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Abstract: The developmental neurotoxicity of organophosphates involves 

mechanisms other than their shared property as cholinesterase inhibitors, 

among which are excitotoxicity and oxidative stress. We used PC12 cells as a 

neurodevelopmental model to compare the effects of chlorpyrifos and 

diazinon on the expression of genes encoding glutamate transporters. 

Chlorpyrifos had a greater effect in cells undergoing nerve growth factor-
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induced neurodifferentiation as compared to undifferentiated PC12 cells, with 

peak sensitivity at the initiation of differentiation, reflecting a global 

upregulation of all the glutamate transporter genes expressed in this cell line. 

In differentiating cells, chlorpyrifos had a significantly greater effect than did 

diazinon and concordance analysis indicated no resemblance in their 

expression patterns. At the same time, the smaller effects of diazinon were 

highly concordant with those of an organochlorine pesticide (dieldrin) and a 

metal (divalent nickel). We also performed similar evaluations for the 

cystine/glutamate exchanger, which provides protection against oxidative 

stress by moving cystine into the cell; again, chlorpyrifos had the greatest 

effect, in this case reducing expression in undifferentiated and differentiating 

cells. Our results point to excitotoxicity and oxidative stress as major 

contributors to the noncholinesterase mechanisms that distinguish the 

neurodevelopmental outcomes betweem different organophosphates while 

providing a means whereby apparently unrelated neurotoxicants may produce 

similar outcomes. 

Keywords: Chlorpyrifos, Diazinon, Dieldrin, Gene transcription patterns, 

Glutamate transporters, Microarrays, Nickel, Organochlorine insecticides, 

Organophosphate insecticides, PC12 cells 

Introduction 

Organophosphates are the most widely-used insecticides but are 

undergoing increasing scrutiny because of their propensity to elicit 

developmental neurotoxicity [10,11,16,35,47]. As predicted by the 

results of laboratory studies over the past two decades, recent 

evaluations in human populations confirm a specific relationship 

between exposure to organophosphates and neurodevelopmental 

delays, depression and attention deficit hyperactivity disorder 

[6,7,24,42]. Originally, it was thought that these agents acted solely 

through inhibition of cholinesterase, so that exposure and toxicity 

could both be monitored readily by measuring the activity of this 

enzyme in plasma or red blood cells [36]. However, it is increasingly 

evident that organophosphates produce neurodevelopmental deficits 

below the threshold for signs of exposure or even without a detectable 

reduction in cholinesterase [11,47]. If organophosphates act through 

mechanisms other than their shared anticholinesterase properties, the 

various members of this class may differ in their ability to act as 

developmental neurotoxicants, and it then becomes important to 

identify the degree to which the different organophosphates target 
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those mechanisms. We recently showed that chlorpyrifos and diazinon, 

two of the most commonly-used organophosphates, differ substantially 

in their ability to elicit oxidative stress or excitotoxicity, with 

chlorpyrifos producing much larger changes in ionotropic glutamate 

receptor gene expression, whereas diazinon evoked greater effects on 

genes involved in apoptosis [50,54]. A subsequent paper pointed to 

further differences directed toward glutamate uptake and release and 

suggested the need to evaluate their comparative effects on glutamate 

transporters [44], the subject of the current study. 

Our evaluations were conducted in PC12 cells, a widely-used in 

vitro model for neuronal development [64] that reproduces the 

mechanisms and outcomes of in vivo organophosphate exposures 

[3,4,13–15,18,25,26,33,37,39,40,49,50,59,60,62,66]. Nerve growth 

factor triggers differentiation of PC12 cells into neuronal phenotypes 

[20,62,64] and, like neurons, PC12 cells express the family of 

glutamate transporters that play an important role in the response to 

excitotoxic injury and oxidative stress, recapitulating the same 

functions as in the central nervous system [1,19,27,30,31,68]. 

Similarly, PC12 cells also possess the cystine/glutamate exchanger, 

which provides antioxidant protection by moving cystine into the cell in 

return for moving glutamate outwards [38]. 

For chlorpyrifos, we evaluated the effects in the undifferentiated 

state and during differentiation; we then compared the effects during 

differentiation with those of diazinon. Finally, we contrasted the effects 

of the organophosphates with those unrelated developmental 

neurotoxicants, the organochlorine insecticide, dieldrin, and a metal, 

divalent nickel. In our earlier work, we unexpectedly found similarities 

between their effects and those of organophosphates with regard to 

oxidative stress, excitotoxicity, cell signaling, neurotrophic responses 

and neurodifferentiation [2,50,53–57,60]. These additional test agents 

have intrinsic interest because of environmental concerns about 

human exposure and safety. Dieldrin is known to produce 

developmental neurotoxicity [8,28,29,34,50,67]; nickel shows fetal 

accumulation similar to that of lead [9,23] and shares neurotoxic 

actions with lead and cadmium [5]. For our evaluations, we used 

microarrays in a “planned comparisons” framework, where genes are 

selected based on a specific pathway and hypothesis prior to 

examining the microarray data, rather than the other way around; the 
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advantages and limitations of this approach as compared to searches 

of the entire genome have been presented previously [52,56,58–60]. 

Here, we restricted our examination to the glutamate transporter 

family. In addition to examining up- and downregulation of the 

glutamate transporter genes, we also assessed concordance between 

pairs of agents to determine overall similarities of the transcriptional 

responses [2,54,60]. 

Methods 

Cell cultures 

Because of the clonal instability of the PC12 cell line [20], the 

experiments were performed on cells that had undergone fewer than 

five passages. As described previously [41,62], PC12 cells (American 

Type Culture Collection, CRL-1721, obtained from the Duke 

Comprehensive Cancer Center, Durham, NC) were seeded onto poly-

D-lysine-coated plates in RPMI-1640 medium (Invitrogen, Carlsbad, 

CA) supplemented with 10% horse serum (Sigma Chemical Co., St. 

Louis, MO), 5% fetal bovine serum (Sigma), and 50 μg/ml penicillin 

streptomycin (Invitrogen). Incubations were carried out with 7.5% CO2 

at 37°C, standard conditions for PC12 cells. To initiate 

neurodifferentiation [25,50,64] twenty-four hours after seeding, the 

medium was changed to include 50 ng/ml of 2.5 S murine nerve 

growth factor (Invitrogen). Along with the nerve growth factor, we 

added 30 μM of each of the test agents: chlorpyrifos (Chem Service, 

West Chester, PA), diazinon (Chem Service), dieldrin (Chem Service) 

or NiCl2 (Sigma). The concentration was chosen from earlier studies 

that demonstrated adverse effects on differentiation of PC12 cells 

without outright cytotoxicity [26,39,50,59]. Because of the limited 

water solubility of the three insecticides, these agents were dissolved 

in dimethylsulfoxide (final concentration 0.1%), which was also added 

to the control cultures and to cultures containing NiCl2; this 

concentration of dimethylsulfoxide has no effect on PC12 cell growth or 

differentiation [39,41,62]. Cultures were examined 24 and 72 hr after 

commencing exposure, with 5–8 independent cultures evaluated for 

each treatment at each time point. Each culture was run on a separate 

array. We used two time points so as to be able to evaluate changes in 

gene expression regardless of whether the mRNA for a given gene has 
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a rapid turnover (and hence can rise rapidly) or a slower turnover that 

would require a longer period to show corresponding increases or 

decreases. For chlorpyrifos, we evaluated the effects both on 

undifferentiated cells (without addition of nerve growth factor) and 

during differentiation, whereas for the other agents, we studied the 

effects only during differentiation. 

Microarray determinations 

Our earlier studies detailed the techniques for mRNA isolation, 

preparation of cDNA, conversion to cRNA incorporating cyanine-3 

(reference RNA) or cyanine-5 (sample RNA), verification of RNA purity 

and quality, hybridization to the microarrays, washing and scanning 

[52,58,59]. These all involve commercial kits and standardized 

procedures, and since the current studies were done identically, the 

techniques will not be described here. The mRNA used for the 

reference standard was created by pooling aliquots from each of the 

samples in the study so as to ensure measurable levels of all genes 

expressed over the background. Array normalizations and error 

detection were also carried out by standard procedures described 

previously [52,58,59]. We used Agilent Whole Rat Genome Arrays 

(Agilent Technologies, Palo Alto, CA), type G4131A for the studies of 

chlorpyrifos in undifferentiated and differentiating cells, whereas type 

G4131F was used for the studies of diazinon, dieldrin and Ni2+ in 

differentiating cells. The two chips contain exactly the same gene 

sequences but the latter has a lower detection threshold; however, all 

the genes reported here passed the quality control filters with both 

arrays. 

For several of the genes, the arrays contain multiple probes 

and/or replicates of the same probe in different locations on the chip, 

and these were used to verify the reliability of values and the validity 

of the measures on the chip. In these cases, to avoid artificially 

inflating the number of genes utilized for analysis, we limited each 

gene to a single set of values, selecting those obtained for the probe 

showing the smallest intragroup variance. The other values for that 

gene were used only to corroborate direction and magnitude of 

change. We also validated the readings on the arrays through the use 
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of duplicate arrays for one sample selected from each treatment group 

[52,58]. 

Statistical procedures 

Because of the requirement to normalize the data across arrays, 

the absolute values for a given gene are meaningless, so only the 

relative differences between treatments can be compared. Our design 

involved planned comparisons of four agents at two time points, as 

well as the effects of one agent (chlorpyrifos) in undifferentiated vs. 

differentiating states. It was therefore important to protect against the 

increased probability of type 1 errors engendered by repeated testing 

of the same data base. Accordingly, before looking at effects on 

individual genes, we performed a global ANOVA incorporating all the 

variables in a single comparison: treatment, time, and all genes. 

Lower-order ANOVAs on subdivisions of the data set were then carried 

out as permitted by the interactions of treatment with the other 

variables. Differences for individual treatments for a specified gene at 

a single time point were evaluated with Fisher’s Protected Least 

Significant Difference. However, for a given gene where there was no 

interaction of treatment with other variables (time, differentiation 

state), only the main treatment effect was reported without subtesting 

of effects at a single time point. Treatment effects were considered 

significant at p < 0.05 (two-tailed, since we were interested in both 

increases and decreases in gene expression). 

To compare overall patterns of effects on gene expression, as 

distinguished from just identifying individual genes targeted by the 

treatments, we evaluated concordance between treatments by plotting 

the percentage change from control and calculating the linear 

correlation coefficient between pairs of agents [2,54,60]. 

Results 

The microarrays revealed significant expression of eight 

glutamate transporters that passed the quality control procedures 

(Table 1), including those related to neurons (slc1a1), synaptic 

vesicles (vglut3) and glia (slc1a2, slc1a3), as well as those 

transporting glutamate into multiple cell types (slc1a7), glutamate as 
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a neutral amino acid (slc1a4, slc1a5) or aspartate/glutamate (slc1a6). 

In addition, we were able to measure expression of the 

cystine/glutamate exchanger (slc7a11), which we considered 

separately from the glutamate transporter family. Because only one 

agent (chlorpyrifos) was tested in both undifferentiated and 

differentiating cells, we conducted two sets of global statistical tests. 

For chlorpyrifos, the ANOVA factors were treatment, differentiation 

state, time and gene, and we found a main treatment effect (p < 

0.007) as well as interactions of treatment × differentiation state × 

time (p < 0.03), treatment × time (p < 0.04) and treatment × time × 

gene (p < 0.02). Accordingly, we subdivided the results for 

presentation according to differentiation state and performed lower-

order tests to identify main effects and interactions with the remaining 

variables (time, gene). Diazinon, dieldrin and Ni2+ were studied only in 

differentiating cells, so the ANOVA factors for these agents were 

treatment, gene and time. The global test identified significant 

interactions of treatment × time (p < 0.02) and treatment × gene × 

time (p < 0.009), so we subdivided the data into the individual 

treatments for presentation and lower-order tests. 

 

In undifferentiated cells, chlorpyrifos elicited selective changes 

in the expression of glutamate transporter genes (Figure 1). There was 

a robust but transient increase in slc1a3 and smaller, but more 

sustained increases for slc1a4 and slc1a5, whereas vglut3 was 

decreased. The pattern was quite different for cells undergoing 

differentiation (Figure 2A). Here, chlorpyrifos evoked a significant, 

global upregulation (main treatment effect) that was significantly 

greater at 24h of exposure than at 72h (treatment × time interaction) 

but that was nevertheless statistically significant at either of the time 

points. Diazinon had a much smaller effect on glutamate transporter 

gene expression than did chlorpyrifos (Figure 2B). There was no 

global, main treatment effect but rather, there were smaller, gene- 

and time-specific changes confined to slc1a4 (transient increase), 
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slc1a5 (small but consistent increase) and vglut3 (decrease at 72h). 

Likewise, dieldrin (Figure 2C) had only small effects limited to a single 

significant change (slc1a5), as did Ni2+ (Figure 2D), which affected the 

same gene. 

 

Figure 1 Effects of chlorpyrifos exposure on expression of genes for glutamate 

transporters in undifferentiated PC12 cells. Multivariate ANOVA appears at the top of 

the panel and asterisks shown below each gene denote a significant main treatment 

effect; daggers denote genes for which a treatment × time interaction was detected 

and show the individual times for which treatment effects were present. Expression 

ratios in the control group were: slc1a1, 1.12 ± 0.05 at 24h, 1.25 ± 0.06 at 72h; 

slc1a2, 1.04 ± 0.08 at 24h, 0.99 ± 0.12 at 72h; slc1a3, 0.72 ± 0.06 at 24h, 1.28 ± 

0.09 at 72h; slc1a4, 0.80 ± 0.07 at 24h, 0.96 ± 0.08 at 72h; slc1a5, 0.84 ± 0.01 at 

24h, 0.90 ± 0.01 at 72h; slc1a6, 0.86 ± 0.07 at 24h, 1.03 ± 0.06 at 72h; slc1a7, 

0.99 ± 0.06 at 24h, 1.04 ± 0.06 at 72h; vglut3, 1.18 ± 0.09 at 24h, 1.05 ± 0.10 at 

72h. 
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Figure 2 Effects of different neurotoxicants on genes for glutamate transporters in 

differentiating PC12 cells: (A) chlorpyrifos, (B) diazinon, (C) dieldrin, (D) Ni2+. 

Multivariate ANOVA appears at the top of each panel. Where there was a significant 

difference in the treatment effects on the various genes (B,C,D), asterisks shown 

below each gene denote a significant main treatment effect; daggers denote genes for 

which a treatment × time interaction was detected and show the individual times for 

which treatment effects were present. Where there was only a treatment effect and 

interaction of treatment × time (A), the treatment effects for each time are shown 

within the legend box. Expression ratios in the control group were: slc1a1, 0.79 ± 

0.08 at 24h, 0.94 ± 0.10 at 72h; slc1a2, 1.16 ± 0.09 at 24h, 1.36 ± 0.10 at 72h; 

slc1a3, 0.57 ± 0.06 at 24h, 0.95 ± 0.08 at 72h; slc1a4, 0.83 ± 0.09 at 24h, 1.09 ± 

0.08 at 72h; slc1a5, 1.13 ± 0.04 at 24h, 0.99 ± 0.03 at 72h; slc1a6, 0.87 ± 0.09 at 

24h, 0.84 ± 0.02 at 72h; slc1a7, 0.98 ± 0.03 at 24h, 0.96 ± 0.04 at 72h; vglut3, 1.12 

± 0.06 at 24h, 0.93 ± 0.08 at 72h. 

To verify that the greater effects of chlorpyrifos in the 

differentiating cells were not solely dependent on the one 

determination showing the largest increase (slc1a3 at 24h), we 

performed paired comparisons using the Wilcoxon signed-rank test so 

as to give equal weight to the differences between treatments for each 

gene regardless of the absolute magnitude of the individual effect. 

Chlorpyrifos exposure in differentiating cells had a greater net effect 

than in undifferentiated cells (p < 0.008). Similarly, chlorpyrifos had a 

greater effect than diazinon (p < 0.005), dieldrin (p < 0.03) or Ni2+ (p 

< 0.003), whereas comparisons among the other three agents showed 

no significant distinction from each other. We further examined 
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similarities and differences among the treatments by evaluating the 

pairwise concordance across all the gene and time measurements; this 

procedure assesses patterns of effects incorporating all genes and time 

points, regardless of whether the effects were individually significant. 

Although there was a significant correlation between effects of 

chlorpyrifos in undifferentiated vs. differentiating cells, the entire 

relationship depended on a single measurement out of the 16 values, 

making it unlikely that the responses were biologically related (Figure 

3A). Similarly, there was no detectable relationship between the 

pattern of effects for chlorpyrifos in differentiating cells vs. either 

diazinon (Figure 3B), dieldrin (Figure 3C) or Ni2+ (Figure 3D). On the 

other hand, there was highly-significant concordance between the 

effects of diazinon and dieldrin (Figure 4A), diazinon and Ni2+ (Figure 

4B) and dieldrin and Ni2+ (Figure 4C). 

 

Figure 3 Pairwise correlations of the effects of chlorpyrifos in undifferentiated vs. 

differentiating cells (A), and in differentiating cells for chlorpyrifos vs. diazinon (B), 

dieldrin (C) or Ni2+ (D). In (A), a single point (slc1a3 at 1h, arrow) is responsible for 

the significant correlation; without that point, R = 0.20, not significant (NS). 
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Figure 4 Pairwise correlations of the effects of diazinon vs. dieldrin (A), diazinon 

vs. Ni2+ (B) and dieldrin vs. Ni2+ (C) in differentiating cells. Linear correlation 

coefficients are shown at the top of each panel along with the least-squares fit. 

Chlorpyrifos also had greater effects than the other agents 

toward expression of slc7a11, the cystine/glutamate exchanger (Figure 

5). For this gene, undifferentiated cells showed strong and persistent 

suppression by chlorpyrifos whereas the differentiating cells were 

affected to a smaller, but still significant degree. None of the other 

agents suppressed slc7a11 expression and indeed, dieldrin evoked a 

significant increase at 72h. 
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Figure 5 Effects of neurotoxicants on expression of the cystine/glutamate 

exchanger, slc7a11. Multivariate ANOVA indicates a significant main treatment effect 

(p < 0.0007) and a treatment × time interaction (p < 0.02). Asterisks denote 

treatments showing a main effect compared to control; the dagger denotes a 

significant treatment × time interaction and shows the individual time for which the 

treatment effect was present. Expression ratios in the control group were: 

undifferentiated cells, 2.09 ± 0.10 at 24h, 1.43 ± 0.15 at 72h; differentiating cells, 

1.47 ± 0.12 at 24h, 0.92 ± 0.09 at 72h. 

Discussion 

Results obtained in this study reinforce the idea that, despite 

their shared property as cholinesterase inhibitors, organophosphates 

can differ substantially in their ability to evoke developmental 

neurotoxicity through noncholinesterase mechanisms [10,12,22,47]. 

Here, we identified effects involving the glutamate transporters found 

in the synaptic cell membrane (the seven slc1a genes) and that are 

thus responsible for removing extracellular glutamate, as well as one 

of the vesicular transporters (vglut3) that moves glutamate from the 

cytoplasm into synaptic vesicles; these transporters are among the 

most important factors that limit excitotoxicity resulting from 

glutamate release. We found a much greater effect of chlorpyrifos than 

diazinon, a result is in keeping with distinctions between the two 

organophosphates in their impact on ionotropic glutamate receptors 

[54] and in the response to NMDA receptor antagonists, which protect 

cells from chlorpyrifos but not diazinon [44]. It is particularly notable 
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that the effects of chlorpyrifos on glutamate transporters was greatest 

during the early stages of neurodifferentiation; in our previous work 

with ionotropic glutamate receptors, we found greater sensitivity for 

undifferentiated PC12 cells. This dichotomy implies that chlorpyrifos-

induced excitotoxicity is likely to involve an extended range of 

developmental stages but with different underlying mechanisms for 

each stage. Indeed, the existence of such multiple mechanisms is one 

of the reasons that the developing brain is vulnerable to disruption by 

chlorpyrifos virtually throughout development, from the neural tube 

stage through late synaptic modeling and gliogenesis [46,47]. 

Although chlorpyrifos caused global upregulation of glutamate 

transporter gene expression, it downregulated the gene encoding the 

cystine/glutamate exchanger (slc7a11) in both undifferentiated and 

differentiating PC12 cells, but with greater effects in the former. 

Clearly, then, this involves a distinctly different mechanism from that 

mediating the effect on the transporters and more closely resembles 

the prior results for ionotropic glutamate receptors [54]. The 

cystine/glutamate exchanger moves cystine into the cell and 

glutamate out, with the subsequent intracellular formation of 

glutathione providing an important component of antioxidant defense. 

Organophosphates elicit oxidative stress as one of their 

noncholinesterase mechanisms of neurotoxicity [21,22,50,54,57] and 

hence, suppression of the exchanger could easily impair the ability of 

neuronal cells to withstand exposure. We are currently examining the 

function of the exchanger in primary mouse cortical cultures and, as 

predicted from the transcriptional effects seen here, our preliminary 

data indicate a clear-cut suppression of activity in response to an 

otherwise nontoxic, 24h chlorpyrifos exposure, (17 ± 4 percent 

reduction in [14C]cystine uptake, p < 0.006, n=20). Impaired 

cystine/glutamate exchange is particularly important in the developing 

brain because it has lower reserves of antioxidants [22], and is 

deficient in glia, which ordinarily protect neurons from oxidative 

molecules [63], while facing the higher metabolic demand associated 

with growth. Further, the fetal environment is hypoxic relative to that 

of the neonate or adult [17,32], thus fostering the conditions for 

oxidative stress. Again, chlorpyrifos was far more active than diazinon 

in downregulating the cystine/glutamate exchanger, potentially 

exacerbating the consequences of its effects on oxidative stress, as 

well as on glutamate release and transport. 
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Although it might be expected that chlorpyrifos and diazinon 

would be the most similar of the four toxicants evaluated here, we 

actually found that the effects of diazinon more closely resembled 

those of dieldrin and Ni2+. For the glutamate transporters, there was 

highly-significant concordance among diazinon, dieldrin and Ni2+ but 

not for any of these agents with chlorpyrifos. This continues a pattern 

that we identified in earlier studies comparing organophosphates to 

other toxicants with regard to oxidative stress, cell signaling cascades, 

neurotrophins and their receptors and neurodifferentiation endpoints 

[2,50,53–57,60]. The conclusion is inescapable: apparently unrelated 

developmental neurotoxicants can nevertheless converge on quite 

similar downstream mechanisms of neurotoxicity, despite any 

underlying differences in their chemical composition or initial 

mechanism. In turn, this implies that any single specific mechanism of 

action may be less important for neurotoxic outcomes than 

examination of downstream events known to participate in 

neurotoxicity. At the same time, it should then be possible to design 

countermeasures that can ameliorate or prevent neurotoxicity from 

otherwise disparate neurotoxicants by focusing on the downstream 

targets. 

In this study, we used planned comparisons of specific pathways 

targeted by the neurotoxicants and analyzed the data through the 

determination of shared properties (i.e. a standard “principal 

components” approach); the rationale for this has appeared previously 

[52,58,59] but is worth repeating here. Planned comparisons and 

pathway analysis are distinct from the use of microarrays to find a 

handful of genes that are affected the most, within the global 

examination of the tens of thousands of genes present on the 

microarrays. Planned comparisons are based instead on testing a 

specific hypothesis that centers around a defined set of genes, and 

rests on known, validating outcomes from prior work, in this case for 

the organophosphates. With examination of the entire genome, 

verification via RT-PCR and other techniques is required because the 

enormous number of comparisons generates many false positive 

findings (e.g. the >2000 genes that would be false positives if we had 

considered all 42,000 probes on the array). For our study, we 

compared only a few genes that would generate less than a single 

false positive, and for interpretation, we relied on concordance 

patterns to evaluate the overall spectrum of multiple gene changes for 
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each agent, rather than changes in any one gene; further, we made 

sure that effects were repeated across different treatments and/or 

different times; even for individual genes, there were multiple probes 

and multiple spots on a given array (see Methods), so the changes 

cannot be “chance.” Indeed, one of the key points of this study is to 

demonstrate that a planned comparisons approach may provide a 

superior strategy for the use of microarray data, provided that the 

relevant target pathways can be selected in advance, based on specific 

hypothesis and prior data. 

Our findings strengthen the view that, despite their common 

characteristic as cholinesterase inhibitors, organophosphates differ in 

their underlying mechanisms of developmental neurotoxicity, in this 

case involving glutamate. The dichotomy between the effects of 

chlorpyrifos and diazinon on glutamate transporter genes and on the 

cystine/glutamate exchanger are likely to play an important role in the 

greater susceptibility of developing neurons to chlorpyrifos-induced 

excitotoxicity [44,54], and ultimately in the different patterns of 

synaptic damage and behavioral deficits seen with each agent 

[39,43,45–48,50,51,56,61,65]. At the same time, we found surprising 

concordance in the effects of diazinon with unrelated neurotoxicants, 

dieldrin and Ni2+, indicating these dissimilar compounds nonetheless 

converge on common final pathways of neurotoxicity. These results 

with an in vitro system can thus guide future in vivo studies to 

evaluate the role of excitatory mechanisms in the developmental 

neurotoxicity of organophosphates and other toxicants and to design 

appropriate treatments that may protect the developing brain from 

injury. 
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