posterior tubules 
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were dissected from young adult female flies, and RNA was isolated 

using the RNAqueous-4PCR kit (Ambion, Austin, TX, USA). The RNA 

was resuspended in 20μl of water, divided between two tubes, and 

cDNA synthesized as above. Reverse transcriptase (RT) was added to 

only one of the tubes, with the other serving as a control for genomic 

DNA contamination. Gene-specific fragments were amplified from 

approximately one fly’s worth of cDNA by 35 cycles of polymerase 

chain reaction (PCR) using standard procedures and the components 

of the Advantage cDNA PCR kit (Clontech, Palo Alto, CA, USA). Primer 

sequences were: for the ryanodine receptor, 

TCACTGAAGTCATCCAGGGTCC and AGGAGCACAGCCAGGTTGAAAC, 

and for the inositol trisphophate receptor, 

CACTGCCCAAATAGAGATTGTTCG and TTGCTCCTCAAAGTCCACGCTG. 

Results 

I used sharp electrode recording to measure the TEP of 

Malpighian tubules acutely isolated from adult Drosophila. As has been 

reported by others (Davies et al., 1995), the tubule exhibits a lumen-

positive TEP that undergoes dramatic oscillations in amplitude (Fig.1). 

These oscillations are present in almost all tubules and persist for the 

duration of a recording, which can last for tens of minutes. In some 

recordings, the oscillations are nearly sinusoidal, while in others they 

are much more complex and appear to be composed of many 

components. The average period of the oscillations was 36±3s (N=12 

tubules, mean ± s.e.m.), as determined by fast Fourier transform 

analysis (see Materials and methods). 
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Fig. 1. Representative recording from a Malpighian tubule showing transepithelial 
potential (TEP) oscillations. At the beginning of the trace, the electrode is in the bath. 

The negative deflection reflects the potential across the basolateral membrane of a 
principal cell as the electrode enters the cell; as the electrode is advanced into the 
lumen of the tubule, the recorded potential becomes positive. At the end of the trace, 
the electrode is withdrawn into the bath again. 

Although oscillations were seen in the TEP of virtually all tubules 

tested, intracellular recordings from principal cells did not reveal any 

oscillations in the basolateral membrane potential (Vbl) of these cells, 

in contrast to the clear Vbl oscillations seen in Aedes (Beyenbach et al., 

2000). This observation would appear to violate Kirchhoff’s laws; a 

voltage oscillation across the entire tubule wall should affect the 

potential drop across each individual membrane. Such a contradiction 

has also been raised with regard to the response of the Drosophila 

tubule to leucokinin, as the large depolarization in the TEP is not 

accompanied by a change in Vbl of the principal cells (Beyenbach et al., 

2000). One possible explanation for these observations is that the 

fractional resistance of the principal cell basolateral membrane (fRb) 

could be extremely low as a result of a low basolateral input resistance 

and a high apical input resistance. This situation would result in the 

voltage response to a transepithelial current occurring predominantly 

at the apical membrane (see Pannabecker et al., 1992; Weltens et al., 

1992, for a more detailed discussion of this topic). To test this 

possibility, tubules were treated with barium, which has been shown to 

block a potassium conductance in the principal cell basolateral 
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membrane and should therefore increase fRb (O’Donnell et al., 1996). 

As shown in Fig.2, application of 3mmoll−1 BaCl2 rapidly hyperpolarizes 

Vbl (from –48.3±1.5mV to –63.3±1.0mV, P<0.05 by paired t-test, N=3 

tubules) and causes the membrane potential to oscillate with a pattern 

similar to that seen in the TEP (the coefficient of variation increased 

from 0.016±0.002 to 0.037±0.003, P<0.01 by paired t-test, N=3 

tubules). A barium-induced hyperpolarization of Vbl has been reported 

in both Aedes and the forest ant Formica polyctena and is the result of 

an increased polarizing effect of the apical proton pump on Vbl 

(Weltens et al., 1992; Masia et al., 2000). The behavior of the Formica 

tubule in particular is similar to Drosophila: in both species, Vbl is 

dominated by a high potassium conductance and is at or very near the 

Nernst equilibrium potential for potassium, EK (Weltens et al., 1992; 

O’Donnell et al., 1996). The addition of barium increases fRb and 

makes Vbl more sensitive to electrical events at the apical membrane, 

most notably the hyperpolarizing drive of the ATPase, resulting in a 

hyperpolarization of Vbl. The increase in fRb also explains the 

appearance of the oscillations in Vbl, which is no longer dominated by 

the potassium diffusion potential and will now reflect oscillations in the 

total transepithelial current. 

 
Fig. 2. Effect of Ba2+ on principal cell basolateral membrane potential. The electrode is 
positioned inside a principal cell. Application of 3mmoll−1 BaCl2 for the duration 

indicated by the bar results in a hyperpolarization of Vbl and the appearance of voltage 
oscillations. Similar results were seen in two additional tubules. 
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The TEP oscillations in Aedes have been shown to result from 

oscillations in chloride conductance (Beyenbach et al., 2000). To 

determine if the same is true in Drosophila, I examined the 

dependence of the oscillations on the peritubular chloride 

concentration ([Cl−]p). Oscillations were observed in seven of eight 

tubules tested, and in all seven of these tubules, reducing [Cl−]p from 

the control concentration of 111mmoll−1 by replacement with 

isethionate affected the magnitude of the oscillations. In one tubule 

(Fig.3A), the oscillations disappeared upon reduction of [Cl−]p to 

55.5mmoll−1 and then resumed upon further reduction; at low [Cl−]p, 

the polarity of the oscillations appears to have reversed from 

depolarizing to hyperpolarizing, although this is difficult to assess 

quantitatively due to their complex waveform. In the six remaining 

tubules, the magnitude of the oscillations decreased monotonically as 

[Cl−]p was reduced from 111mmoll−1 to 11.1mmoll−1 but did not 

reverse (Fig.3B,C). The dependence of the TEP oscillations on [Cl−]p is 

similar to that seen in Aedes and is the expected result if they are 

caused by fluctuations in chloride conductance. Because chloride 

transport across the tubule is passive, the change in TEP resulting 

from a given increase in transepithelial chloride conductance, all else 

being equal, will depend only on the driving force for chloride, which is 

the difference between the TEP and the transepithelial chloride 

equilibrium potential (ECl). ECl, in turn, depends on both [Cl−]p and the 

luminal chloride concentration [Cl−]l. As [Cl−]p is decreased, ECl should 

become more positive relative to the peritubular bath, reducing the 

driving force for chloride diffusion and thus the magnitude of the 

voltage oscillations, as is observed. The heterogeneity in the response 

among different tubules is not unexpected given the many 

uncontrolled factors that determine the value of [Cl−]p at which a 

chloride-selective current would be expected to reverse. The TEP 

varies substantially among tubules; indeed, the tubule shown in Fig.3A 

had the lowest TEP of the seven tested. In addition, [Cl−]l would be 

expected to decrease along with [Cl−]p as less chloride is available to 

enter the lumen (Beyenbach et al., 2000); the precise dependence of 

[Cl−]l on [Cl−]p is likely to be complex and determined by the 

magnitude and selectivity of the total anion permeability of each 

particular tubule. 
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Fig. 3. Dependence of TEP oscillations on [Cl−]p. Eight tubules were exposed to 
varying concentrations of Cl− (in mmoll−1; indicated at top of panels) in the peritubular 

bath; seven of these tubules exhibited TEP oscillations. In one tubule (A), the 
oscillations disappeared at 55.5mmoll−1 Cl− and reappeared as [Cl−]p was reduced 
further. In the six other tubules, the amplitude of the oscillations decreased as [Cl−]p 
decreased (B). (C) Averaged data from the latter six tubules only. Values are means ± 
s.e.m. 

It has previously been reported that the treatment of Drosophila 

tubules with chloride channel blockers eliminates fluid secretion, 

suggesting that ion channels are responsible for the movement of all 

of the chloride across the Drosophila tubule (O’Donnell et al., 1998). 

Given this result, one would expect that these blockers would also 

eliminate the TEP oscillations. As shown in Fig.4, application of the 

chloride channel antagonist DPC rapidly and reversibly depolarizes the 

TEP. A similar depolarization was seen with two additional drugs 

(Table1), although the speed of the depolarization and the degree of 

reversibility differed slightly among the various agents. The 

concentrations of channel blockers used in this study were the same as 

or lower than those previously shown to block fluid secretion 

(O’Donnell et al., 1998). Lower concentrations of each drug either had 

no effect or caused a less severe depolarization; at no concentration 

did any of these blockers eliminate the TEP oscillations without also 

depolarizing the tubule (data not shown). A fourth, structurally 

unrelated channel blocker, DIDS, caused a slow depolarization of the 

TEP. Short-term (6–8min) treatment of tubules with 300μmoll−1 DIDS 

had no consistent effect on the TEP (N=4, data not shown). However, 
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tubules that had been incubated in 100μmoll−1 DIDS for 50–84min 

were profoundly depolarized. Of nine tubules tested, three did not 

show a lumen-positive TEP in either branch of the tubule, three 

showed a positive TEP in only one branch, and three showed a positive 

TEP in both branches. The average TEP for the nine branches showing 

a positive TEP was only 12.6±2.2mV. Long-term exposure to lower 

concentrations of DIDS had no consistent effect on the TEP (data not 

shown). The depolarization caused by all of these channel antagonists 

is not consistent with a simple blockade of chloride channels, which 

would be expected to hyperpolarize the TEP, and most likely results 

from the inhibition of some other transporter. Indeed, a sodium-

dependent anion exchanger has recently been cloned from Drosophila 

and shown to be inhibited by carboxylate chloride channel blockers 

and DIDS (Romero et al., 2000). 

 
Fig. 4. Effect of DPC on tubule electrophysiology. Application of 250μmoll−1 DPC (bar) 
rapidly depolarizes the TEP, which recovers upon washout of the drug. Similar results 
were seen in four additional tubules (see Table1). 
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Membrane potential oscillations with a period similar to those 

seen in the tubule have been reported in several different types of 

non-excitable cell. In many cases, these oscillations have been shown 

to result from oscillations in intracellular free calcium levels that affect 

the membrane potential through the rhythmic activation of calcium-

dependent ion channels (Yada et al., 1986; Westphale et al., 1992; 

Ritter et al., 1993). To test the role of intracellular calcium in the TEP 

oscillations, tubules were loaded with the calcium chelator BAPTA-AM, 

which will buffer any increases in intracellular calcium and has been 

shown previously to block calcium-dependent signaling in this 

preparation (O’Donnell et al., 1996). As shown in Fig.5, there is a clear 

difference between the electrical behavior of control and BAPTA-loaded 

tubules. The oscillations seen in all of the control traces are not 

present in the BAPTA-treated tubules; although the treated tubules do 

sometimes exhibit large drops in TEP amplitude, this is probably due to 

an increased susceptibility of these tubules to damage from electrode 

impalement and does not resemble the oscillations seen in controls. 

The effect of BAPTA on the TEP is most clearly seen by dividing each 

trace into 20-second increments and calculating the coefficient of 

variation of these segments (Fig.5C). The elimination of oscillations is 

not due to general toxicity as the average TEP amplitude is not 

reduced by BAPTA treatment (control TEP: 42.4±4.8mV, N=6 tubules; 

BAPTA-treated TEP: 38.0±2.9mV, N=6, P>0.45 by unpaired t-test). 

These results suggest that a rise in intracellular calcium levels is 

necessary for the TEP oscillations but do not identify the cell type in 

which such changes occur. 
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Fig. 5. Dependence of TEP oscillations on intracellular calcium. Traces from six control 

(A) and six BAPTA-AM loaded (B) tubules are shown. (C) Quantification of the effect of 

BAPTA on the coefficient of variation for the 12 traces shown in A and B. See text for 

details of methods. Values are means ± s.e.m., *P<0.0001 (paired t-test). 

Although changes in intracellular calcium appear to be 

necessary for TEP oscillations, peritubular calcium is not required. 

Fig.6 illustrates that acute treatment of tubules with nominally 

calcium-free medium does ot affect their electrical behavior. Removal 

of peritubular calcium did not affect the average amplitude of the TEP 

(from 33.6±3.0mV in the presence of calcium to 32.5±2.7mV in 0 

calcium, N=8 tubules, P>0.7 by paired t-test), the coefficient of 

variation (from 0.17±0.02 to 0.14±0.01, N=8, P>0.05), or the 

average period of the oscillations (from 38.8±4.6s to 43.8±2.9s, N=5, 

P>0.10). Because the TEP oscillations persist in the absence of 

peritubular calcium, the necessary increase in intracellular calcium 

must result either from a release of calcium from intracellular stores or 

from the entry of calcium from the tubule lumen. In most cases 

calcium oscillations require both intracellular calcium stores and the 

entry of extracellular calcium in order to refill the stores (Berridge, 

1990; Fewtrell, 1993). 
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Fig. 6. Lack of dependence of TEP oscillations on peritubular calcium. In the trace 

shown, the tubule is bathed in a normal, calcium-containing saline. At the arrow, the 

bathing solution is switched to a nominally calcium-free saline. Similar results were 

obtained from seven other tubules. 

Intracellular calcium stores can be separated into two 

pharmacologically distinct types: those sensitive to inositol 

trisphosphate (IP3), and those sensitive to ryanodine (Tsien and Tsien, 

1990). Release from these stores is governed by the IP3 receptor 

(IP3R) and the ryanodine receptor (RyR), respectively. As the 

Drosophila genome contains only single copies of genes encoding each 

of these release channels (Hasan and Rosbash, 1992; Yoshikawa et 

al., 1992; Takeshima et al., 1994; Littleton and Ganetzky, 2000), I 

sought to determine whether either or both of them are expressed in 

the tubules. As shown in Fig.7, RT-PCR of tubule-specific mRNA 

amplified fragments corresponding to both the IP3R (lane 3) and the 

RyR (lane 7). These amplification products are unlikely to result from 

contamination by genomic DNA; controls lacking reverse transcriptase 

did not show any product (lanes 4,8), and the primers were designed 

such that genomic DNA would have produced either a larger product, 

due to the inclusion on intronic DNA (RyR), or no product at all, due to 

the primer spanning an exon–intron boundary (IP3R). Thus both 

calcium-release channels are expressed in the tubule. 
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Fig. 7. Expression of genes encoding intracellular calcium-release channels in the 

tubule. The gel shows the result of RT-PCR from whole-fly mRNA (lanes 2,6) and 
tubule-specific mRNA (lanes 3,4,7,8) using primers specific to the IP3 receptor (IP3R) 

(lanes 2–4) and the ryanodine receptor (RyR) (lanes 6–8). In lanes 4 and 8, reverse 
transcriptase was omitted from the cDNA synthesis reaction to control for possible 
genomic DNA contamination. The PCR reactions give products of the expected sizes: 
547base pairs (bp) for RyR, compared to 678bp from genomic DNA, due to the 
inclusion of two short introns (Adams et al., 2000) and 843bp for IP3R (Sinha and 
Hasan, 1999). Because the 5′ IP3R primer spans an exon–intron junction, genomic 
DNA should not give any PCR product. Lane 1: 1kb ladder (Stratagene, La Jolla, CA, 

USA); Lane 5: 100bp ladder (Life Technologies). 

Treatment of tubules with a number of pharmacological agents 

known to block release of calcium from intracellular stores gave 

inconclusive results. Two antagonists of the IP3R, Xestospongin C 

(Gafni et al., 1997) and 2-APB (Ascher-Landsberg et al., 1999) failed 

to block the oscillations specifically. Xestospongin had no effect (5–

20μmoll−1, nine tubules), while 2-APB caused an overall reduction in 

the TEP, possibly due to general toxicity (25–100μmoll−1, three 

tubules). Neither of these agents has been reported to be effective in 

insect cells. Two antagonists of the RyR, which have been used in 

insect cells (Arnon et al., 1997; Heine and Wicher, 1998), also had no 

consistent effect: dantrolene (10μmoll−1, five tubules) and ryanodine 

(5μmoll−1, three tubules). Finally, TMB-8, a less specific antagonist 

with demonstrated effects in insects (Van Marrewijk et al., 1993; 

Wegener and Nassel, 2000), had no effect on TEP oscillations (100–

500μmoll−1, three tubules). The failure of these agents to block the 

oscillations could indicate that the intracellular calcium-release 

channels are not involved; however, it is also possible that the tubule’s 

ability to transport small organic solutes prevents these drugs from 

accumulating in the cytoplasm at sufficient concentrations to block 

their targets. 
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The finding that a rise in intracellular calcium levels is necessary 

for the TEP oscillations raises the question of the cellular localization of 

the calcium increases. Unfortunately, traditional calcium imaging is not 

possible in the tubule due to the rapid excretion of the imaging dyes 

(Rosay et al., 1997; E. Blumenthal, unpublished results). An 

alternative method for measuring calcium levels in tubules cells has 

been developed, employing the selective expression of aequorin in 

different classes of tubule cells (Rosay et al., 1997). The 

bioluminescence output from these tubules, however, is not sufficient 

to image individual cells with the temporal resolution necessary to 

observe calcium oscillations. For this study, therefore, I took 

advantage of the availability of agents that increase intracellular 

calcium levels specifically in each of the two cell types. Fig.8 illustrates 

the response of a tubule to an application of the diuretic hormone 

leucokinin IV. As has been shown by others, leucokinin causes a rapid 

collapse of the TEP due to an increase in chloride conductance 

mediated by a specific rise in intracellular calcium levels in the stellate 

cells (O’Donnell et al., 1996; O’Donnell et al., 1998). Following 

washout of the drug, the TEP amplitude recovers quite rapidly; 

however, the TEP oscillations are completely suppressed for several 

minutes after removal of leucokinin, even after the TEP amplitude has 

completely recovered. A lower concentration of leucokinin (1μmoll−1) 

causes a more transient suppression of the oscillations (data not 

shown). Thus an increase in stellate cell calcium levels causes a 

relatively long-lasting disruption of the TEP oscillations. 
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Fig. 8. Effect of leucokinin on TEP oscillations. (A) Addition of leucokinin IV 

(10μmoll−1) rapidly depolarizes the TEP. After drug washout, the TEP recovers 
amplitude while the oscillations remain inhibited. (B) Average results from six tubules 
show long-lasting inhibition of oscillations after leucokinin washout. Values are means 
± s.e.m., *P<0.01 (paired t-test). Inhibition of oscillations was measured beginning 
60s after washout following an application of 10μmoll−1 leucokinin lasting 25–140s. 

In contrast to leucokinin, a second diuretic hormone, CAP2b, has 

no effect on the TEP oscillations. Application of CAP2b has been shown 

to stimulate the activity of the apical proton pump in the principal cells 

by activating the NO/cGMP signaling pathway (Dow et al., 1994a; 

Davies et al., 1995; Davies et al., 1997). At the concentration used in 

this study, CAP2b has been reported to cause a rapid increase in 

intracellular calcium levels in the principal cells while having no effect 

on calcium levels in the stellate cells (Rosay et al., 1997). As shown in 

Fig.9, the TEP oscillations are not altered either upon initial exposure 

to CAP2b, at which time calcium levels should be increased in the 

principal cells, or after several minutes of hormone treatment, when 

the amplitude of the TEP has increased due to stimulation of the 
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proton pump. Taken together, therefore, my data strongly suggest 

that intracellular calcium levels in the stellate cells play a central role 

in controlling the TEP oscillations. 

 
 

Fig. 9. CAP2b does not alter the oscillations. (A) Trace from a tubule exposed to 
100nmoll−1 CAP2b starting at the arrow. Note the lack of any immediate effect of the 
drug on the TEP. Similar results were seen in five additional tubules. (B) Graph 
showing no effect of CAP2b on TEP variability. The TEP coefficient of variation was 
measured before drug application and during exposure to 100nmoll−1 CAP2b lasting 
5.5–11min. Values are means ± s.e.m., N=6 tubules, P>0.14 (paired t-test). 

Discussion 

The TEP of the Drosophila Malpighian tubule oscillates, and 

these oscillations appear to result from rhythmic changes in the 

chloride conductance across the tubule. In this way, the Drosophila 

tubule behaves very similarly to the Aedes tubule. Using 

measurements of transepithelial resistance in the latter system, 

Beyenbach and coworkers concluded that the oscillating chloride 
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conductance was located outside of the principal cells (Beyenbach et 

al., 2000), leaving either a paracellular pathway or a transcellular 

pathway through the stellate cells as the possible routes of chloride 

flux. The small size of the Drosophila tubule makes such resistance 

measurements unfeasible; however given the similarity in the 

oscillations between the two systems and the published evidence 

against chloride transport through the principal cells in Drosophila 

(O’Donnell et al., 1996), it seems likely that the oscillations described 

in this paper also result from a chloride conductance pathway that 

resides outside of the principal cells. 

As mentioned in the Introduction, the location of the chloride-

selective shunt pathway, transcellular versus paracellular, is a matter 

of some controversy. Evidence for a transcellular route in Drosophila 

includes vibrating probe measurements of current ‘hot spots’ above 

stellate cells, the identification of small patches of chloride channels in 

the luminal membrane of the tubule, and the extremely rapid increase 

in chloride conductance in response to leucokinin (O’Donnell et al., 

1996; O’Donnell et al., 1998). The argument that all chloride flux in 

Drosophila is transcellular is based on the abolition of urine secretion 

by several different chloride channel blockers (O’Donnell et al., 1998). 

However, the electrophysiological data presented in this paper clearly 

indicate that, at the concentrations used in the previous study, these 

blockers cause a depolarization of the TEP, an action that is 

inconsistent with chloride channel blockade but that could account for 

the inhibition of urine secretion. It therefore remains possible that at 

least some of the chloride flux in the Drosophila tubule is paracellular. 

Previous work in the leucokinin-stimulated Drosophila tubule has 

shown a link between intracellular calcium levels in the stellate cells 

and peritubular chloride conductance (O’Donnell et al., 1996; 

O’Donnell et al., 1998). Given this work and my demonstration that 

the fluctuations in chloride permeability underlying the TEP oscillations 

require an increase in intracellular calcium levels, the stellate cells 

would appear to be likely candidates for the site of such a calcium 

increase. The suppression of oscillations by leucokinin shown in this 

paper provides further evidence for the role of the stellate cells. If one 

assumes that the TEP oscillations result from oscillations in stellate cell 

calcium levels, the aforementioned suppression can be explained by a 

long-lasting desensitization of calcium release following the large 
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leucokinin-induced increase in stellate cell calcium. Such a calcium-

dependent desensitization has been reported in mammalian cells 

(Oancea and Meyer, 1996). Furthermore, the lack of any effect of 

CAP2b on the oscillations shows that calcium levels in the principal cells 

do not acutely affect the TEP. The data presented here are most 

consistent with a central role for the stellate cells in the control of the 

TEP oscillations. This paper extends the link between stellate cells and 

chloride permeability, previously shown in leucokinin-treated tubules, 

to unstimulated tubules. Importantly, I do not claim to have 

demonstrated that the oscillations are the result of chloride passing 

through the stellate cells, only that they are regulated by the stellate 

cells. 

Many questions remain unanswered regarding tubular chloride 

transport, most notably the relative contributions of transcellular and 

paracellular pathways, which, given the paucity of specific 

pharmacological tools, could prove difficult to determine. In addition, 

the description of oscillations in chloride transport in the tubules of 

multiple insect species begs the question of why such oscillations exist 

in the first place. It is possible that they could provide a mechanism 

for the regulation of urine secretion by some unknown environmental 

factor. Perhaps the molecular and genetic approaches available in 

Drosophila will prove fruitful in answering these questions. 
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