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Abstract 

 

The mitochondrion is a major source of reactive oxygen species (ROS). 

Superoxide (O2
•−) is generated under specific bioenergetic conditions at 

several sites within the electron-transport system; most is converted to H2O2 

inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is 

a major chemical messenger that, in low amounts and with its products, 

physiologically modulates cell function. The redox state and ROS scavengers 

largely control the emission (generation scavenging) of O2
•−. Cell ischemia, 

hypoxia, or toxins can result in excess O2
•− production when the redox state is 

altered and the ROS scavenger systems are overwhelmed. Too much H2O2 

can combine with Fe2+ complexes to form reactive ferryl species (e.g., 

Fe(IV)=O•). In the presence of nitric oxide (NO•), O2
•− forms the reactant 

peroxynitrite (ONOO¯), and ONOOH-induced nitrosylation of proteins, DNA, 

and lipids can modify their structure and function. An initial increase in ROS 

can cause an even greater increase in ROS and allow excess mitochondrial 

Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. 

Approaches to reduce excess O2
•− emission include selectively boosting the 

antioxidant capacity, uncoupling of oxidative phosphorylation to reduce 

generation of O2
•− by inducing proton leak, and reversibly inhibiting electron 

transport. Mitochondrial cation channels and exchangers function to maintain 

matrix homeostasis and likely play a role in modulating mitochondrial 

function, in part by regulating O2
•− generation. Cell-signaling pathways 

induced physiologically by ROS include effects on thiol groups and disulfide 

linkages to modify post-translationally protein structure to activate/inactivate 

specific kinase/phosphatase pathways. Hypoxia-inducible factors that 

stimulate a cascade of gene transcription may be mediated physiologically by 

ROS. Our knowledge of the role played by ROS and their scavenging systems 

in modulation of cell function and cell death has grown exponentially over the 

past few years, but we are still limited in how to apply this knowledge to 

develop its full therapeutic potential.  

 

I. Introduction 
 

The turn of the century has seen a resurgence of interest in 

mitochondrial generation of reactive oxygen species (ROS), first 

discovered and understood during the late 1960s and early 1970s. The 

renewed interest derives from the newer concept that ROS are not 

always deleterious to cell function and from the use of more sensitive 

and accurate techniques and probes to understand the mechanism of 

ROS generation and scavenging systems. A number of commentaries 

and well-researched reviews have been published since 2000 on the 
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putative mechanisms of ROS production and the complex 

pathophysiologic effects that ROS exert on cell function; many of these 

are referenced throughout this review (8, 27, 31, 48, 55, 59, 66, 72, 

75, 80, 81, 113, 122, 126, 132, 133, 140, 146, 163, 179, 183, 189, 

202, 209, 234, 241, 243, 244, 246, 299, 303, 307, 328). Many of 

these reviews address very specific aspects of mitochondrial 

bioenergetics or deal with nonmitochondrial ROS production or both. 

For this review, we hope to present a comprehensive understanding of 

mitochondrial ROS production sites and their regulation, ROS 

scavenging, and physiologic as well as pathologic effects of ROS, 

particularly as triggers of cell protection. 

 

A. Focus of review 
 

This review focuses primarily on the ROS generated by the 

mitochondrial respiratory complexes, the sites and conditions for ROS 

generation, cell regulation of ROS generation and ROS scavenging, 

cell-damaging effects of ROS vs. physiologic regulation of 

mitochondrial and cell function by ROS, and the emerging role of 

pharmacologic approaches to manipulate generation and scavenging of 

specific ROS. Other potential sources of ROS exist in mitochondria 

(e.g., glycerol-3-phosphate dehydrogenase, acyl-CoA dehydrogenase), 

but their physiological significance remains to be elucidated (8). This 

report concentrates on studies of mitochondria in excitable cells with 

high metabolic rates (i.e., mammalian myocardial and nervous system 

cells). Mitochondrial density is very high in muscle and nerve cells 

because of their higher O2 consumption rate compared with that of 

most other cell types. The number, size, shape, interconnections, and 

location of mitochondria are also different depending on cell types 

(91). Mitochondria also serve different functions within the same cell 

[e.g., in nerve cells (91) and between the interfibrillary and 

subsarcolemmal mitochondria in cardiac cells (213)].  

 

This review summarizes studies on how and why ROS are 

generated by mitochondrial electron-transport complexes in 

physiologically low amounts, perhaps up to 1% or 2% of the total rate 

of O2 consumption (77), to modulate mitochondrial and cell function. A 

number of topics are addressed: How can ROS be generated when the 

level of the electron acceptor O2 is low? What is the source and 
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location of ‘‘good’’ versus ‘‘bad’’ ROS? Which are the physiologically 

relevant ROS, and what are their targets? How are the levels of 

physiologic ROS modulated? How can generation or scavenging of ROS 

be manipulated to support cell function when the cell is stressed? 

Are low O2–induced cell signaling pathways initiated at the 

mitochondrial level, and does an increase or decrease in ROS mediate 

this activity? 

 

This review does not specifically address the significant 

extramatrix and nonmitochondrial sources of ROS [e.g., cytochrome b5 

reductase, perioxisomes, catecholamines, hydroquinones, plasma 

membrane oxidases such as NADPH oxidase, lipoxygenases, 

monoamine oxidases, xanthine/xanthine oxidase, coupled or 

uncoupled nitric oxide synthase, and eicosanoids pathways, among 

others (303)]. Most of these compounds can initially lose an electron 

to form the superoxide anion radical (O2
•−) by autooxidation. The 

nonmitochondrial ROS released or formed in the cytosol are buffered 

generally under strong reducing conditions by intracellular thiols, 

particularly glutathione (GSH) and thioredoxin (TRXSH2) by the 

activities of their reductases (303); this topic is addressed only as 

applied to mitochondriaderived ROS. The free radical NO• can have 

profound effects on mitochondrial function (i.e., competing with O2 at 

mitochondrial respiratory complex IV and reacting with O2
•− to form 

peroxynitrite). The source of the NO• may be vascular endothelium, 

nerve terminals, or other cytosolic sources. Controversial evidence 

that suggests that NO• may be generated by a mitochondrial NO 

synthase (23, 24, 136, 137), but this review deals primarily with 

respiratory complex–derived O2
•− and its products. 

 

B. Ambiguities about ROS 
 

Although much is known of the chemistry of ROS (151), much less is 

known about the specific molecular sites and conditions for electron 

leak and O2
•− generation along the electron-transport pathway under 

pathophysiologic conditions (32, 61). Some topics addressed 

subsequently: How and why do singlet electrons escape during 

electron transfer? What are the physiologic pathways for O2
•− release? 

How can O2
•− be formed during state 3 (ADP-stimulated) respiration 

when the ΔΨm is less polarized because of the influx of protons? How 

can more O2
•− be generated when O2 levels decrease? Are isolated 
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mitochondria a proper model for assessing ROS generation? What is 

the relative amount of O2
•− generated at sites along the respiratory 

complexes? Does O2
•− or other ROS function as an O2 sensor to 

modulate enzyme activity? What distinguishes physiologic from 

pathologic release of O2
•−? It is hoped that this review will furnish at 

least satisfactory answers to most of these questions.  

 

II. Overview of Mitochondrial Structure and 

Function 
 

A. Structure 
 

Mitochondria are membrane-enclosed organelles (1- to 10-m 

diameter) that generate most of the cell’s supply of ATP; they also 

have a role in cell signaling and differentiation, Ca2+ buffering, 

apoptosis and cell death, as well as control of the cell cycle and cell 

growth (322). Many of these processes are triggered or mediated by 

Ca2+ or ROS or both. The number of mitochondria in a cell varies 

widely by organism and tissue type. Many cells have only a single 

mitochondrion, whereas others can contain several thousand 

mitochondria (265, 322). Mitochondrial compartments include the 

outer mitochondrial membrane (OMM), the inner membrane space 

(IMS), the inner mitochondrial membrane (IMM), and the cristae and 

matrix (265). The OMM has a protein-to-phospholipid ratio similar to 

that of the plasma membrane (~1:1 by weight) and contains large 

numbers of integral proteins called porins that form channels to allow 

molecules of more than 5,000 Daltons to diffuse freely across the OMM 

(265). Larger proteins also can enter the mitochondrion if a signaling 

sequence at their N-terminus binds to large multi-subunit proteins 

(translocases) that then actively transport them across the OMM. 

Disruption of the OMM permits proteins in the IMS to leak into the 

cytosol, leading to cell death (87). Because the OMM is freely 

permeable to small molecules, the concentrations of small molecules, 

such as ions and sugars, in the IMS is the same as in the cytosol 

(265). However, as large proteins must have a specific signaling 

sequence to be transported across the OMM, the protein composition 

of the IMS is different from the protein composition of the cytosol. One 

protein that is localized to the IMS in this way is cytochrome c (87).  
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The IMM contains proteins with several functions (225, 265): (a) 

redox reactions of oxidative phosphorylation, (b) ATP 

synthase/ATPase, (c) transport proteins that regulate metabolites 

across the matrix, and (d) protein-import machinery. The IMM has a 

3:1 protein-to-phospholipid ratio and is rich in the phospholipid 

cardiolipin, which contains four fatty acids that help to make the IMM 

impermeable (322). Unlike the OMM, the IMM does not contain porins 

and is highly impermeable to all molecules, so that all ions and 

molecules require membrane transporters to enter or exit the matrix.  

 

Mitochondria vary in number and location according to cell type. 

Liver cells have ~1,000–2,000 mitochondria per cell, making up 20% 

of the cell volume (2), and the IMM (+cristae) area is about 5 times 

greater than that of the OMM. In cardiac mitochondria, the cristae area 

is much larger, and mitochondrial volume can reach 30% of cell 

volume. Mitochondria often form a complex 3D branching network 

inside the cell with the cytoskeleton and tight connections to other 

organelles. The association with the cytoskeleton determines 

mitochondrial shape and function (265). 

 

B. Function 
 

The membrane potential across the IMM is formed by the action 

of the respiratory enzymes and the TCA cycle (225, 322). Each 

pyruvate molecule produced by glycolysis is actively transported 

across the IMM and into the matrix, where it is oxidized and combined 

with coenzyme A to form CO2, acetyl-CoA, and NADH (322). The 

acetyl-CoA is the primary substrate to enter the TCA cycle. The 

enzymes of the TCA cycle are located in the mitochondrial matrix, with 

the exception of succinate dehydrogenase, which is bound to the IMM 

as part of complex II. The TCA cycle oxidizes the acetyl-CoA to CO2, 

and, in the process, produces three molecules of NADH and one 

molecule of FADH2, which are a source of electrons for transport along 

the respiratory complexes, and a molecule of GTP (that is readily 

converted to an ATP) (322). The redox energy from NADH and FADH2 

is transferred to O2 in several steps via the electron transport along 

the respiratory complexes. The individual proteins of complexes I to V 
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specifically interact to form defined supramolecular structures, the 

socalled ‘‘respiratory supercomplexes’’ or ‘‘respirasome’’ (114). 

 

Reducing equivalents from the cytoplasm can be imported via 

the malate-aspartate shuttle system of antiporter proteins or fed into 

the electron-transport system (ETS) by using a glycerol phosphate 

shuttle. NADH dehydrogenase, cytochrome c reductase, and 

cytochrome c oxidase perform the transfer, and the incremental 

release of energy is used to pump protons (H+) into the IMS (322). As 

the proton concentration increases in the IMS, a strong 

electrochemical gradient is established across the IMM. The protons 

can return to the matrix through the ATP synthase complex, and their 

potential energy is used to synthesize ATP from ADP and inorganic 

phosphate (Pi) (322). This process, called chemiosmosis, was first 

described by Peter Mitchell (230), who was awarded the 1978 Nobel 

Prize in Chemistry for his work.  

 

III. Mitochondrial Sources and Mechanism of ROS 

Generation 
 

A. Requirement for charged membrane, electron flux, 

and O2 
 

Molecular O2 (dioxygen) has two unpaired electrons with parallel 

spin in different antibonding orbitals. O2
•− arises directly from the 

reduction of O2 by transfer of a lone electron to its antibonding orbital 

(151). The electrons are believed to escape from the mitochondrial 

ETS at discrete sites during the transport of electrons (Figs. 1 and 2A) 

from NADH oxidoreductase (complex I) to cytochrome c oxidase 

(complex IV), the ultimate electron acceptor by which O2+4e¯ and 4H+ 

is reduced to 2H2O. Oxygen, necessary for life in aerobic organisms, is 

therefore simply a sink for electrons (66). 

 

The standard reduction potentials of electron carriers in the four 

mitochondrial complexes span the range of redox potentials from 

NADH at complex I (―0.32 V) to O2 at complex IV (+0.82 V) (Fig. 2B). 

The standard reduction potential for the reduction of O2 to O2
•− is 

about ―0.16V (307), so many components of the respiratory 
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complexes in the ETS are thermodynamically capable of irreversibly 

transferring an electron to O2. However, the single-electron transfers 

are tightly controlled and quickly coupled with the second electron 

transfer (107, 293, 294). The energy released as electrons are 

transferred along the respiratory chain is conserved into an H+ 

gradient directed outward through the IMM. Ejection of protons 

alkalinizes the matrix to create a transmembrane H+ electrochemical-

potential gradient, the proton motive force (∆H+), comprising the 

membrane potential (ΔΨm, ―150 mV) and the smaller pH-gradient 

potential (∆pHm, ―30 mV) (201). The energy stored in the ∆H+ is 

partially dissipated as H+ reenters the matrix at complex V (ATP 

synthase), which rotates a protein rotor to convert ADP and Pi to ATP. 

This process is reversible. 

 

B. Reactive and nonreactive O2 species and reactants 
 

The generation of ROS from mitochondria was first reported in 

the early 1970s (44, 218). ROS are O2 molecules alone or bound to 

elements C, H, or N in different states of oxidation or reduction (Table 

1) (151). The primordial mitochondrial ROS is the free radical O2
•− 

(Fig. 2B), which, as noted earlier, has an added unpaired electron. 

Although O2
•− can reduce Fe3+ to Fe2+ and react with other ligands to 

form other radicals, its usual fate is rapid dismutation (Kd=1.6 х 

109M/s) to hydrogen peroxide (H2O2) by superoxide dismutase (SOD) 

in the mitochondrial matrix (MnSOD) and IMS and cytosol (CuZnSOD). 

During the dismutation reaction, the O2
•− is first protonated to the 

hydroperoxyl radical (HO2
•) (Kd 10 х 107M/s), and two HO2

• react (Kd 9 

х 105M/s) to form H2O2 and H2O (151). Thus, the spontaneous 

dismutation rate of HO2
• is ~100 times faster than that of O2

•− and 

because it is uncharged, HO2
•, unlike O2

•−, can cross membranes 

(104). With a pKa of 4.8 for the HO2
•/O2

•− pair, very little O2
•− exists as 

the protonated form in the mitochondrial matrix. It follows that 

dismutation of O2
•− to H2O2 occurs faster when the matrix pH is lower 

(k=5 х 105M/s at pH 7.0 and 102M/s at pH 11) (151). 

 

Not all ROS are actually free radicals (e.g., H2O2 and 

peroxynitrite, ONOO¯) (Fig. 3). When a free radical reacts with a 

nonradical, the product is another free radical, whereas the interaction 

of two free radicals produces a nonradical (151). For example, ONOO¯ 
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is a nonradical formed from the interaction of NO• and O2
•−. ONOO¯ is 

stable at an alkaline pH and fairly nonreactive, but ONOO- - is readily 

protonated (cytosol more than matrix) at cellular pH to ONOOH 

(peroxynitrous acid), which is very cytotoxic, like HO•, and causes 

depletion of –SH groups and other antioxidants, oxidation of lipids, 

DNA strand breakage, as well as nitration of and deamination of DNA 

bases, especially guanine (151). H2O2 is not a free radical and is not so 

strong an oxidant as O2
•−, and H2O2, like H2O, diffuses more easily 

through aquaporins than through lipid membranes (37, 38). H2O2 is 

normally maintained at low levels by catalase and glutathione 

peroxidase, among others, which convert H2O2 to H2O and O2. 

 

H2O2 also can participate in the one-electron reaction with 

transition metal ions (e.g., Fe2+ bound to organic molecules) to 

generate various intermediate ferryl species (274, 275), such as 

Fe(IV)=O•, a powerful oxidizing agent that can lead to lipid oxidation 

and DNA damage, as discussed in section VI. The rate constant, k, for 

reactions of Fe2+ is very dependent on the ligand attached to the iron 

(e.g., it is 2 times greater for Fe2+-ADP than for Fe2+-ATP). Ferryl 

species exist only in a complex and are produced at their site-specific 

targets in DNA, proteins, and lipids. Other much slower reactants of 

H2O2 produced are Fe(III)+OH-+HO• (Fenton reaction); this reaction is 

30 times slower than that of ferryl compounds with H2O2, so the 

hydroxyl radical (HO•) is formed in very small amounts and has no 

specific reactivity with biomolecules (144). ONOO¯ is also a stable 

oxidant that, in its protonated form, ONOOH, can produce oxidative 

changes in lipids, proteins, carbohydrates, and nucleic acids. Thus, 

although O2
•− and NO• are the initial free radicals, H2O2 rather than 

O2
•− is mostly regarded as the relevant biologically active metabolite. 

 

C. Assessing ROS generation 
 

The measurement of the various ROS is dependent on suitable 

techniques to assess levels of ROS. The technique should not directly 

produce ROS or produce artifacts. Preferably the technique should 

directly measure intra- versus extramatrix generation of O2
•−. The 

most direct and selective approach to measure specific ROS, notably in 

the matrix, is to use electron paramagnetic resonance (EPR) (16, 129, 

151). EPR is based on absorption of microwave radiation stimulated by 
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an electromagnetic field in molecules such as free radicals and 

transition metal ions with unpaired electrons. Adsorption of microwave 

energy creates two distinct energy levels from the unpaired electrons 

as they transition from a lower state to a higher state. The number of 

unpaired electrons present in a sample is proportional to the amplitude 

of the ESR signal (111). Only stable ROS that accumulate to 

measurable levels can be identified directly at biologic temperatures, 

so either extreme cooling or spin traps, which involve reaction of the 

radical with an adduct that is stable, is used. Examples of EPR signals 

are shown in Fig. 4. 

 

The majority of recent studies on mitochondrial ROS production 

use either the intramatrix fluorescence indicators 2’7’- 

dichlorofluorescein (DCF) or the fluorescent Amplex Red/horseradish 

peroxidase technique to assess H2O2 that is released or converted in 

the buffer (‘‘cytosol’’) surrounding the mitochondria or both. Figure 5 

shows typical recordings of the rate of accumulation (slope) of H2O2 by 

the latter technique. Because of the high catalytic activities of MnSOD 

and CuZnSOD, most O2
•− is rapidly converted to H2O2, which is readily 

permeable to the IMM. Therefore, the measurement of intra- versus 

extramatrix-generated O2
•− is indirect and incomplete because of its 

rapid dismutation to H2O2 and the sidedness (intra- or extramatrix) of 

O2
•− release. 

 

In isolated tissue, other options exist to assess ROS. One is the 

shift in absorbance with reduction of cytochrome c by O2
•−; other 

techniques are based on release of photons by chemiluminescence 

probes, such as liminol or lucigenin, on reaction with ROS (111). 

Dihydroethidium (DHE), also known as hydroethidium (HE), is a rather 

specific fluorescent marker for O2
•−. O2

•− nonenzymatically converts 

DHE to 2-hydroxyethidium (2-OH-E+) or a precursor (331), which 

appears to be rapidly made, is labile, and fluoresces at a slightly 

shorter wavelength (more red) than the heme-peroxidase oxidation 

product ethidium that can intercalate to bound with DNA. Thus, the 2-

OH-E+ signals fluctuate with the O2
•− generated in the cell, as now 

shown in many studies by using spectrophotometry (5, 70, 71, 181, 

182, 247, 269, 271, 298, 316, 317). Figure 6 displays a typical 

recording of O2
•- assessed by DHE fluorescence in intact hearts. Note 

the dynamic effects of changing temperature in the presence and 
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absence of drugs.  Caution in the use of DHE (and other probes) lies in 

its oxidation to ethidium by cytochrome c in the absence of ROS (33). 

Because the DHE product is altered by drugs that act on the 

mitochondrion (71), it is assumed that mitochondria are the major 

source of O2
•− by this method in isolated tissue. A derivative of DHE is 

MitoSOX Red, which has a phosphonium group that selectively targets 

and enters mitochondria in response to the negative membrane 

potential; thus, imaging of the signal in cells indicates a mitochondrial 

source of O2
•− (273). 

 

Another method that depends on the interaction of O2
•− and NO• 

is the formation of dityrosine from tyrosine by ONOO¯ (29); Fig. 7 

shows an example of the dynamic changes in dityrosine formation in 

intact hearts during a change in temperature and drug treatment. It is 

assumed that the induced shift in wavelength, assessed with 

spectrometry, is an extracellular indicator of ONOO¯ (71, 247, 248). 

Nitration of tyrosine (no color) by ONOO¯ to 3-nitrotyrosine (yellow 

color) is another indicator of reactive nitrogen species usually 

identified in proteins (151). 

 

D. Sites and conditions for mitochondrial ROS 

generation 

 

The specific molecular sites of electron leak are not known with 

certainty, but a great deal of intense investigation has led to sites 

within complexes I and III (Figs. 1 and 2A). Specific mitochondrial 

inhibitors (64, 197) (Table 2) are typically used to (a) force electrons 

to leak outside of the very tight single-electron transfer mechanism 

(e.g., antimycin A) leading to O2
•−, or (b) to block electron leak (e.g., 

stigmatellin or rotenone) with glutamate as substrate. For example, 

the increase in ROS induced by antimycin A can be abolished by 

adding either stigmatellin or myxothiazol (256). In the presence of 

glutamate, the inhibitors rotenone, antimycin A, and stigmatellin can 

each increase ROS. However, in the presence of succinate as 

substrate, antimycin A can increase, whereas both stigmatellin and 

rotenone can decrease ROS (255, 256). Thus, the possible pathways 

have been identified primarily with substrates and inhibitors by using 

deductive reasoning, with the understanding that the mechanism of 
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electron leak may be quite different in a more-relevant 

pathophysiologic situation. 

 

E. Complex I (NADH ubiquinone oxidoreductase) 
 

This transmembrane complex (Fig. 1) oxidizes NADH [reduced 

from the transfer of electrons and H+ from tricarboxylic acid (TCA) 

intermediates], uses coenzyme Q10 (ubiquinone, Q) as the electron 

acceptor and is coupled (as are complexes III and IV) with proton 

pumping, thus contributing to the proton motive force, ∆H+. The 

actual mechanism of proton pumping is almost completely unknown, in 

part to the large size of complex I and the difficulty in measuring the 

intermediates in the coupling reaction (201). Complex I is one of two 

major sites of entry for reducing equivalents; the other is complex II, 

succinate dehydrogenase (more precisely known as succinate 

ubiquinone oxidoreductase) (Figs. 1 and 2). Succinate (and – 

glycerophosphate transferred from the cytosol to the matrix by the 

glycerol phosphate shuttle) alone reduces FAD to FADH2, and each 

molecule furnishes two electrons to the respiratory chain, as do 

pyruvate and TCA-cycle intermediates isocitrate, –ketoglutarate, and 

malate, by reducing NAD+ to NADH. 

 

Complex I is probably the major source of mitochondrial 

ROS under most physiologic conditions (335). Exogenous quinones can 

enhance ROS generation from isolated complex I (65). Inhibitors of 

complex I are useful for determining the source of ROS (96, 252). 

Several sites between the Flavin complex and the quinone site have 

been proposed to generate O2
•− within complex I (77, 134, 160, 199, 

216, 320). One or more of the Fe-S centers is a likely source (135, 

160, 251), although the ubisemiquinone (QH•) binding site (143, 160, 

200), or the flavin complex (216), per se, could also be sources, as 

depicted in Fig. 8. It has been proposed that complex I has two redox 

active nucleotide-binding sites; the F site is the location for electron 

entry for the NADH oxidation by Q, and coupled translocation of 4 H+ 

for each NADH oxidized; the R site is where electrons exit during the 

succinate-supported NAD+ reduction, which is O2
•− generating (321). 

 

When mitochondria oxidize succinate alone (lacking other TCA 

substrates), the energy of the ∆H+ is used to transfer electrons 
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against the redox potentials of the electron carriers from reduced 

coenzyme Q (quinol, QH2) to NAD+, rather than forward to the final 

electron acceptor O2 (Fig. 9). This is called reverse electron transfer. 

Interestingly, a high transmatrix pH gradient appears to contribute 

more than the ΔΨm to O2
•− generation with succinate as the substrate 

(Fig. 10) (201). It was suggested that the ∆pH-sensitive O2
•− 

generation is mechanistically linked to proton pumping at complex I 

(201). When electrons are transferred backward from complex II (22, 

158, 307), this creates the largest source of O2
•− as a percentage of O2 

consumption, although this does not likely occur in vivo. Reverse and 

forward electron flow is believed to contribute to an H2O2-production 

rate of ~400 and 50 pmol/min/mg protein, respectively (256). 

 

Reverse electron transfer requires a large ΔΨm or ∆pH; this 

occurs as electrons are passed to NAD+ until the pool is fully reduced 

to NADH. O2
•− generation by this mechanism ceases or decreases if 

the mitochondria are (a) uncoupled by a proton ionophore (e.g., 

CCCP), (b) generating ATP during state 3 respiration, or (c) leaking 

protons into the matrix (matrix acidification or uncoupling proteins). 

Rotenone (Table 2), an irreversible inhibitor of electron transfer from 

the ubiquinone (Q) binding site to complex I, prevents reverse electron 

transfer and ceases O2
•− release by this mechanism. This implies that 

O2
•− is generated between the rotenone binding site and NAD+ in 

complex I. The physiological importance of succinate only–induced O2
•- 

generation by reverse electron transfer is dubious (335). However, 

because succinate is a TCA-cycle intermediate, it along with NADH-

linked substrates likely contributes to O2
•− generation during electron 

transfer in vivo, particularly if electron flow is impeded. It was 

reported that succinate concentration–dependent H2O2 generation was 

only slightly reduced in the presence of NADH-linked substrates (335) 

(i.e., succinate-induced H2O2 production occurred under conditions of 

regular downward electron flow in complex I). Because NADH-linked 

oxidation was progressively decreased, but not abolished, by 

increasing succinate concentration, it was proposed that the two 

substrates compete for electron delivery to complex III, with succinate 

‘‘pushing’’ electrons toward and NADH-linked substrates away from 

complex I (335). In this way, succinate concentration may modulate 

the rate of H2O2 release by controlling the QH•/Q ratio. 

 

http://dx.doi.org/10.1089/ARS.2008.2331
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Antioxidents and Redox Signaling, Vol. 11, No. 6 (June 2009): pg. 1373-1414. DOI. This article is © Mary Ann Liebert, Inc. 
and permission has been granted for this version to appear in e-Publications@Marquette. Mary Ann Liebert, Inc. does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Mary Ann Liebert, Inc. 

14 

 

For forward electron transfer, it is postulated that the electrons 

from NADH-linked substrates (e.g., pyruvate) are moved to 

ubiquinone Q via the flavin complex and Fe-S centers to form QH•, and 

in a second step that is linked to a low ∆pH, to form QH2 (200). In the 

absence of rotenone, NAD+- linked substrates can also enhance O2
•- 

generation at complex I if the ΔΨm is higher than normal (8); this 

condition of forward electron flow is favored by a high degree of 

reduction of the redox carriers proximal to the complex I proton pump. 

Once in a high redox state, QH• can lose its unpaired electron to O2 as 

all upstream redox centers are fully reduced (200). Moreover, if the 

∆pH is large, QH• is longer lasting, and more O2
•− may be formed. It is 

not known whether complex I has a Q cycle (231) like complex III 

(200). O2
•− is believed to be released only on the matrix side of the 

IMM at complex I (200, 256, 295). 

 

F. Complex III (co-enzyme Q, bc1 complex, 

ubiquinone/cytochrome c reductase) 
 

This complex (Fig. 11) is believed to contain a Q cycle with an 

inner (Qi) and outer (Qo) pool of ubiquinone (Q) facing the matrix (i) 

and the intermembrane space (o) (42, 43, 97–99, 211, 268, 295, 296, 

307, 308). Evidence for the Q cycle (231) arose when it was reported 

that addition of O2 to anaerobic mitochondria caused a transient 

reduction of cytochrome b rather than an expected oxidation; this 

suggested that at least two different sites for electron transfer existed 

(43). In the subsequent model, QH• is believed to form at both the Qi 

and Qo sites. First, ubiquinone (Q) is fully reduced to QH2 in the inner 

side of the IMM and migrates to the outer side, releasing 2 H+ and 

transferring one electron to cytochrome c1 (Rieske Fe-S protein) to 

form the first QH• and Q (the electron moves on to cytochrome c and 

cytochrome c oxidase (complex IV). The second electron reduces 

cytochrome b so that electrons are moved from Q at the Qo site to the 

Qi site, and Q is reduced to QH2, completing the cycle. Cytochrome c 

and cytochrome c oxidase accept only single electrons in sequence. 

Thus, the complete reduction of Q at the Qi site requires that the Qo 

site must oxidize two QH2 molecules in two successive turnovers. 

This powers the complex III proton pumps, but the second bifurcation 

reaction cannot occur unless the first does (138). Rather than transfer 

an electron to cytochrome c1, the prolonged lifetime of QH• is believed 
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then to allow it to undergo autooxidation by releasing a singlet 

electron to be attacked by O2, forming O2
•−. 

 

Myxothiazol is a complex III inhibitor (296) that binds at the Qo 

site of the Q pool to block electron transfer from QH2 at site Qo to Fe-S 

clusters and to cytochrome b2 (Table 2, Fig. 11). Stigmatellin blocks 

transfer of the first electron to the Fe-S center (center P, QH2 oxidation 

site Qo) (96). Antimycin A binds to the Qi site to block electron transfer 

of the second electron to the Qi site. Thus, antimycin A stimulates 

electron leak by inhibiting QH2 formation (center N, Q reduction site) 

so that Q• accumulates at the Qo site, whereas myxothiazol prevents 

formation of Q• at the Qo site (Fig. 11). The finding that antimycin A 

did not affect H2O2 generation when added after myxothiazol indicated 

that myxothiazol stimulates H2O2 generation at a site in the Qo center 

proximal to the site that is inhibited by antimycin A (296). Myxothiazol 

and stigmatellin inhibit the ROS-inducing effect of antimycin A, as 

noted earlier. The QH• radical is fleeting and highly reactive and is not 

readily detected (320). 

 

These studies suggested that O2
•− generated at complex III 

would be released into the IMS rather than into the matrix space. 

Evidence for this was found in mitoplasts devoid of the OMM (152). 

This would further suggest that CuZnSOD is responsible for converting 

O2
•− to H2O2 in the cytosolic space and that MnSOD would not have 

much importance for protecting the matrix from ROS damage. 

However, the Qi site can also be a site for ROS generation, particularly 

with limited electron transfer into the Qo center of complex III (263). 

Moreover, the MnSOD (matrix SOD) gene knockout is lethal (204, 

214), whereas the CuZnSOD (extramatrix SOD) gene knockout is not, 

although the life span is shortened (118), and oxidative stress is 

elevated by twofold to threefold (235). This indicates the importance 

of high MnSOD activity to convert O2
•− to H2O2, which unlike O2

•−, can 

easily exit the matrix. The relative amounts and conditions for ROS 

generated by complex III on either side of the IMM that play a 

physiologic role remains to be resolved. This information will be 

important because the balance between antioxidant capacities and 

O2
•− generation within and outside the matrix that contribute to overall 

ROS emission is not clear. 
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Most studies indicate that ROS are generated, especially at 

complex I, during state 4, when the redox state and ΔΨm are high 

(Fig. 12), but not during state 3 (ADP phosphorylation). In the 

presence of succinate plus rotenone, O2
•− can be generated by forward 

electron transfer via complex III, although at much lower rates than 

for reverse electron transfer with succinate alone, as noted earlier. 

This too requires a high redox state. However, it is possible to observe 

enhanced ROS at complex III with pyruvate/malate or 

succinate/rotenone during state 3 conditions (276) (high respiration, 

ATP synthesis, slightly decreased redox state, and ΔΨm) when O2 

availability is high (Fig. 13) or protein concentration is low (276), or 

when complex I is blocked with rotenone (199) (Fig. 14) and antimycin 

A is given to block the Qi site (308). It is not known how substantial 

ROS are formed pathophysiologically (i.e., hypoxia) if state 3 

conditions are maintained, but small amounts of ROS clearly can 

initiate protective pathways, as discussed in sections VII and VIII. 

 

IV. Pathologic Induction of Mitochondrial ROS Release 
 

Tissue damage during hypoxia and reperfusion after ischemia 

has long been known to be associated with increased levels of various 

ROS (6, 15, 19, 123, 170, 290, 309, 318). Reperfusion after ischemia 

increases markers of ROS. Administration of scavengers of O2
•− and 

H2O2, but not of O2
•− alone, reduces the extent of injury (70). Isolated 

hearts exhibit a hypothermia-dependent linear increase in both 

O2
•− (Figs. 6 and 15) and ONOO¯ (Fig. 7) (71). Although 

nonmitochondrial sources of ROS exist during ischemia [e.g., NAD(P)H 

oxidase (141, 188, 328) and xanthine oxidase (25) in vasculature], 

the majority of ROS are likely derived from the mitochondrial 

respiratory complexes, as shown by the damage to respiratory 

complexes (212, 213, 245) and the effect of mitochondrial inhibitors 

(5, 28, 71, 81–86). The increase in H2O2 generation in mitochondria 

isolated after cardiac ischemia/reperfusion injury was enhanced by 

either rotenone or antimycin A (84); this suggested that both 

complexes I [Q and/or N2 (final) Fe-S center] and III were damaged 

and capable of producing O2
•− after ischemia/reperfusion injury. The 

source of O2
•− generation during cell hypoxia leans toward complex III, 

in part because a decrease in oxidant stress during hypoxia in 

cytochrome c–null cells mimics the actions of myxothiazol and 
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stigmatellin (145, 146), which in effect prevent electron transfer to 

cytochrome c (Fig. 11). Loss of cytochrome c locks the Rieske 

Fe-S complex and cytochrome c1 in a reduced state and prevents 

oxidation of QH2 by the Fe-S complex to QH• (145, 146). 

 

A. ROS-induced ROS release 
 

In addition to induction of ROS by hypoxia, ischemia, 

hypothermia, and mitochondrial toxins, ROS per se may lead to even 

greater ROS generation in a self-amplifying manner (46, 336). 

Photoexcitation of individual cardiac myocyte mitochondria caused an 

initial slow increase in ROS that culminated in a large burst of ROS 

(Fig. 16) that accompanied an abrupt loss of ΔΨm and opening of the 

mitochondrial permeability transition (MPT) pore (336). This 

phenomenon, called ROS-induced ROS release (336), may be 

associated with Ca2+ overload and may play a role in initiating 

apoptosis, but whether normal stimuli initiate it is not known. It seems 

unlikely that Ca2+ overload can itself induce ROS generation because it 

dissipates ΔΨm and reduces the redox state; but it may hinder the 

ROS scavenger system so that more ROS are liberated (8). During 

early ischemia in isolated hearts, ROS increase along with 

mitochondrial [Ca2+] and the redox state (NADH), as shown in Fig. 17 

(5, 70, 298), and treatment with exogenous intra and extramatrix ROS 

scavengers reduces ROS and mitochondrial [Ca2+] and better 

maintains the redox state (NADH) on reperfusion after ischemia, as 

exemplified in Fig. 18 (70). 

 

Another example is ROS generated by cytosolic NAD(P)H 

oxidase in a loop with ROS generation by mitochondria and then again 

by NAD(P)H oxidase (112). In this recent study, it was found that 

angiotensin II led to mitochondrial dysfunction by activating vascular 

NAD(P)H oxidase via a protein kinase C (PKC)-dependent pathway. 

The O2
•− produced by NAD(P)H oxidase appeared to increase 

mitochondrial O2
•− generation as well as to decrease NO• 

bioavailability. Moreover, the H2O2 generated by mitochondria was 

proposed to cause a feed-forward activation of more O2
•− by further 

activating NAD(P)H oxidase (112). 
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B. ROS–induced Ca2+ loading 
 

Because ischemia and hypoxia are marked in the cell not only 

by ROS release but also by Ca2+ loading, it is not clear whether one 

leads to the other or whether they are completely independent events 

(11). Again, it seems unlikely that increased Ca2+ can induce O2
•− 

generation because it can also induce MPT pore opening to abolish 

ΔΨm (59, 297). Ca2+-transport systems are sensitive to redox 

conditions, so damage to Ca2+ import and export systems by ROS is 

more likely to lead to Ca2+ overloading (72). Moreover, ROS-triggered 

MPT pore opening is potentiated by Ca2+ overload (59). Nevertheless, 

it has been postulated that Ca2+ can induce ROS physiologically (59), a 

topic discussed in more detail in section VIII. 

 

An effect of cytochrome c release during MPT pore opening and 

rupture of theOMMis the activation of caspase proteases. The collapse 

of ΔΨm does not occur before these caspases are activated and 

released (267), and cytochrome c may function to shunt any free 

electrons released outside the matrix to complex IV, thus initially 

reducing O2
•− generation (8). Activated caspase-3 can disrupt electron 

transfer at complexes I and III (but not at complex IV) to induce O2
•− 

generation as a feed-forward pathway, leading to the collapse of ΔΨm 

and initiation of apoptosis (267). This is discussed in more detail in 

section VII. 

 

C. ROS generation during tissue ischemia and hypoxia 
 

During the last decade, it has become increasingly clear that 

ROS are produced not only during reperfusion and reoxygenation after 

ischemia or hypoxia, but also during ischemia (Figs. 17–19) (5, 28, 

70, 181–183, 247, 269, 270, 298, 317) and hypoxia (316). Figures 17 

through 19 show examples of ROS fluctuations during ischemia and 

reperfusion during conditions of ischemia preconditioning, ROS 

scavenging, and hypothermia in isolated hearts. This seemingly 

paradoxic situation of ROS emission during ischemia (145, 146) can be 

explained because cells never truly become anoxic, and so O2 remains 

available to form O2
•− radicals (78). The rate of O2

•− generation is 

chemically proportional by mass action to the O2 concentration times 

the rate of electron leak (310), but in isolated liver mitochondria, an 
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[O2] >50 M does not alone result in greater O2
•− generation, as 

shown in Fig. 20 (161). Mitochondria can respire normally at a very 

low p2; only when p2 decreases to <5–7 torr does respiration begin 

to be limited by the O2 supply (80). The Km for O2 of cytochrome c 

oxidase is <1 M, and mitochondrial function is independent of a p2 

down to <2 torr. If O2 levels are forced to decrease toward zero, 

electron transfer (respiration) through the respiratory complexes 

becomes markedly slowed, and the electron carriers operate at a more 

reduced state. How this occurs is not known, but it has been proposed 

(145, 146) that if the gene for cytochrome c expression were deleted, 

this would prevent cytochrome c1 from giving up its electron at that 

site, and in turn, at the Reiske Fe-S protein site and in QH2 at the Qo 

site, so that the QH• radical, and thus O2
•− would not be generated, 

and these sites would remain locked in a reduced state. 

 

During conditions of blocked electron transfer via the respiratory 

complexes and a highly reduced redox state (5, 70, 298), the QH• 

radical may exist too long or be incapable of full reduction to QH2 

because of changes in protein conformation (61, 146, 221), so that 

electrons leak to combine with O2 in a thermodynamically favorable 

reaction. Other possibilities are that a low [O2] at complex IV leads to 

cytochrome c reduction and so limits its capability to scavenge O2
•− 

(63, 292), and that access of QH• to O2 is improved at low O2 levels 

(146). 

 

D. Very low p2 and lack of mitochondrial ROS 

generation 
 

Despite the accumulating evidence that ROS are indeed formed 

during ischemia and hypoxia, and mostly from the mitochondrial 

respiratory complexes, a recent direct study refutes that hypoxia 

enhances ROS. In recent, detailed experiments on this apparent 

paradox (161), it was demonstrated in liver mitochondria that between 

20 and 200 M O2 concentration, respiration, H2O2 generation, and 

cytochromes α/α3 redox state were unchanged; the H2O2 production 

rate was lower during state 3 than during state 4. Below 20 M, [O2] 

respiration and H2O2 generation (Fig. 20), both decreased toward zero, 

and the cytochromes α/α3 redox state became more reduced. It was of 

interest, however, that H2O2 generation as a percentage of the 
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respiratory rate increased fourfold (state 4) and sixfold (state 3) from 

20 M to near zero [O2]. It was concluded (161) that (a) hypoxia in 

intact cells may elicit ROS from nonmitochondrial sources, (b) probes 

used are not specific for ROS, (c) cytosolic pathways are required for 

low O2 sensing and ROS generation, (d) inhibition of complex IV by 

NO• is required, (e) a hypoxia-induced decrease in tonal release of 

ROS downregulates signaling pathways involved with ROS, and (f ) the 

fractional increase in ROS generation as a percentage of respiration 

acts as a hypoxia signal. It is, moreover, possible that hypoxia and 

ischemia produce derangements in mitochondrial electron transfer 

because of changes in substrate utilization (e.g., succinate) and redox 

state that lead to generation of O2
•− independent of the effect of a 

reduced [O2] to accept electrons at complex IV. 

 

Endogenous NO• modulates respiration by its effect to compete 

reversibly for the O2 binding site on cytochrome c oxidase (complex 

IV) (45, 58, 119). In endothelial cells, blocking the effect of NO• to 

compete for O2 at complex IV with an NOS inhibitor enhanced the rate 

of O2 consumption (respiration) at very low O2 concentrations (89). 

This indicated that NO• inhibition of O2 binding might be responsible 

for the inability of mitochondria to consume O2 readily at low O2 

concentrations. Endothelial cells are a natural source of NO•, and NO• 

may be generated in mitochondria (137, 139), and with O2
•−, to 

produce ONOO¯ (and ONOOH), which can modulate cell function, as 

addressed in section III. However, whether the enzyme NO• synthase 

actually resides in the IMM is very controversial (54, 302). 

 

Obviously, much work remains to de done to understand why, 

how, and from where ROS are generated in isolated cell or organ 

systems during hypoxia or ischemia but apparently not in isolated 

hypoxic mitochondria (161) without the use of electron-transport 

inhibitors. It is not known whether the ratio of O2
•− generated from 

complex I and from the Qi versus Qo sites changes during hypoxia and 

reoxygenation or during ischemia and reperfusion, and how the 

activities of MnSOD versus CuZnSOD and other cellular antioxidant 

systems modulate the emission (generated minus scavenged) of 

distinct ROS. The specific sites, sidedness, relative amounts of O2
•− 

generation, and its products in these complexes remain to be 

elucidated. It is possible that the source of O2
•− generation and the 
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particular kinds and amounts of ROS change during the course of 

ischemia and reperfusion, as suggested by the observed time-

dependent phasic changes in NADH and FAD redox state, 

mitochondrial [Ca2+], and O2
•− levels (DHE, ETH) during ischemia 

(examples shown in Figs. 17 through 19) in isolated heart studies (5, 

7, 70, 181, 183, 269, 298). Note, for example, in Fig. 19, that 

MnTBAP, given during brief ischemic pulses before the longer ischemic 

period, reversed the marked decrease in ROS during late ischemia and 

reperfusion induced by ischemia preconditioning (IPC), suggesting that 

O2
•− is required to initiate IPC. 

 

V. Antioxidant Defenses Against Pathologic ROS 

Formation 
 

A. SODs, catalase, cytochrome c, GSH, and TRXSH2, 

and other linked redox couples 
 

Cellular antioxidant defenses depend on the reduction potential 

of the electron carriers and the reducing capacity of linked redox 

couples in the matrix (NADH/NAD+ and FADH2/FAD) and cytoplasm 

(10). Severe cell stress can induce ROS formation that exceeds the 

capacity of antioxidant enzymes, so that the net emission of ROS is 

increased. Up to a limit, mitochondrial and cell antioxidant systems are 

capable of neutralizing excess ROS. These include the intra- and 

extramatrix SODs (171, 263), and glutathione (GSH) (253, 279) and 

thioredoxin (TRXSH2) (171) systems (Fig. 21), catalase in the cytosol, 

and cytochrome c in the intermembrane space (discussed in section 

VII). GSH, a tripeptide with the thiol (-SH) group of cysteine as the 

active site, is an abundant source of reducing equivalents; it reduces 

phospholipid hydroperoxides (PHPs) and H2O2, among other peroxides, 

via PHP glutathione peroxidase, an enzyme essential for life (8). GSH 

peroxidase, TRXSH2, and TRXSH2 reductase gene knockouts are also 

embryonically lethal (234). GSH and TRXSH2 are maintained in a 

highly reduced state by their reductases; this allows them to reduce 

effectively H2O2 and lipid peroxides to H2O. The resulting oxidized 

forms, GSSG (glutathione disulfide) and TRXSS (thioredoxin disulfide), 

rely on the NAD(P)H/NAD(P)+ redox state to again become reduced. 
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Thus, efficient mitochondrial bioenergetic function is required for the 

antioxidant activity of these systems. 

 

B. Regulation of genes encoding mitochondrial 

antioxidant systems 
 

The activities of antioxidant redox pairs do not appear to be 

constant. For example, a transcriptional coactivator, (PPAR)- 

coactivator 1- (PGC-1), a major regulator of oxidative metabolism 

and mitochondrial biogenesis, is believed to regulate the mitochondrial 

antioxidant defense system (153, 312). Endothelial cells that 

overexpressed PGC-1 upregulated the activity of oxidative stress–

protective genes (mRNA for MnSOD, Prx3, Prx, TRXSH2, TRXSH2 

reductase, UCP-2, and catalase) and resulted in reduced accumulation 

of ROS, increased ΔΨm, and reduced apoptotic cell death. This work 

(312) indicates that increased mitochondrial demand for energy 

production is met by activation of PGC-1, which also enhances the 

mitochondrial antioxidant defenses. 

 

C. ROS generation versus ROS scavenging 
 

Normally, mitochondria likely serve as a net sink rather than a 

net source of ROS because of these very efficient scavenger systems 

(8), but ROS release can become excessive. During ischemia, O2
•− and 

H2O2 levels increase as antioxidant defenses are overwhelmed and 

complex oxygen intermediates are formed (77, 240). One effect of an 

excessive initial release of ROS could be more ROS formation by ROS-

induced ROS release by a mechanism that may involve MPT pore 

opening (336) or by caspase-induced modification of respiratory 

complexes during initiation of apoptosis (267). A high cytosolic 

GSH/GSSG ratio indicates a large reducing capacity to detoxify ROS 

and prevent activation of innermembrane anion channels (IMACs), 

which precedes MPT pore opening (10). The overabundance of ROS 

during Ca2+ overload with a collapsed ΔΨm could reflect more the 

inability of the GSH, Pr-SSG, and TRXSH2 systems to regenerate the 

reduced state (thus less H2O2 removal) than of more ROS to be 

generated (8). 
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Superoxide, as a charged species, is relatively impermeable to 

membranes but can pass through anion (e.g., IMAC) channels (11, 

152). NO• is not ionized and so is much more membrane permeable 

and can compete for O2
•− with SOD to produce the nonradical ONOO¯ 

(29), which protonates at a low pH to ONOOH, which is highly reactive 

to tissues. NO• can also react with O2 to form nitrogen dioxide, NO2
• 

(brown gas pollutant). The fate of O2
•− (depending on NO• availability) 

is typically dismutation to H2O2, which can then be converted to H2O 

by catalase or to site-directed metal radicals [e.g., (Fe=O)2+] in the 

presence of transition metals bound within numerous organic 

molecules. It is the stable and membrane-permeable H2O2 that is the 

most abundant reactant that, in excess, likely leads to damage to cell 

structure and function via these ferryl reactants.  

 

Because ‘‘good’’ ROS are regulators or modulators of normal cell 

function, it is difficult to draw the line on which ROS effects or 

amounts are beneficial and which are deleterious. The so-called 

diverse, non–receptor mediated, ‘‘bad’’ effects of ROS are mentioned 

here, but arbitrarily. It must be emphasized that the net effect of ROS 

is dependent not only on how much was produced, but also more 

important, on how much was not inactivated by antioxidant defenses. 

Thus, the generegulated GSH/GSSG, TRXSH2/TRXSS, and Pr-

SSG/PrSH redox system, as well as other scavengers that play 

important roles in protection against excess ROS-induced injury, are 

the same factors that probably modulate physiologic ROS signaling. 

 

D. MPT pore opening and cytochrome c 
 

Inhibition of MPT pore opening with cyclosporin A could prevent 

loss of the carrier cytochrome c so that an e¯ is normally transferred 

to complex IV from cytochrome c1, and QH• is oxidized to Q rather 

than O2 being reduced to O2
•−. As discussed also in section VII, MPT 

pore opening with release of oxidized [Fe(III)] cytochrome c, an O2
•− 

scavenger, may reduce ROS emission in the IMS by oxidizing O2
•−. 

Inhibiting MPT pore opening may also prevent the loss of enzyme 

scavengers of ROS within the matrix that normally neutralizes ROS in 

the matrix (220). The independence or interrelation of matrix and 

extramatrix ROS release and scavenging and Ca2+ loading with MPT 

pore opening remains unclear. 
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VI. Targets of Excess ROS Emission 
 

A. DNA, proteins, and phospholipids 
 

A sensitive target of excess ROS is mitochondrial DNA (Fig. 22), 

which is subject to an oxidation rate 10- to 20-fold higher than that of 

nuclear DNA (140, 142, 262). This is due in part to the lack of histone 

protection and the proximity to the ETS. For example, ROS 

intermediates can react with desoxyguanosine to form 8-

hydroxydesoxyguanosine (288), which over time interferes with DNA 

duplication and RNA replication (125, 140). Mitochondrial proteins are 

also subject to attack by ROS (88, 121, 157, 257, 318). ROS can 

damage TCA-cycle enzymes, especially aconitase and -ketoglutarate 

dehydrogenase (62, 168, 249, 250, 277). Other damaging effects of 

ROS are on the respiratory complexes, most at complex I and least at 

complex IV (66). Amino acids are also subject to oxidizing attack by 

ROS, and the GSH, TRXSH2 and other redox systems are important not 

only for neutralizing ROS but also for repairing damage due to 

oxidation of proteins by virtue of their thiol groups (189). Protein 

oxidation can lead to unfolding and result in loss of catalytic function 

and degradation (289) [e.g., ROS can damage the Na/K ATPase 

complex (287)]. 

 

Phospholipids are major targets of ROS (48); Transition metal 

radicals like (Fe=O)2+ can initiate lipid peroxidation cascades in 

membranes to generate a complex mixture of short-chain aldehydes 

(Fig. 23), many of which are believed to be toxic. Accumulated ROS 

damage with aging may damage the lipid composition required for 

complex I activity. It was found (319) that liver mitochondria of old 

versus young rats showed a decrease in respiratory rate and reduced 

activity of complex I but not complex III. It was postulated that an 

increase in somatic mtDNA mutations would affect the hydrophobic 

subunits of complex I that are essential for CoQ binding and energy 

conservation, or that age-related defects of complex I, such as direct 

alterations of the protein or lipid environment, particularly cardiolipin, 

which is required for complex I activity, may play a role. 

 

  

http://dx.doi.org/10.1089/ARS.2008.2331
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Antioxidents and Redox Signaling, Vol. 11, No. 6 (June 2009): pg. 1373-1414. DOI. This article is © Mary Ann Liebert, Inc. 
and permission has been granted for this version to appear in e-Publications@Marquette. Mary Ann Liebert, Inc. does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Mary Ann Liebert, Inc. 

25 

 

B. Role of cardiolipin 
 

Cardiolipin is a phospholipid found only in the IMM that anchors 

the mobile electron carrier cytochrome c to the IMM and optimizes the 

activity of electron-transport complexes, especially complex IV. 

Cardiolipin can be especially damaged by ROS because of these 

important roles (213, 258, 260, 261). Submitochondrial particles that 

exhibit loss of cardiolipin and cytochrome c during ischemia exhibit 

enhanced H2O2 release (83), which suggests their importance in 

protection against ROS. Excess ROS are primarily accountable for 

initiating MPT pore opening with the subsequent swelling, OMM 

rupture, and release of cytochrome c (187) and feedback generation of 

ROS (336). Accumulation of ROS over time is believed to be wholly or 

partially responsible for aging (210), but recently this has been 

questioned for vertebrates (234). 

 

VII. Approaches to Reduce Excess ROS 
 

A. Capacity of mitochondrial and cell reductants 
 

From the foregoing material, it is evident that, to decrease ROS-

mediated cell damage, MPT pore opening (35, 109, 110), and 

apoptosis due to hypoxia, ischemia, or toxins, one could attempt either 

to reduce the ROS generation or to enhance ROS scavenging so that 

overall ROS emission is diminished. Maintaining a large pool of 

reductants (like the GSH system) requires bioenergetically stable 

mitochondria to regenerate the reduced state after detoxifying the 

ROS. Supplying exogenous GSH may be protective but only if sufficient 

NAD(P)H is also available. Other cytosolic and matrix antioxidant 

systems exist, as described in section V. The endogenous mechanism 

of PGC-1–mediated activation of redox cycling systems also was 

discussed in section V. 

 

Chance et al. (77) proposed antioxidant capability must be 

found near sites of ROS production. An antioxidant mechanism, 

located at the site of electron transfer to complex IV and generation of 

O2
•− in complex III, is carried out by cytochrome c. Cytochrome c can 

accept or donate an electron, depending on the valence of its heme 

(Fe) state. It was shown that adding exogenous cytochrome c to 
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cytochrome c–depleted mitochondria reduced O2
•− levels by sevenfold 

to eightfold (325, 332). In its reduced form (Fe2+), cytochrome c 

normally generates a proton motive force (∆H+) during its oxidation 

by cytochrome c oxidase (complex IV), as one O2 molecule is fully 

reduced to two molecules of H2O by addition of 4e¯ (8, 332). In its 

oxidized form [Fe3+, or Fe(III)], cytochrome c forms O2 and Fe2+ by 

virtue of the reducing ability (e¯ donation) of O2
•− with Fe(III), thus 

neutralizing superoxide. Interestingly, Fe2+ cytochrome c, but not 

Fe(III) cytochrome c, can suppress H2O2 levels by giving an e¯ to H2O2 

to form H2O (332, 333). This is called the ‘‘alternative electron-leak 

pathway,’’ (i.e., reduction of preexisting H2O2 to H2O by reduced 

cytochrome c). This mechanism can balance e¯ leak to O2 (forming 

O2
•−) with an e¯ leak to H2O2 (forming H2O) and so function to protect 

against too much ROS formation. 

 

Because Fe(III) cytochrome c is a very efficient scavenger of 

O2
•− within the matrix, when Fe(III) cytochrome c is released into the 

IMS during MPT pore opening and initiation of apoptotic signaling, it 

could act as an ideal extramatrix antioxidant (292). However, the loss 

of cytochrome c to the IMS may allow matrix O2
•− to increase because 

of an absence of cytochrome c (220). 

 

B. Exogenous SODs and catalase 
 

Treatment with superoxide dismutases and catalase is another 

approach. However, effective delivery of these enzymes into the 

cytosol and matrix as a therapy is quite problematic. Overexpression 

of these enzyme systems could be successful in enhancing antioxidant 

defenses, but because ROS also play a significant physiologic role 

(described later), the effects may be deleterious, as indicated by a six- 

to 10-fold overexpression of MnSOD, which caused reduced fertility 

and abnormal development in mice (264), and the lack of any benefit 

to prolonging life span in mice overexpressing CuZnSOD (166). 

However, overexpression of catalase localized to mitochondria 

increased median life span in mice by 5 months (280). We reported 

that administration of the chemical SOD mimetic MnTBAP alone 

actually worsened cardiac function after ischemia in isolated hearts, 

whereas addition of glutathione and catalase with MnTBAP elicited the 

best protection (70); Fig. 18 shows the changes in ROS and 
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mitochondrial Ca2+ during and after ischemia with these treatments. 

Our study suggested that enhanced generation of matrix O2
•− during 

ischemia must be coupled with its dismutation to H2O2 and its 

oxidation to H2O to offer the best protection. 

 

C. Proton leak to modulate superoxide generation 
 

Another perhaps more practical approach is to modify 

mitochondrial bioenergetics in a way that leads to reduced capability 

for producing O2
•−. As discussed earlier, it may be possible to generate 

O2
•− during state 3 or when ΔΨm is less polarized (291, 276, 324), but 

most experimental studies show that even a slight decrease in ΔΨm 

(191, 201, 324) or transmatrix ∆pH (201) results in marked reduction 

or cessation of ROS production. Therefore, temporary partial 

uncoupling of respiration from phosphorylation by inducing an extrinsic 

proton ‘‘leak’’ may be therapeutic. Essentially, this process short-

circuits the gated passage of H+ through complex V to make ATP, so 

that respiration increases at the expense of no gain in phosphorylation 

(mild uncoupling) (47, 49, 60). It takes a greater electron-transfer 

rate to maintain the ΔΨm when an H+ leak is present. Oxidative 

phosphorylation is not wholly efficient, as up to 25% of basal H+ flux 

into the matrix could be outside of complex V, as suggested by the 

heat produced as a fraction of the standard metabolic rate (Fig. 24) 

(55). The net effect of H+ leak is to stimulate respiration (electron 

transfer) and produce heat at the expense of ADP phosphorylation.  

 

H+ leak is maximal when ΔΨm is highly polarized, and little or no 

leak occurs when ATP is being generated. In vitro, state 4 respiration 

occurs only when no substrate ADP exists, ATP is not being consumed, 

or complex V is blocked (oligomycin). Thus, H+ leak may be an 

intrinsic mechanism to attenuate electron leak and O2
•− generation 

when the ΔΨm is large. At a high ΔΨm with a greater probability to 

generate O2
•−, the maximal capability to have a proton leak would 

tend to decrease ΔΨm and thus O2
•−. The mechanism of basal H+ leak 

is unknown but is thought to be protonophoric (i.e., H+ is carried 

across the IMM) (55). H+ leak is assessed indirectly by any increase in 

respiratory rate or decrease in ΔΨm or both during inhibition of 

complex V (Fig. 25). 
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D. Uncoupling proteins 
 

A small class of ‘‘uncoupling’’ proteins, called UCPs 1–4, are 

believed to induce an inward proton ‘‘leak’’ in charged mitochondria 

(49, 55, 176, 300). AMP may also act allosterically on adenine 

nucleotide translocase (aka adenine nucleotide transporter, ANT; or 

ADP, ATP carrier, AAC) to induce an H+ leak (67). Proton leak could 

also be elicited by cycling of protonated/unprotonated nonesterified 

fatty acids (Fig. 24) (55, 132, 175), and by repetitive gating of the 

MPT pore by protons (53, 169). It is feasible that UCPs and AMP could 

play a role in protecting against ischemia and reperfusion injury, 

particularly if they could be activated or stimulated before the insult to 

reduce ΔΨm and before the redox state increases because of inhibited 

electron transfer. Mitochondria isolated from perfused rat hearts 

subject to ischemic preconditioning had a greater H+ leak than did 

ischemia controls (Fig. 25) (238); this H+ leak was completely 

abolished by the UCP inhibitor GDP, or by the ANT inhibitor 

carboxyatractyloside (CAT) (238). ATP also inhibits UCPs (174). 

However, ANT, rather than UCP2, may be most responsible for the 

antioxidant mechanism in heart muscle mitochondria (238). It was 

suggested (238) that the smaller H+ leak induced by ischemic 

preconditioning is mediated by UCP, because the H+ leak in ischemia 

controls was blocked only weakly by GDP, but strongly by CAT, 

whereas the larger leak in ischemia/reperfusion alone is mediated by 

ANT. 

 

E. HNE-induced proton leak 
 

Some lipid peroxidation products, such as 4-hydroxy-trans-2-

noneal (HNE) may induce partial uncoupling of mitochondria through 

UCPs and are thought to initiate protective mechanisms (41, 116). 

HNE can also induce uncoupling of oxidative phosphorylation by 

enhancing H+ leak through other membrane proteins such as ANT if 

ΔΨm is high (14). This H+ leak, although preventable by CAT, did not 

interfere with ANT inhibition (14), so it was suggested that HNE causes 

a conformation change in ANT. Although ROS can activate UCPs (117) 

and ROS and HNE can directly cause a small proton leak (55), whether 

UCPs are activated by either endogenous ROS or HNE has been 

rigorously questioned (75). Because ubiquinone (Q) is not required for 
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activation of UCPs (174), it is unlikely that ROS from complexes I or 

III exert a significant role. Together these studies indicate that mild 

uncoupling by H+ leak reduces ROS formation in state 4 and that UCPs 

can induce a small H+ leak, but evidence that mitochondrial ROS 

activate UCPs and the UCPs mediate protection against ROS-induced 

cell damage is not yet convincing. 

 

It remains unclear how free fatty acids and alkenals like HNE 

activate proteins such as UCPs and ANT (14). One possibility is that a 

protonated fatty acid may cross the IMM into the matrix and 

dissociate, while the fatty acid anion is translocated back out of the 

matrix by the protein. Flip-flopping of the protonated and 

unprotonated forms would cause a net flux of H+ into the matrix; other 

mechanisms are proposed (14). For alkenals (nonfatty acids), it was 

proposed recently that H+ conductance via ANT occurs by formation of 

covalent adducts only at a high ΔΨm, thereby exposing sulfhydryl 

groups and lysine residues to attack by alkenals and causing a 

conformation change in ANT. This was based on the finding that CAT 

blocked H+ leak via ANT if given before but not after HNE, whereas 

blockade of the ANT transport mechanism remained; this that implied 

HNE caused a permanent conformational change in ANT distinct from 

its translocation role (14). 

 

F. ROS-induced proton leak 
 

Brookes (55) proposed that ROS and H+ leak comprise a loop 

not requiring UCPs to operate, but rather that the leak is dependent on 

the ΔΨm alone. A high ΔΨm would generate ROS (191), and the ROS 

would in turn induce an H+ leak to reduce the ΔΨm in a feedback 

manner. The generated O2
•− could induce an H+ leak indirectly through 

a lipid oxidation product or possibly via protonation of O2
•− in the 

acidic intermembrane space to HO2
• (215), which is membrane 

permeableand is deprotonated in the alkaline matrix (104). A decrease 

in the phosphorylation to respiration (P/O) ratio (i.e., uncoupling), 

may come at the expense of higher ΔΨm and ROS. The higher, but less 

efficient, metabolic rate associated with H+ leak may be linked to the 

aging process (55). ROS could cause an H+ ‘‘slip’’ rather than an H+ 

leak. H+ slip is described as direct reduction of cytochrome c by the 

O2
•− generated into the intermembrane space, thereby bypassing the 
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Qi site (55), as discussed earlier in this section. Instead of 8H+ 

pumped per 4e¯ at complex III, only 4H+ would be pumped per 4e¯; 

this effectively represents a 50% reduction in ATP synthesis capacity 

at a given level of respiration. 

 

VIII. Physiologic Modulation of Mitochondrial ROS 

Emission 
 

A. H2O2 and ONOO¯ as chemical effectors 
 

Despite rather efficient electron transfer along the respiratory 

system (i.e., little electron leak), one might ponder why the 

mitochondrion and its surrounding environment are incapable of 

removing all the ROS that are produced despite the well-developed 

and necessary scavenging systems. Or one could argue that natural 

selection allowed a system that uses ROS for cell signaling and even 

protection against damage. Although the mitochondrion is largely a 

sink for O2
•− and H2O2 due to its ROS scavenger systems, it likely 

releases small amounts of H2O2 as a natural chemical messenger in the 

modulation of mitochondrial and cellular function (27, 113, 126, 183, 

203, 206). It was noted that the MnSOD knockout is lethal (204, 214), 

that MnSOD overexpression is associated with developmental 

abnormalities (264), and that ROS are required to trigger the apoptotic 

mechanism (68, 172, 207, 323), which is useful to actively eliminate 

poorly functioning cells and is required during embryonic development. 

It is now well known that ROS trigger or mediate ischemic and 

pharmacologic preconditioning of hearts (15, 27, 102, 181, 183, 248, 

254, 303). However, it is difficult to determine how much, from where, 

and what kind of ROS is beneficial versus detrimental. Although a 

therapeutic goal may be to reduce ROS emission, particularly during 

oxidative stress, too much scavenging or the wrong kind of scavenging 

may eradicate protective cellsignaling mechanisms, as we have shown 

(70) and several reviews (118, 163, 203, 235, 303) have suggested. 

 

The complex and extensive scavenging systems, the ROS/H+ 

leak-feedback relation, and the possible role of UCPs in H+ leak are 

several selected areas of research in which attempts have been made 

to understand the pathophysiologic regulation of ROS emission. It is 

evident that the bioenergetics state of mitochondria is important, not 
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only for generation of ROS but also for ROS scavenging, and therefore 

the regulation of ROS emission. For example, free fatty acids function 

as natural mild uncouplers by preventing the transmembrane 

electrochemical H+ potential difference (∆mH+) from being above a 

threshold critical for ROS formation by complexes I, III, or both (190). 

 

NO•, a well-known modulator of cell function, is not reviewed in 

detail here because its generation within mitochondria is debatable, as 

mentioned in section IV. However, the interaction of NO• and O2
•− to 

form ONOO¯ and ONOOH as cell-toxic NO• derivatives is well known; 

but low concentrations of ONOO¯ (0.1mM) were found to protect 

neurons against NO•-mediated apoptosis by activating the 

phosphoinositide-3-kinase (PI3K)/Akt antiapoptotic signaling pathway 

(106). The activation was accompanied by an increase in oxidized 

phosphoinositide phosphatase (PTEN), indicating that activation of 

PI3K/AKt inhibited PTEN and the NO•-mediated apoptotic pathway. 

ONOO¯ also was shown to stimulate pentose phosphate pathway (PPP) 

activity and the accumulation of NADPH, an essential cofactor for 

glutathione regeneration, and to activate glucose-6-phosphate 

dehydrogenase (G6PD), an enzyme that catalyzes the first rate-

limiting step in the PPP (128). These and other studies [reviewed in 

(39)] indicate that low levels of ONOO¯, like low levels of H2O2, have a 

potential cytoprotective effect that could be explored therapeutically. 

 

B. ROS modulation by cations  
 

An additional area of focus recently is the role of cation 

exchangers and channels in modulating ROS and cell signaling. In 

developing the chemiosmotic theory of energy coupling, Mitchell (229) 

recognized that mechanisms must exist to exchange anions for OH¯ 

and cations for H+ in the IMM; otherwise, in creating the ΔΨm, the 

mitochondrion would swell and lyse, as only cations could leak in and 

anions leak out. Thus, mitochondrial cation antiporters (exchangers) 

were found to be necessary to regulate an osmotic differential across 

the IMM that would result from the high H+ electrochemical gradient 

(34, 131). The chemiosmotic hypothesis requires several 

electroneutral cation antiporters for H+ (NHE, Na+/H+ exchanger; and 

KHE, K+/H+ exchanger) and a low permeability to K+ and Na+ (34, 131, 

239). In this way, countercations to H+ would enter and leave the 

http://dx.doi.org/10.1089/ARS.2008.2331
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Antioxidents and Redox Signaling, Vol. 11, No. 6 (June 2009): pg. 1373-1414. DOI. This article is © Mary Ann Liebert, Inc. 
and permission has been granted for this version to appear in e-Publications@Marquette. Mary Ann Liebert, Inc. does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Mary Ann Liebert, Inc. 

32 

 

matrix along their electrochemical gradients, thus preventing osmotic 

swelling. Modulation of extramatrix and matrix pH affects the 

protonation of O2
•− and ONOO¯, as discussed in section III. 

 

C. K+: A modulator of ROS generation? 
 

The K+ cycle (Fig. 26) is believed to be an important element in 

modulating mitochondrial function (34, 130, 131, 133) and may 

modulate ROS release (9, 159). The importance of regulated pathways 

for both K+ uptake and K+ efflux may be that this flux regulates a very 

fine tuning of mitochondrial volume that affects the rate of respiration 

(149, 150). K+ may be taken up via one or more putative 

mitochondrial K+ channels on a stimulus of low ATP levels or increased 

Ca2+ (KATP, KCa). In isolated cardiomyocytes, it was reported that 

increases in ROS and NO• are downstream effects of application of a 

drug thought to open KATP channels (205), but we have found it 

difficult to observe significant increases in ROS with pharmacologic 

preconditioning agents, including K+ channel openers and anesthetics 

in isolated hearts (182, 183, 298). Figure 27 (from ref. 182) shows a 

small increase in ROS (ETH) in isolated hearts exposed to sevoflurane 

that was blocked by MnTBAP but not by the putative KATP antagonist 

5-HD. 

D. Biphasic effect of KCa channels on ROS generation 
 

We have postulated that mitochondrial KCa channels can 

modulate ROS production up or down by altering ∆pH independent of 

ΔΨm (158, 159). We proposed that opening KCa channels with NS1619 

produces a small H+ leak (Fig. 28) (159). Others have proposed that 

K+ cycling can account for no more than a small H+ leak (49, 50). The 

increase in K+ influx may be rapidly matched by K+ efflux and H+ influx 

via KHE driven by the pH gradient. As K+ enters the matrix 

electrophoretically via K+ channels (e.g., during ischemia due to Ca2+ 

loading and low ATP during ischemia) K+ may be exchanged for the 

energetically more favorable entry of H+ (leak) because of the large 

∆pH. If the inward H+ leak is small, a small increase in proton pumping 

by complexes I, III, and IV enhances the respiratory rate without 

decreasing ΔΨm, while promoting ROS release (Fig. 29). K+ flux could 

be a mechanism by which increased matrix Ca2+ modulates 
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respiration.When the H+ leak is large, ΔΨm (and O2
•− generation) 

would decrease, as discussed with other mechanisms of the H+ leak 

(section VI).  

 

If K+ flux mediates an H+ leak through KHE, then blocking KHE 

(quinine) should increase matrix K+ but not H+ levels. In preliminary 

experiments in isolated cardiac mitochondria, we observed that 

valinomycin, the putative KCa channel opener NS1619, and buffer Ca2+ 

increased matrix K+ only in the presence of KHE blockade and that 

matrix pH decreased only in the absence of KHE (3, 4). A caveat to our 

work is that NS1619 has been reported (74) also to act as a 

protonophore, in which case, a small direct H+ leak, rather than K+ flux 

and KHE, might lead to the increase in H2O2 if ΔΨm remains 

unchanged. Thus, although a large proton leak would be expected to 

act as a brake on further ROS generation, a small proton leak that 

stimulates respiration without reducing ΔΨm may actually slightly 

increase ROS to modulate cell-signaling pathways. Moreover, in a 

recent study in which K+ flux across the matrix was assessed indirectly 

by swelling and respiratory changes induced by valinomycin (K+ 

ionophore) and nigericin (KHE activator), the putative K+ channel 

openers NS1619 and diazoxide could not be shown to enhance K+ flux 

(30). 

 

E. KATP channel opening and ROS 
 

A putative mitochondrial KATP channel opener was also reported 

to increase ROS production (Fig. 30), but by an alternative mechanism 

(9). In the presence of ATP, diazoxide increased ROS in isolated 

mitochondria, and the effect was inhibited by 5-hydroxydecanoate (5-

HD); it was hypothesized that matrix K+ influx causes matrix 

alkalinization, which retards electron transfer at complex I to cause 

electron leak and ROS formation (9). 

 

The mitochondrial effects of drugs can be different, depending 

on the substrates used, their concentrations, and the bioenergetics 

state. For example, in isolated cardiac mitochondria, we found that 

two putative KATP channel openers (diazoxide and pinacidil) 

differentially attenuated mitochondrial respiration and that KATP 

channel antagonists (5-HD and glibenclamide) had no effect on this 
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(270). But when ATP synthase was inhibited by oligomycin, both KATP 

channel openers accelerated respiration, which was abolished by the 

KATP channel inhibitors. Many drugs also have biphasic effects, largely 

because they have concentration-dependent effects on mitochondrial 

energetics. For example, the various putative types of mitochondrial 

K+ channel openers at low concentrations accelerate respiration and 

ROS generation without altering ΔΨm or redox state (9, 159), whereas 

larger concentrations accelerate respiration even more, depolarize 

ΔΨm, and decrease the redox state and ROS generation (105, 130, 

159). Moreover, these openers may have primary (74, 162) or 

secondary (159) effects to induce a proton leak into the matrix and 

may not actually open mitochondrial K+ channels. 

 

Thus, drugs that act on mitochondria can have biphasic as well 

as nonspecific effects, which complicate our understanding of 

mitochondrial function. As noted elsewhere, all these findings in 

isolated mitochondria are highly condition dependent and may not 

represent what occurs in intact tissue preparations. Further studies are 

necessary to determine the mechanism and extent to which specific 

mitochondrial K+ channels do or do not modulate ROS at physiologic 

levels. That these channels are sensitive to either low ATP levels or 

high Ca2+ levels suggests that they could have important roles in 

mitochondrial regulation. Although many of the drugs used to assess 

ion channels in cell membranes may have specificity for a particular 

channel, the drugs used to assess mitochondrial channel function 

(e.g., diazoxide or NS1619) do not appear to be specific for these 

channels but nevertheless exert protective function by an uncoupling 

mechanism and or by stimulation of ROS-dependent pathways. 

 

F. Direct Ca2+-induced ROS unlikely 
 

Does Ca2+ directly modulate ROS? Ischemia and reperfusion 

result in increases in both Ca2+ and ROS, but it is unlikely that Ca2+ 

itself modulates ROS physiologically for the following reasons: (a) in 

pathologic situations, excess ROS results in Ca2+ loading, but not the 

other way around (72); (b) excess Ca2+ loading will itself cause MPT 

pore opening and dissipation of the ΔΨm (72), but ROS-induced MPT 

pore opening does not require Ca2+ loading (186); (c) a Ca2+-induced 

increase in oxidative phosphorylation (and decreased ΔΨm) tends to 

http://dx.doi.org/10.1089/ARS.2008.2331
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Antioxidents and Redox Signaling, Vol. 11, No. 6 (June 2009): pg. 1373-1414. DOI. This article is © Mary Ann Liebert, Inc. 
and permission has been granted for this version to appear in e-Publications@Marquette. Mary Ann Liebert, Inc. does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Mary Ann Liebert, Inc. 

35 

 

decrease ROS, not to increase ROS (59, 72, 243, 296); (d) excess 

Ca2+ increases ROS only when mitochondrial inhibitors are used; 

otherwise, ROS decreases (59, 65); (e) blocking mitochondrial Ca2+ 

flux does not interfere with bursts of ROS produced by mitochondria 

during a local laser flash (11); and (f ) O2
•−-induced mitochondrial 

swellingis Ca2+ independent, but Ca2+-induced swelling is ROS 

dependent (127, 194). However, the possibility that Ca2+-induced MPT 

pore opening, leading to loss of cytochrome c, differentially alters the 

matrix and IMS levels of ROS is discussed in section V. 

 

G. Rate of oxidative phosphorylation and ROS 

generation 
 

As discussed in section III, it is well known from O2-

consumption experiments in mitochondria that the state 3 to state 4 

transition is usually accompanied by enhanced ROS production. 

Uncoupling (increased respiration without increased phosphorylation) 

typically leads to reduced ROS production, so it is possible that a 

change in the rate of oxidative phosphorylation modulates the rate of 

O2
•− generation. Moderate increases in m[Ca2+] induced by cell-

receptor stimulation have long been thought to stimulate TCA-cycle 

substrate dehydrogenases and ATP synthase (108, 227, 228). 

However, it appears that this Ca2+-induced stimulation is a slow 

process, because the dynamic, rapid stimulation of oxidative 

phosphorylation is not inhibited by partially blocking mitochondrial 

Ca2+ entry (148). Oxidative phosphorylation is activated with a time 

constant of seconds for the creatinine kinase system with an increase 

in ATP hydrolysis (313) that is too fast for Ca2+ to enter the matrix 

(52, 232). The prevailing view has been that oxidative phosphorylation 

is not governed by feedback control (17, 18, 51, 52, 180, 226). 

Computer simulations of increased cardiac work demands indicate that 

neither direct activation of ATP use alone nor a direct activation of 

both ATP use and substrate dehydrogenation, including Ca2+-

dependent TCA-cycle dehydrogenases, can account for the constancy 

of [ATP], [PCr] [Pi], and [NADH] during an increase in O2 consumption 

in hearts in vivo (192, 193). Rather it was proposed that a so-called 

‘‘each- step-activation’’ (or parallel-activation) mechanism is the 

explanation, in which all oxidative phosphorylation complexes are 

directly activated by some cytosolic factor related to muscle 
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contraction in parallel with activation of ATP use and Ca2+-dependent 

TCA-cycle dehydrogenases. This is a broad concept difficult to 

disprove. Others have proposed that oxidative phosphorylation in the 

heart is not likely regulated by quickly diffusing ADP and Pi in a simple 

feedback-control system (314). But another computer simulation (26), 

which incorporated each respiratory complex, substrate transporters 

including ANT, and cation fluxes, obtained reasonable fits to published 

data if Pi-dependent activation of dehydrogenase activity and the 

electron-transport system (especially complex III) were incorporated. 

Further development of this model (329) predicted that NAD is a more 

important regulator than ADP of the TCA-cycle dehydrogenases, and 

that a decrease in cytosolic pH decreases ΔΨm and the ability to 

synthesize ATP.  

 

Phosphorylation of complex IV at high matrix ATP/ADP ratios is 

known to decrease the H+/e¯ stoichiometry (H+‘‘slip’’) of the complex 

inducing an intrinsic form of uncoupling in which the efficiency of 

proton pumping is reduced (see also section VII). Respiratory control 

is generally defined as the increase in respiration in the presence of 

ADP and its decline once ADP is phosphorylated. A possible mechanism 

for control of ROS release by oxidative phosphorylation may arise from 

a ‘‘second mechanism of respiratory control,’’ in which a high matrix 

ATP/ADP ratio is thought to allosterically inhibit complex IV (219). This 

inhibition of cytochrome c oxidase is switched on by cAMP-dependent 

phosphorylation and switched off by Ca2+- activated dephosphorylation 

(179). cAMP-dependent phosphorylation of cytochrome c oxidase may 

optimize the efficiency of oxidative phosphorylation by maintaining a 

low ΔΨm via the second mechanism of respiratory control. The effect of 

NO• to compete with O2 for binding at complex IV is discussed in 

section IV. Extrinsic uncoupling (H+ ‘‘leak’’) of oxidative 

phosphorylation (e.g., UCPs, HNE) is described in section VII. 

 

IX. Role of ROS in Triggering or Effecting 

Cardioprotection 
 

A. Pathways and mechanisms 
 

Preconditioning is defined by the removal of the stimulus (brief 

ischemia or drug) some time before the onset of ischemia. Thus, the 
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stimulus does not directly induce the cardioprotection but rather some 

downstream factors do. Much circumstantial evidence suggests that 

mitochondria- derived ROS play an important role to initiate ischemic 

preconditioning (IPC) (Fig. 19) and pharmacologic preconditioning 

(PPC) (90, 100, 101, 217, 271, 306), which is effected by protein 

kinase pathways (223, 224, 247). Earlier studies examined the role of 

KATP channel openers and inhibitors to elicit and to block PPC. A 

common denominator of these studies was the finding that PPC, 

induced by the putative mitochondrial KATP channel opener diazoxide, 

could be blocked by ROS scavengers such as N-acetylcysteine (124) or 

N-mercapto-propionyl-glycine (254). A mild ROS stress, per se, 

triggered cardioprotection by activating protein kinases, but ROS also 

were reported to activate sarcolemmal KATP channels by modulating 

ATP binding at this channel, as this effect was blocked either by 

glibenclamide or by ROS scavengers (304, 305). Conversely, IPC 

requires ROS independent of KATP channel activity (120). Both KATP 

channel opening and H2O2 inhibit MPT pore opening (94). These and 

other studies suggested that a feedback loop may exist between KATP 

channels and ROS to produce cardioprotection (205, 237, 272, 298, 

299), but much of this remains unresolved, in part because many of 

the drugs used as probes have other effects on cell or mitochondrial 

function (103, 154–156, 259). Kukreja (198) addressed the 

controversy in this area.  

 

Mitochondrial Ca2+-dependent K+ channel (KCa) as well as KATP 

channel openers may play major roles not only in modulating 

mitochondrial bioenergetics but also in cardioprotection against 

ischemia/reperfusion injury. Most is reported about the putative KATP 

channel (1, 130, 131, 178, 195, 236). Mitochondrial KCa openers, like 

KATP channel openers, appear to mediate their effects through ROS-

dependent mechanisms, as ROS scavengers, such as MnTBAP, block 

the protection (Figs. 18 and 19) (181, 183, 298). Figure 31 shows that 

paxilline (PX, an inhibitor of KCa channels) and MnTBAP (TB, an O2
•− 

dismutator) blocked the ROS (DHE) and redox (NADH) reducing effect 

of NS119 (putative KCa channel opener) during ischemia and 

reperfusion of isolated hearts. Diverse cardiac-preconditioning drugs 

given before ischemia and reperfusion in isolated hearts result in 

improved function along with improved tissue redox state (NADH and 

FAD), reduced cytosolic and mitochondrial Ca2+ loading, and reduced 
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production of O2
•− and ONOO¯ during ischemia and reperfusion (76, 

181, 248, 298). If the observed changes in isolated mitochondria by 

mild K+ flux that promotes the increase in O2
•− (observed via 

dismutation to H2O2) also occur in vivo, then modulation of 

mitochondrial bioenergetics by K+ flux might ultimately be a key 

initiator of mitochondrial and cell protection. 

 

B. Inhibiting complex I and cardioprotection 
 

Another approach to protect cells undergoing ischemia is to 

inhibit complex I during ischemia (81). Rotenone or amobarbital (a 

reversible inhibitor of complex I) given just before the onset of cardiac 

ischemia resulted in improved oxidative phosphorylation and retention 

of cytochrome c in mitochondria isolated during ischemia or on 

reperfusion (82, 85). We found subsequently that amobarbital, per se, 

when given for 1 min before ischemia, arrested hearts, increased O2
•− 

emission (and NADH, with no change FAD), and reduced mitochondrial 

[Ca2+] (Fig. 32) (5); this led to reduced O2
•− generation and 

mitochondrial [Ca2+] during ischemia and reperfusion. These ex vivo 

results suggested that amobarbital blocks electron transfer upstream 

of the rotenone binding site but distal to the NAD+ binding site. During 

reperfusion after ischemia, we observed a more reduced NADH redox 

state, decreased O2
•− generation, and reduced mitochondrial [Ca2+] in 

this intact heart model (5). These mitochondria-protective effects were 

accompanied by improved cardiac function and smaller infarct size. 

 

X. Regulation of Cellular Processes by 

Mitochondria-Derived ROS 
 

Intracellular signaling pathways (e.g., Ca2+, cAMP, protein 

phosphorylation–dephosphorylation cascades) are essential for 

modulating cell metabolism and function. Many of these pathways are 

linked to extracellular receptor ligands at the plasma membrane, but 

many are derived from within the cell (e.g., the feedback link between 

the cell’s metabolic rate and mitochondrial respiratory activity). 

Accumulating evidence indicates that ROS are not always deleterious 

but are essential participants in cell signaling (113, 126, 163, 303). 

Whether ROS are ‘‘bad’’ or ‘‘good’’ could simply be a matter of quantity 

or rate of production, or it may also depend on the specific species, 
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the site of generation, and the site of ROS release. The important and 

well-examined role of non–mitochondriaderived ROS (O2
•− and NO•) in 

vascular sensing and control (328) is not addressed here. The 

‘‘pathologic’’ roles of ROS and Ca2+ loading during cellular stress [e.g., 

ischemia, hypoxia that lead to induction of cell necrosis and apoptosis 

(68, 207, 323, 330)] were addressed in section III. 

 

A. Cell signaling by oxidative modifications and redox 

systems 
 

ROS-induced cell signaling involves two general mechanisms: 

alterations in the intracellular redox state (e.g., GSH, TRXSH2, and 

other redox systems) (Fig. 21) and oxidative modification of proteins 

(92, 303). ROS appear to regulate a large number of signaling 

pathways that modulate cell function, but the actual molecules 

targeted by the ROS are unclear in most cases. Evidence for a 

physiological role of ROS emission are based in part on the effects of 

antioxidants and inhibitors of ROS generation to prevent growth factor 

and cytokine-activated signals, or some other physiological effect, and 

the effects of exogenously applied oxidants to activate these  

responses.  

 

Synchronized oscillations in ΔΨm, the redox states of 

NADH, GSH/GSSG and other redox pairs, and ROS can occur across 

isolated cardiomyocytes (11) and were postulated to result from the 

balance between O2
•− efflux through IMM anion channels (IMAC) and 

the intracellular ROS scavenging capacity. This was based on a 

computational model (93) of mitochondrial energetics and Ca2+ 

handling that reproduced the observed oscillations, which could be 

modulated by ROS scavengers or by the rate of oxidative 

phosphorylation. Oxidation of thiol groups appears to govern the 

sequential opening of IMAC (before MPT pore opening occurs), based 

on the GSH/GSSG redox status (10). Such oscillations may play a role 

in physiologic timekeeping or redox signaling across the cell or both. 

 

B. Examples of signaling by ROS 
 

The role of ROS in initiating preconditioning protection, 

particularly well known in the heart, is a vivid example of how ROS 
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modulate cell signaling by mitochondrially generated ROS. To be a 

modulator of physiological function, the oxidizing effect of ROS should 

be transient and reversible, generally by other reducing agents. Broad 

examples of ROS (typically H2O2)-induced signaling (266) are inhibition 

of tyrosine phosphatase (278, 315) leading to cell proliferation; 

translocation and activation of serine/threonine kinases, such as 

protein kinase C (247, 301) and tyrosine hydroxylase mRNA, the rate-

limiting enzyme in catecholamine biosynthesis (196); activation of the 

MAPK family of protein kinases (including MAPKs ERK, JNK, p38) that 

mediate mitogen and stress-activated signals; NF-кB, a transcription 

factor that regulates gene expression involving immune and 

inflammation responses; and AP-1, a transcription complex (303). 

 

One example of a regulatory feedback loop between ROS 

signaling and enzyme modification is the following: pyruvate was 

shown to activate JNK1 indirectly via pyruvate-induced mitochondrial 

H2O2 release (242); in turn, JNK1 inhibited the activity of the 

metabolic enzymes glycogen synthase kinase 3β, allowing increased 

activity of glycogen synthase so that glucose was stored as glycogen 

rather than undergoing glycolysis. Thus substrate metabolism can be 

tied directly to mitochondrial ROS. Ion-channel function is also subject 

to modification by thiol reducing and oxidizing agents (73, 163, 164). 

 

C. Importance of cysteine thiols in ROS-induced 

signaling 
 

How ROS modify the structure and function of these and other 

signaling proteins is not well understood, but several mechanisms are 

described (163, 303), particularly those involving the key thiol groups 

in regulatory proteins (20). One is the reversible oxidation of the 

sulfhydryl group (―SH) in the cysteine residue to form SOH, SO2H, or 

SO3H derivatives that alter the activity of an enzyme if the cysteine is 

located in a catalytic domain or DNA-binding site. For example, H2O2- 

induced oxidation of a cysteine residue located in its catalytic site 

precisely and rapidly inhibits tyrosine phosphatase (278, 315). The 

modification of –SH to –SO2H prevents the enzyme from further 

oxidation and promotes reversibility to its active form (except for 

SO3H) by thiols (278, 315). 

 

http://dx.doi.org/10.1089/ARS.2008.2331
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Antioxidents and Redox Signaling, Vol. 11, No. 6 (June 2009): pg. 1373-1414. DOI. This article is © Mary Ann Liebert, Inc. 
and permission has been granted for this version to appear in e-Publications@Marquette. Mary Ann Liebert, Inc. does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Mary Ann Liebert, Inc. 

41 

 

Another mechanism for posttranslational protein modification by 

ROS (Fig. 7) is a conformational change in the structure of protein 

kinases by formation of intramolecular disulfide bridges in cysteine 

linkages. Another is protein dimerization by intermolecular disulfide 

linkages of monomers to form an active protein, or dissociation of an 

inactive protein complex linked by disulfide linkages into an active 

protein. Several proteins can also become cross-linked because of 

active dityrosine formation from two tyrosine molecules by H2O2 

peroxidase–dependent reactions. Mixed-function oxidases can facilitate 

metal-catalyzed oxidation by O2
•− of proteins with 4Fe-4S tetranuclear 

cores to mark them for ubiquitination and so alter their stability (303). 

To qualify as cell-signaling pathways, these oxidation reactions should 

be reversible by using the cell’s redox systems (e.g., GSH and 

TRXSH2), as discussed previously. 

 

D. ROS oxidation reactions 
 

Precursor ROS do not always oxidize proteins directly but rather 

through an oxidized and reactive phospholipid intermediary (Fig. 23). 

Oxidized lipids can activate cellsignaling pathways by non-covalent 

bonding to a receptor, by covalent binding with direct modification of 

the protein, and by activating pathways that induce ROS formation 

from other sources (334). The electrophilic lipid peroxidation product 

4-HNE (section VI) causes ROS emission that activates MAPK 

pathways (311), and 4-HNE selectively inactivates thiol containing 

proteins, such as a-ketoglutarate dehydrogenase and pyruvate 

dehydrogenase, and thus inhibits NADH-dependent respiration 

(complex I) (168). 

 

E. O2 sensors 
 

A physiologic response to low O2 requires an O2 sensor coupled 

to a signal-transduction system (80). For example, ATP synthesis is 

tightly proportional to O2 consumption in the presence of adequate O2, 

so the ability of the cell to sense a critically low level of O2 would 

appear to be fundamental to restoring O2 levels for ATP synthesis (45). 

But the molecular identity or mechanism of an O2 sensor has not been 

forthcoming. Several O2-sensor mechanisms have been proposed and 

reviewed (80): O2-sensitive heme proteins; O2-sensitive ion channels; 
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O2-sensitive NADPH oxidase; O2-sensitive complex IV; and O2-

sensitive ROS generation. Many of the proposed O2 sensors do not 

appear to have the sensitivity to act directly as O2 sensors, but they 

could all be linked to hypoxia-induced changes in redox state or ROS 

generation. For example, the capacity of complex IV to produce H2O 

from O2, electrons, and protons is not impaired at even very low p2 

values, but enzyme activity (Vmax) is reduced so that reduced electron 

transfer and a more reduced redox state ensue (80). 

 

F. Hypoxia-inducible factors 
 

A principal regulator of the response to hypoxia is the hypoxia-

inducible factor (HIF) family of transcription factors (31, 61, 115, 165, 

177, 185, 221, 282–286, 316, 327). Although constitutively 

expressed, the HIF-1 subunit has a very short half-life in normoxic 

conditions because of its rapid hydroxylation by prolyl-4 hydroxylases 

(PH1–3) (12, 36). During hypoxia, the HIF-1 subunit becomes 

uninhibited by PHs, so that HIF-1 accumulates and transfers to the 

nucleus to initiate HIF-1-mediated transcription of more than 70 

genes involved in protein stability, such as heat-shock proteins (HSPs) 

(40). Therefore, low O2 would appear to control activation of HIF-1 by 

inhibiting PH activity. The mitochondrion would seem to be a natural 

sensor for O2 because complex IV is where O2 binding and O2 

consumption occur. However, blocking complex III with antimycin A 

and cyanide to block complex IV did not inhibit the HIF-1 in isolated 

cardiomyocytes in response to hypoxia (79). Moreover, inhibition of PH 

did not occur until O2 levels were below 5%, with maximal activation 

at 0.5% O2 (177). Rather than O2 being the actual sensor, it was 

proposed that the actual sensor is the redox changes upstream from 

complex IV (146). 

 

The signaling consequences of hypoxia are probably modified by 

NO•. Nitric oxide, and other inhibitors of mitochondrial respiration, can 

prevent stabilization of HIF-1 during hypoxia as a result of an 

increase in PH-dependent degradation of HIF-1 (147). During 

inhibition of mitochondrial respiration by hypoxia, O2 was found to 

redistribute toward nonrespiratory O2-dependent targets such as PHs, 

so that they no longer registered hypoxia (147). It was concluded that 

NO• acts as an endogenous regulator of intracellular O2 availability; 
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inhibition of mitochondrial O2 consumption may create a paradox of 

increased O2 availability for prolyl hydroxylation of HIF-1, so that the 

cell may fail to register hypoxia. In a related study (222), lower 

concentrations of NO• (<400 nM) caused a rapid decrease in HIF-1 

stabilized by exposing cells to 3% O2. This effect of NO• was 

dependent on inhibition of mitochondrial respiration, because the NO• 

effect was mimicked by other inhibitors of mitochondrial respiration, 

including those not acting at complex IV. It was suggested that 

although stabilization of HIF-1 by high level of NO• may have 

pathologic consequence, the inhibitory effect of low levels of NO• may 

be physiologically relevant. 

 

G. ROS as O2 sensors 

 

It has been suggested that O2 sensing by the cell is actually 

carried out by mitochondrial ROS (31, 61, 80, 146, 221), including NO• 

(57). One proposal is that the increase in mitochondrial redox state 

secondary to the reduced Vmax of complex IV during hypoxia creates a 

more favorable condition for O2
•− generation and downstream ROS 

production (Fig. 33) (80). Thus, the common denominator for O2 

sensing by ROS would be the heightened redox state and ΔΨm or both. 

However, the mechanism for the reduction in Vmax by low O2 levels is 

not known. 

 

Support for a role of ROS in HIF-1 stabilization derives from 

studies showing that the absence of cytochrome c or blocked Rieske 

Fe-S proteins under hypoxic conditions blocks HIF-1 stabilization (61, 

221). How H2O2 inhibits PH activity is not yet known, but likely 

involves one of the ROS- induced protein modifications discussed 

earlier. When iron chelators were given to block Fe2+ from reacting on 

PH, or HIF-1 hydroxylation was prevented by 1-dimethyloxallyl 

glycine (DMOG) to compete at PH, HIF-1 accumulated and induced 

gene expression (173). These mechanisms depend on the observed 

increase in mitochondrial ROS in cells when O2 levels decrease during 

hypoxia and ischemia. However, this must be reconciled by the finding 

in isolated mitochondria that hypoxia does not itself increase ROS (Fig. 

20) (161). Thus, it has been proposed that the hypoxic signal is a 

decrease in ROS, not an increase (13, 184, 233, 326). Studies in intact 

cells, tissue and isolated hearts indicate that ROS emission increases 
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during hypoxia and ischemia, as discussed earlier (section III), so the 

controversy on the actual hypoxia-sensing mechanism continues. 

 

H. Peroxide-induced TCA shunts 
 

Peroxides produced by mitochondria can create nonenzymatic 

shunts in the TCA cycle (56, 121). Succinate dehydrogenase (complex 

II) is very resistant to oxidation by H2O2 or tert-butyl hydroperoxide 

(tert-BuOOH) (250), but -ketoglutarate dehydrogenase activity is 

markedly decreased (168, 250) because of its susceptibility for 

modification by peroxides of its thiol groups (167, 249). Although this 

decreases the enzymatic conversion of -ketoglutarate to succinyl 

Co-A and succinate by decarboxylation and blocks production of 

reducing equivalents (NAD+ to NADH) at this step, these oxidants 

nonenzymatically (chemically) decarboxylate -ketoglutarate to 

succinate and thus reduce the level of peroxides (Fig. 34) (121). This 

bypass depends on a supply of -ketoglutarate by transamination 

because its precursor, aconitate, is also inactivated by peroxides (62, 

249). This TCA bypass increases the contribution of succinate to the 

total energy supply (FADH2 dependent) while decreasing the NADH-

dependent energy supply (168). Because succinate can contribute to 

reverse electron transfer and generation at complex I under certain 

conditions, control of succinate levels during acute cell stress may be 

beneficial. Another peroxide bypass, the electron-leak pathway 

mediated by cytochrome c (332, 333), was discussed in section VII. 

 

Hypoxia, increased succinate, and decreased aketoglutarate can 

each lead to inhibition of PH (208, 281), which permits translocation of 

HIF- to the nucleus to support HIF-–dependent transcription of the 

multitude of genes responsible for O2 transport, vascularization, and 

anaerobic energy production (208). Addition of succinate improved 

oxidative phosphorylation after ischemia/reperfusion injury (69), so 

the role played by succinate is not well understood. These studies 

again point to H2O2 (and other peroxides), rather than O2
•− per se, as 

the transduction factor in physiologic regulation by ROS (61). 

Modulation of a key TCA intermediate, in this case succinate, by ROS is 

a prime example for demonstrating how mitochondria and cells 

respond to oxidative stress by altering gene expression. If ischemia or 

hypoxia induces reverse electron transfer by a TCA shunt to the FAD-
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linked substrate succinate because of inhibition of the NADH-linked 

substrates, the resulting increase in O2
•− generation at complex I may 

signal measures to alter mitochondrial function. It was noted earlier 

that inhibiting complex I with amobarbital improved cardiac function 

after ischemia and reperfusion and improved mitochondrial function 

(5, 85). Thus, it is possible that reverse electron transfer may be, at 

least in part, responsible for some of the increase in ROS during 

ischemia. As discussed in section III, NADH-linked substrates do not 

appreciably block succinate-induced H2O2 emission via reverse electron 

transfer (335). 

 

XI. Summary 
 

A. Difficulties in understanding the role of ROS 
 

Although H2O2, and in some situations, O2
•- (21), are found to 

trigger a multitude of signaling pathways (most unknown) via their 

reactants such as peroxides, the precise mechanisms by which 

mitochondrial ROS initiate the signal-transduction pathways are mostly 

unknown, despite the TCA succinate bypass example given earlier. 

One difficulty in a better understanding of ROS modulation of cell 

signaling is the short half-life and reactive state of many ROS. The 

source or compartmentalization of the ROS is difficult to discern in 

most situations. The original oxidation product may itself be oxidized 

to a product that is the active signaling molecule. A surge in ROS or 

changes in redox capacity may have local or broad effects on many 

regulatory proteins simultaneously, so determining specificity is 

difficult. The ROS can originate from extracellular, cytosolic, or a 

nonmitochondrial organelle, or from a combination of extra- and 

intramitochondrial compartments. Moreover, redox regulation of ROS 

occurs at multiple levels. All of these complicating factors make it quite 

difficult to sort out the exact signaling mechanisms of ROS. It would 

appear that Nature has developed a highly sophisticated system to 

regulate specifically the generation and scavenging of ROS and to 

modulate the downstream effects of physiologically induced ROS 

emission on mitochondrial and cell activity. 
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B. Future directions 
 

From this review, it is clear that much has been learned about 

mitochondrial sources of ROS, the mechanisms of ROS generation and 

scavenging, and the pathologic effects of ‘‘bad’’ ROS on cell processes. 

However, knowledge of the source, amount, generation site, and 

specific ‘‘good’’ reactive species that are involved in cellular and 

organelle protection and physiologic modulation of cellular activity, 

even in one cell type (e.g., the cardiac myocyte), remains in its 

infancy. We hope that future studies will refine and detail our specific 

understanding of cell-signaling pathways mediated by mitochondrial 

ROS by using more physiologic approaches in normal cell settings. 

From these studies, it is hoped that novel therapeutic targets and 

drugs can be discovered by which to treat mitochondrial and cellular 

stresses, or at least to assist the organism’s intrinsic protective 

mechanisms. 

 

Footnotes 
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Abbreviations 

 

2-OH-E+, 2-hydroxyethidium; 5-HD, 5-hydroxydecanoic acid; ∆H+, proton 

motive force, transmembrane electrochemical H+ potential difference; ΔΨm, 

mitochondrial transmembrane potential; ∆pHm, mitochondrial pH gradient 

potential; ANT, adenine nucleotide translocase; CAT, carboxyatractyloside; 

CCCP, carbonyl-cyanide-m-chlorophenylhydrazenone; DCF, 2’7’-

dichlorofluorescein; DHE, dihydroethidium; DMOG, 1-dimethyloxallyl glycine; 

ETS, electron-transport system; FADH2, flavin adenine dinucleotide 

(reduced); GSH, glutathione (reduced); H2O2, hydrogen peroxide; HIF, 
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hypoxia inducible factor; HNE, 4-hydroxy-trans-2-noneal; IMAC, inner 

membrane anion channel; IMM, inner mitochondrial membrane; IMS, 

intermembrane space; IPC, ischemic preconditioning; KATP, ATP-sensitive 

K+ channel; KCa, Ca2+-sensitive K+ channel; KHE, K+/H+ exchange; L-NAME, 

NG-nitro-l-arginine methyl ester; MAPK, ERK, JNK, p38, family of protein 

kinases; MnTBAP, Mn(II)tetrakis(4-benzoate) porphyrin chlorine; MPG, N-(2-

mercaptopropyonyl)glycine; MPT, mitochondrial permeability transition; 

NADH, nicotinamide adenine dinucleotide (reduced); NHE, Na+/H+ exchange; 

NO•, nitric oxide radical; O2
•−, superoxide anion radical; OMM, outer 

mitochondrial membrane; ONOO¯, peroxynitrite; PH, prolyl-4-hydroxylase; 

PHP, phospholipid hydroperoxide; PPAR-, peroxisome proliferator activated 

receptor gamma; PPC, pharmacologic preconditioning; Prx3, Prx5, 

peroxirredoxins 3 and 5; Pr-SSG, glutathione-protein mixed disulfides 

(oxidized); Q, coenzyme Q10, ubiquinone, quinine; ROS, reactive oxygen 

species; SOD, superoxide dismutase; TCA, tricarboxylic acid; TRXSH2, 

thioredoxin (reduced); UCP, uncoupling proteins.  
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Fig.1. 

Schema of electron transfer through respiratory chain with sites of 

ROS (O2
•−) generation at complexes I and III. Electron transfer is 

reversible, except at complex IV, and forward transfer results in extramatrix 

proton pumping at complexes I, III, and IV, with reentering of protons at 

complex V coupled to ATP synthesis. Succinate can lead to reverse electron 

transfer, reduction of NAD+ to NADH, and O2
•− generation at complex I. [Used 

with permission and modified from Batandier et al. (22)]. 
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Fig. 2 

(A) Sites of O2
•− generation along electron-transport system with 

several respiratory inhibitors. (B) Diagram of electron-transport system 

with standard reduction potentials (Eo') of mobile components and ΔEo' where 

sufficient free energy is harvested to synthesize ATP. 

 

 

Table 1. 

Examples of Reactive Oxygen (Nitrogen, Chlorinating) Species 

Radicals Nonradicals 

Superoxide, O2
•− Hydrogen peroxide, H2O2 

Ferryl, Fe(IV) = O• Hypochlorous acid, HOCl 

Peroxyl, RO• Oxone, O3 

Alkoxyl, RO• Singlet oxygen, 1ΔgO2 

Nitric oxide, NO• Peroxynitrite, ONOO− 

Hydroperoxyl, HO2
• Peroxynitrous acid, ONOOH 

Note that not all radicals (O2
•−) or nonradicals (H2O2) are highly reactive, 

whereas other radicals and nonradicals are highly reactive (HO2
•, ONOOH). 

Carbon-centered radicals (Cl3C•), sulfur-centered radicals (RS•/RSS•), and 

nitrogen-centered radicals (C6H5N = N•) also exist (151). 
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Fig. 3 

The products of superoxide (O2
•−) and their catalysts. 
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Fig. 4 

EPR spectra indicating formation of O2
•− (DMPO-OH signals) by 

mitoplasts. The O2
•− spin-trap DMPO and antimycin A (B) are necessary to 

observe the signals (Control; A), which are abolished by SOD (C). 

Succinate + antimycin A (D). [Reprinted with permission from Han et al. 

(152)]. 
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Fig. 5 

Representative traces of H2O2 emission rates (amplex red, HRP) 

during 10 mM succinate–supported respiration in guinea pig heart 

isolated mitochondria. H2O2 emission was abrogated (A) by adding 4 μM 

carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial 

uncoupler, or by 4 μM rotenone (B), a complex I blocker. H2O2 emission 

during pyruvate (complex I substrate, 10 μM)-supported respiration (C). 

Catalase (300 U/ml) was added to scavenge the H2O2 generated, and 5 μM 

antimycin A (AA) was added to enhance the H2O2 generated at complex III. 

Note the lower rate of H2O2 emission with pyruvate than with succinate 

(reverse electron transfer). afu, arbitrary fluorescence units. Numbers are 

changes in afu/min. [Reprinted with permission from Heinen et al. (158)]. 
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Fig. 6 

DHE (dihydroethidium) fluorescence (O2
•−) during perfusion of 

guinea-pig isolated hearts at 37°C and 17°C with and without four 

drugs. Cardiac cooling markedly increased O2
•− emission. MnTBAP, a SOD 

mimetic, reduced O2
•− emission, and menadione (vitamin K3), an electron-

transport inhibitor, increased O2
•− emission, whereas BDM (butanedione 

monoxime), a contractile inhibitor, and L-NAME (NG-nitro-l-arginine methyl 

ester), an inhibitor of NO• synthesis, had no effect on O2
•− emission. DHE is 

thought to react with O2
•− to form 2-OH-E+, which produces a transient red 

spectral shift. [Reprinted with permission from Camara et al. (71)]. 
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Fig. 7 

Dityrosine (diTyr) fluorescence (ONOO−) during perfusion of guinea-

pig isolated hearts at 37°C and 17°C with and without four drugs. 

Cardiac cooling markedly increased ONOO−. MnTBAP, a SOD mimetic, and L-

NAME (NG-nitro-l-arginine methyl ester), an inhibitor of NO• synthesis, both 

reduced ONOO−, whereas menadione (vitamin K3), an electron-transport 

inhibitor, increased ONOO−, and BDM (butanedione monoxime), a contractile 

inhibitor, had no effect on ONOO−. [Reprinted with permission from Camara 

et al. (71)]. 
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Table 2. 

Drugs Commonly Used to Assess Deductively the Sites of Electron Leak and 

Superoxide Generation within the Respiratory Chain 

Drug Mechanism Effect 

Complex I sites Inhibitors of NADH oxidation   

Rotenone (ROT) 
Inhibits transfer of e− from Q-binding site 

to complex I 
+ O2

•− 

Amobarbital (AMO) 
Blocks transfer of e− from QNf to QNs distal 

to N2 Fe/S center 
+ O2

•− 

Piericidin A (PCA) 
Inhibits e− by competing with QB for 

binding site in complex I 
+ O2

•− 

Complex II sites Inhibitors of succinate dehydrogenase   

Malonate (MAL) Competitive inhibitor of complex II + O2
•− 

Methylmalonate 

(MML) 
Competitive inhibitor of complex II + O2

•− 

3-Nitroproprionate 

(3NP) 
Irreversible inhibitor of complex II + O2

•− 

Atpenins (APT) Noncompetitive inhibitor of complex II + O2
•− 

Complex III sites Inhibitors of quinone (Q) cycle   

Stigmatellin (STG) 
Prevents transfer of 1ste− from QH2 to 

Fe/S protein (ISP) 
± O2

•−a 

Myxothiazol (MYX) Prevents binding of QH2 at Qo site + O2
•− 

Antimycin A (ANA) Prevents transfer of 2nde− to Q1 site + O2
•− 

Complex IV sites Inhibitors of O2 binding   

K+ cyanide (KCN) Allosterically inhibits cytochrome oxidase ± O2
•−b 

Na+ azide (NaN3) Allosterically inhibits cytochrome oxidase ± O2
•− 

Carbon monoxide 

(CO) 

Competes with binding of O2 to 

cytochrome oxidase 
± O2

•− 

Nitric oxide (NO•) 
Competes with binding of O2 to 

cytochrome oxidase 
± O2

•− 

  General oxidants   
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Drug Mechanism Effect 

Menadione (vitK3) 
Stimulates redox cycling by one e− 

reductive enzymes 
+ O2

•− 

Quinones, 

doxorubicin 

Reacts with Fe3+ compounds to produce 

Fe2+ + e− 
+ O2

•− 

H2O2 

Reacts with Fe compounds to produce 

Fe(IV = O)•  and Fe+3 + •OH + -OH Fenton 

effect (minor) 

+ •OH 

Note: Effects of some drugs on O2
•− generationa,b depend on the substrate 

used and whether other drugs that act on the respiratory system are present. 

+, increase; −, decrease. 

Fig. 8. 

Schema of proposed O2
•− generation sites in complex I at FMN 

(flavin), Fe-S centers N1–N5, and/or Q binding sites (A–C, circles). 

Electron transport can be forward (solid arrow) or reverse (dashed arrow); 

O2
•− release is into the matrix only. SDH, succinate dehydrogenase. [Used 

with permission of and modified from Brand et al. (48)]. 
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Fig. 9 

Model of O2
•− generation during forward (top) and reverse (bottom) 

electron transfer within complex I. During forward transport (substrate 

pyruvate), e− are passed from NADH to Q in a quinone-reducing site via the 

FMN and Fe-S centers. The resulting QH• is reduced in a ΔpH-dependent 

generating step to form QH2 with another e− from QH2 or QH• at the quinol 

oxidation site. O2
•− generation is low unless Q-site inhibitors are present and 

the ΔpH is large. During reverse transport (substrate succinate), e− are 

passed from QH2 to NAD, so that the pool is reduced to NADH. A large ΔpH 

drives the formation of QH•, which loses its unpaired e− to O2 because all 

redox centers upstream of Q are fully reduced. [Used with permission of and 

modified from Lambert and Brand (200)]. 
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Fig. 10 

H2O2 production is more dependent on mitochondrial ΔpH than on 

ΔΨm during reverse electron transfer at complex I. This is suggested by 

the dependence of H2O2 production on ΔΨm when ΔpH is present (a) or 

absent (b); the difference (c) represents H2O2 production as a function of 

ΔpH. ΔpH was abolished with nigericin (b), which converts any ΔpH into ΔΨm. 

[Reprinted with permission from Lambert and Brand (201)]. 
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Fig. 11 

Mechanisms of O2
•− formation from complex III. Oxidation of quinol 

(QH2) results in transfer of a single e− to a high-reduction-potential chain at 

the Qo (extramatrix) site containing the Fe-S protein (ISP, Rieske protein) and 

on to cytochrome c1 and cytochrome c, and finally to cytochrome c oxidase. 

The remaining QH• is unstable and donates the second e− to a low-reduction-

potential chain consisting of cytochrome bl (low) and bh (high), leading the e− 

toward the Qi (matrix) site to form a stable QH•; this QH• is then reduced to 

QH2 by a subsequent e− passed along the low-reduction-potential chain, 

thereby completing the Q–QH2–Q cycle. In (A), antimycin A causes 

extramatrix release of O2
•−; in (B), stigmatellin and myxothiazol block 

antimycin A from releasing O2
•−. [Used with permission of and modified from 

Andreyev et al. (8)]. 
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Fig. 12 

Highly reduced and coupled mitochondria (high ΔΨm and limited 

respiration due to lack of ADP) leak e− for attack by O2 because QH• is 

not as rapidly reduced to QH2. Progressive uncoupling by using a 

protonophore (SF6847) gradually reduces ΔΨm and increases respiration while 

markedly preventing H2O2 generation. A similar effect occurs during state 3 

with added ADP. [Reprinted with permission from Korshunov et al. (191)]. 
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Fig. 13 

Isolated mitochondria can produce H2O2 during state 3 (ADP 

stimulated) as well as during state 4 conditions during forward 

electron flow, provided that [O2] and mitochondrial protein 

concentration are sufficient. [Reprinted with permission from Saborido et 

al. (276)]. 
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Fig. 14 

ROS production at complex I in cardiac mitochondria is critically 

dependent on a highly reduced NADH pool. Downstream inhibition of 

electron transfer (respiration) by rotenone leads to reduction of all upstream 

carriers and results in e− leak and ROS generation. Note the large decrease in 

respiration rate and the increasingly reduced redox state with rotenone 

associated with ROS production during state 3 (left) compared with state 4 

(right). [Reprinted with permission from Kushnareva et al. (199)]. 
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Fig. 15 

DHE (dihydroethidium) fluorescence (O2
•− emission) increases during 

perfusion of guinea-pig isolated hearts during intermittent (A) and 

continuous (B) cooling from 37°C to 2°C. The increase in O2
•− emission 

with cooling likely results both from increased O2
•− generation and decreased 

O2
•−-scavenging capability by MnSOD. Afu, arbitrary fluorescence units. 

[Reprinted with permission from Camara et al. (71)]. 
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Fig. 16 

Temporal relation between ΔΨm (TMRM fluorescence) and ROS (DCF 

fluorescence) in a cardiac myocyte. “Trigger” ROS was induced by 

photoactivation of TMRM derivatives. Note the burst of ROS after 

photoexcitation by laser scanning caused a decrease in ΔΨm, which was 

assumed to be a result of ROS-induced MPT opening. [Reprinted with 

permission from Zorov et al. (336)]. 
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Fig. 17 

Averaged mitochondrial [Ca2+] (A), NADH (B), and DHE (O2
•−) (C) in 

four groups of guinea-pig isolated hearts over time. Groups are time 

control versus 30-min global ischemia (isc) at 37°C versus 17°C. Note the 

increases in mitochondrial [Ca2+] and O2
•−, while NADH decreases, during 

later ischemia. Variables were measured in the left ventricle with a trifurcated 

fiberoptic probe and differential fluorescence spectrophotometry. [Reprinted 

with permission from Riess et al. (269)]. 
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Fig. 18 

Averaged DHE (O2
•−) (A) and mitochondrial [Ca2+] (B), in five groups 

of guinea-pig isolated hearts over time. Groups are 30-min global 

ischemia control and preischemia treatments with MnTBAP, 

catalase + glutathione (CG), MnTBAP + CG (MCG), and l-NAME. Note that the 

MnTBAP-treated group exhibited the largest increase in [Ca2+], whereas the 

MCG-treated group exhibited the smallest increases in [Ca2+] and O2
•−. 

[Reprinted with permission from Camara et al. (70)]. 
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Fig. 19 

Averaged ETH (DHE) fluorescence (O2
•−) in four groups of guinea-pig 

isolated hearts over time. Note that the increase in O2
•− during brief global 

ischemia (IPC, ischemic preconditioning) was attenuated by MnTBAP and that 

MnTBAP also blocked the reduction in O2
•− afforded by IPC so that O2

•− 

increased to the level of the ischemia control. [Reprinted with permission 

from the publisher of Kevin et al. (181)]. 
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Fig. 20 

Dependence of H2O2 production during state 3 (A) and state 4 (B) on 

[O2] in mitochondria isolated from rat liver. Note that at <5 μM [O2], 

H2O2 production decreased toward zero. Experiments were conducted in the 

presence of succinate + rotenone and oligomycin (state 4 only). [Reprinted 

with permission from Hoffman et al. (161)]. 
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Fig. 21 

Schema of glutaredoxin and thioredoxin buffering system in the 

mitochondrion. Glutathione is transported across the outer membrane (OM) 

via porin into the intermembrane space (IMS) and across the inner membrane 

(IM) via a transporter (trans) to the matrix. Other redox proteins are 

transported via the TOM and TIM23 complexes. The glutaredoxin and 

thioredoxin reactions in the matrix repair oxidatively damaged proteins. [Used 

with permission and modified from Koehler et al. (189)]. 
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Fig. 22 

Pathways of reactive O2 metabolism. O2
•− and H2O2 exert protective 

effects on the cell via signaling pathways for preconditioning via 

phosphorylation products and via oxidant-induced gene products that 

activate multiple groups of proteins. Severe hypoxia, ischemia and 

reperfusion, and toxins can cause excessive oxidant stress that leads to cell-

damaging effects of ferryl radicals such as Fe(IV) = O•. [Used with permission 

and modified from Becker (27)]. 
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Fig. 23 

Pathways of NO•, O2
•−, and HO• and their reactive lipid products, 

including lipid peroxides (1), 15-deoxy-Δ12,14-protaglandin J2 (2), 

isoprostane J2 (3), 4-hydroxynonenal (4-HNE) (4), acrolein (5), 

nitrolinoleic acid (6), and lysoPC (7). [Used with permission and modified 

from Zmijewski et al. (334)]. 
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Fig. 24 

Correlations between mitochondrial H+ leak, metabolic rate, and 

membrane fatty acid polyunsaturation in liver mitochondria. 

[Reprinted with permission from Brookes (55)]. 
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Fig. 25 

Assessment of proton leak from the downward shift in the ΔΨm 

versus respiratory-rate curve after IPC + ischemia versus ischemia 

alone (IR); no ischemia is control (CON). Note the decrease in respiration 

after IPC compared with IR at 160 mV (insert), indicating less proton leak. 

Data from rat mitochondria isolated at 30 min of reperfusion after ischemia. 

[Reprinted with permission from Nadtochiy et al. (238)]. 
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Fig. 26 

The K+ cycle in heart mitochondria. In this model, electrophoretic matrix 

K+ influx (leak) is matched by electrogenic H+ efflux (ETS), and K+ influx via 

KATP and Kca channels is matched by K+ efflux and H+ influx via KHE (K+/H+). 

The H+ influx is accompanied by phosphate influx (Pi); a net uptake of 

phosphoric acid and salt occurs, so that matrix swelling occurs. Finally, matrix 

alkalinization releases the KHE from allosteric inhibition by protons, and its 

activity increases to match K+ influx. [Used with permission and modified 

from Costa et al. (95)]. 
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Fig. 27 

Small increases in O2
•− generation assessed by DHE fluorescence 

(ETH) in isolated hearts during treatment with the anesthetic 

sevoflurane (Sevo) (A) were blocked by the SOD mimetic MnTBAP (C, 

D) but not by the KATP channel inhibitor 5-HD (B, D). [Reprinted with 

permission from Kevin et al. (182)]. 
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Fig. 28 

Proposed effect of submaximal K+ influx with mBKCa channel opening 

(1) on proton leak (2), proton ejection and respiration (3), ΔΨm (4) 

and generation of O2
•-and H2O2 (5). Net effect of mBKCa channel opening 

(B) (vs. closed, A) would be to accelerate electron flux without a change in 

ΔΨm due to support by proton leak; maintained ΔΨm and higher electron flow 

would accelerate ROS generation. [Reprinted with permission from Heinen et 

al. (159)]. 
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Fig. 29 

Mitochondrial H2O2 release rate from heart isolated mitochondria. (A) 

Representative trace for 30 μM NS-1619–induced increase in cumulative H2O2 

release with succinate + rotenone as substrate. Maximal ROS production was 

stimulated in some experiments by adding complex III blocker antimycin A 

(5 μM). Catalase (300 U/ml) was added to confirm H2O2 production. Open 

arrow a, baseline; open arrow b, treatment effect. (B) Summary of H2O2 

release rates. All treatment effects are compared with baseline of the same 

experiment. [Reprinted with permission from Heinen et al. (159)]. 
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Fig. 30 

ROS production (Cbx-DCF fluorescence) in rat-heart mitochondria 

over time after adding (before time zero) valinomycin (Val), 

diazoxide (Dzy), and 5-hydroxydecanoate (5-HD) singly or together 

with ATP to maintain state 4 (A). ROS production was obtained from the 

initial slopes of traces such as those shown in (A) and plotted as percentage 

ATP-inhibited control rate obtained in the absence of drug. Adding ROS 

scavenger N-(2-mercaptopropyonyl)glycine (MPG) decreased ROS production 

in the presence of Dzy and Val ∼10-fold (B). [Reprinted with permission from 

Andrukhiv et al. (9)]. 
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Fig. 31 

Effects of BKCa channel opener NS1619 on attenuating O2
•− emission 

(A) and NADH (B) during ischemia and reperfusion in guinea-pig 

isolated hearts were largely reversed by BKCa channel blocker 

paxilline (PX) or by SOD mimetic MnTBAP (TB). *p < 0.05 vs. Con, 

NS + PX, NS + TB. [Reprinted with permission from Stowe et al. (298)]. 
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Fig. 32 

Effect of reversible complex I inhibitor amobarbital on O2
•− 

generation (DHE fluorescence) (A) and mitochondrial [Ca2+] (B) 

during ischemia and reperfusion in guinea-pig isolated hearts. Arrow, 

1-min amobarbital perfusion immediately before ischemia. Inset: Effect of 

amobarbital before ischemia on O2
•− emission and [Ca2+]. White and hatched 

bars, baseline and 1 min of treatment, respectively. [Reprinted with 

permission from Aldakkak et al. (5)]. 
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Fig. 33 

Electrons derived from reducing equivalents are transferred through 

the respiratory system to complex IV where 4e− are transferred to O2. 

During hypoxia, this transfer is slowed, even though sufficient O2 exists to 

function as the electron acceptor. The resulting buildup of electrons and NADH 

may set up a condition for electron leak to O2, partially bypassing complex IV. 

[Used with permission of and modified from Chandel and Schumacker (80)]. 
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Fig. 34 

Effect of H2O2 on TCA cycle and products of 2-oxo acid nonenzymatic 

oxidation on metabolism (A) and signaling (B). (A) Pyruvate (PYR), α-

ketoglutarate (KGL), and oxaloacetate (OA) are decarboxylated by H2O2 to 

form acetate, succinate, and malonate (broken line) nonenzymatically instead 

of acetyl-CoA (acCoA), succinyl-CoA (sucCoA), and malate (MAL), or 

phosphoenolpyruvate (PEP) formed enzymatically (solid line) and are used to 

synthesize fatty acids, cholesterol, and glucose. ROS inhibit the TCA cycle 

mainly at aconitase and α-ketoglutarate dehydrogenase (KGDH) (thick 

arrow). The truncated Krebs cycle instead of the omitted steps of citric acid 

(citrate, CIT; cis-aconitate, cAC; isocitrate, ISC) is closed by transamination 

of OA with glutamate (GLU), which leads to formation of KGL and aspartate 

(ASP). As a part of the malate/aspartate shunt, these substrates enter the 

cytosol where OA is formed by transaminase from ASP or citrate lyase from 

citrate. (B) HIF-1α degrades in cells at normal O2 levels after prolyl residue 

hydroxylation by O2/KGL/Fe(II)-dependent hydroxylase. Hypoxia, succinate, 

and KGL decarboxylation by H2O2, which leads to decreased KGL and 

increased succinate, inhibits the enzyme, permitting transport of HIF-1α to 

the nucleus and HIF-dependent transcription of a wide variety of genes 

responsible for O2 transport, vascularization, and anaerobic energy 

production. [Used with permission of and modified from Fedotcheva et al. 

(121)]. 
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