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Abstract 
The objective of this study was to develop an X-ray computed tomographic method for pulmonary arterial 

morphometry. The lungs were removed from a rat, and the pulmonary arterial tree was filled with 

perfluorooctyl bromide to enhance X-ray absorbance. At each of four pulmonary arterial pressures (30, 21, 12, 

and 5.4 mmHg), the lungs were rotated within the cone of the X-ray beam that was projected from a microfocal 

X-ray source onto an image intensifier, and 360 images were obtained at 1° increments. The three-dimensional 

image volumes were reconstructed with isotropic resolution with the use of a cone beam reconstruction 

algorithm. The luminal diameter and distance from the inlet artery were measured for the main trunk, its 

immediate branches, and several minor trunks. These data revealed a self-consistent tree structure wherein the 

portion of the tree downstream from any vessel of a given diameter has a similar structure. Self-consistency 

allows the entire tree structure to be characterized by measuring the dimensions of only the vessels comprising 

the main trunk of the tree and its immediate branches. An approach for taking advantage of this property to 

parameterize the morphometry and distensibility of the pulmonary arterial tree is developed. 

the extant luminal morphometry of the pulmonary arterial tree comes almost exclusively from measurements 

on plastic corrosion casts. That approach has been important in developing present concepts regarding 

pulmonary structure-function relationships. However, the data collection process is quite tedious, and, as a 

consequence, the data obtained to date are from very few lungs, i.e., usually from only one or two ostensibly 

normal lungs of each species that has been studied (13, 16, 18,33, 40). The laborious casting approach virtually 

precludes accumulation of data on the progression of the pulmonary arterial architecture during development 

or resulting from vascular remodeling associated with adaptation to physiological or pathophysiological stresses. 

As an alternative to corrosion casting, X-ray computed tomography (CT) has the potential for increasing the 

throughput enough to make such studies practical (20, 21). The approach has been initiated in studies both in 

vivo (11, 24, 25) and in excised lungs (21, 38). Key advantages include the fact that the data set, including all the 

vessels with their spatial orientation and connectivity, is rapidly available in digitized form and that the data can 

be collected on the same lung under different experimental conditions (21). 

However, the problems of quantifying the complex structure and then providing a useful quantitative summary 

of the large data set remain for both imaging and casting methods. One aspect of this problem is that there is no 

fully automated image segmentation method that provides the necessary accuracy and precision. Thus, as with 

casting methods, some subset of the data obtained with semiautomated methods must be used to extrapolate 

to the whole. 

Various approaches have been developed for summarizing complex vascular morphometric data sets 

(3, 5, 6, 13, 14, 18). They vary in applicability to CT images and in the information content of the resulting 

summary. In the present study, we develop an approach for parameterizing the rat pulmonary arterial tree 

structure and vessel distensibility from X-ray CT images. The objective is a parameter vector useful for evaluating 

the efficacy of interventions directed at putative mechanisms of pulmonary vascular remodeling, as a 

quantitative trait vector for identifying genes involved in pulmonary vascular remodeling (7, 27), and as input to 
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mathematical models relating pulmonary vascular structure and function (5, 6,42). The approach is based on the 

concept of “self-consistency,” as applied by Fredberg and Hoenig (9,10) to the bronchial tree. In this context, the 

definition of a self-consistent arterial tree is one in which all portions of the tree downstream from a vessel of a 

given diameter are, in a statistical sense, similar. That is, any artery of a given diameter subtends a similar 

number of terminal arterioles with a similar connecting network. One attribute of the self-consistent tree 

structure is that it can be fully characterized by measuring the dimensions of only the vessels that make up the 

main trunk of the tree and its immediate branches, where the main trunk is the route followed from the inlet 

pulmonary artery by taking the largest diameter branch at each successive bifurcation. In what follows we 

develop the rationale for parameterizing the rat arterial tree, referred to as a “principle pathway” analysis, 

based on measurements of the diameters and distances from the inlet of the main trunk and its immediate 

branches. 

METHODS 

Animal preparation. 
The lung from a 320-g fawn-hooded rat, acclimated to the normal atmosphere at 193 m above sea level, was 

prepared for imaging as previously described (21). The rat was anesthetized with pentobarbital sodium (40 μg/g 

body wt ip), the trachea was clamped, and the chest was opened. Heparin sodium (200 IU in 0.2 ml) was 

administered via injection into the right ventricle. The pulmonary artery was cannulated with a saline-filled 

catheter of polyethylene tubing (1.67 mm inner diameter and 2.42 mm outer diameter) via the conus arteriosis, 

and the heart was dissected away. The lung was removed from the chest and suspended from the trachea and 

pulmonary arterial cannula. The lung was ventilated with 15% O2-6% CO2, balance nitrogen, at 40 breaths/min 

with end-inspiratory and end-expiratory tracheal pressures of 8 and 3 mmHg, respectively. This served to 

eliminate any atelectasis that may have occurred during the dissection. The pulmonary artery cannula was 

connected to a perfusion system primed with a physiological salt solution containing 5% bovine serum albumin, 

and the lung was perfused for ∼5 min at a flow rate in the range of 5–40 ml/min to remove residual blood from 

the lung vessels. The perfusate exited via the severed pulmonary vein. Once cleared of blood, the lung, still 

suspended from the cannulas, was placed in a 41-mm inner diameter plastic cylinder. The cylinder axis was 

located at the center of a horizontal turntable so that the lung could be rotated 360° around a vertical axis 

between the X-ray source and detector with no other significant X-ray absorbing objects passing through the 

beam. The airway pressure was set at 6 mmHg, and the solution in the reservoir connected to the arterial 

catheter was replaced by perfluorooctyl bromide (PFOB) that was allowed to fill the arterial tree at a pressure of 

∼20 mmHg. The PFOB provided high X-ray contrast for the vessel lumen, and the surface tension at the PFOB-

aqueous interface prevented its entry into the capillary bed. Thus only the arterial vessels were filled. Then the 

arterial pressure was set at 30 mmHg relative to the horizontal plane through the center of the X-ray image of 

the lung. The lung was rotated and stopped at each 1° increment so that 360 X-ray images were acquired in ∼10 

min. The same sequence was repeated with the arterial pressure set at 21, 12, and 5.4 mmHg, respectively, and 

again at 30 mmHg. The actual intravascular pressure within each vessel relative to atmospheric pressure at the 

level of the vessel was obtained from the vertical distance of the vessel from the pressure reference level at the 

central horizontal plane of the image volume, and the PFOB density of 1.94 g/ml. 

Imaging. 
The X-ray system included an X-ray tube (model FXE-100.50; Fein-Focus) with a 3 μm focal spot, an image train 

consisting of an image intensifier set at the 17.8-cm aperture (model AI-5830-HP; North American Imaging), and 

a charge-coupled device camera (model SMD 1M15, Silicon Mountain Design; Colorado Springs, CO). The 

cylinder containing the rat lung was placed in the scanner so that its central axis was 26.7 cm from the source. 

The source-to-image intensifier distance was 91.3 cm, yielding a geometric magnification of ∼×3.4 and a half-

https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B5
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B6
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B42
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B9
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B10
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B21


cone beam angle for the lung image of ∼4°. Projection-image collection frequency was 30 frames/s with 30 

consecutive frames averaged to create each stored image. After the lung imaging session, two additional images 

were obtained. One was a flood field image with the lung removed from the beam. The flood field image was 

used to correct for spatial variations in the X-ray beam intensity and/or image intensifier gain. The other image 

was of a phantom consisting of a uniform grid of stainless steel spheres used as previously described (21) to 

correct for spatial distortion (warping) inherent in the image intensifier. 

Each of the 360, 8-bit planar images, consisting of a 512 × 512 array of pixels in the range of 0–255 (minimum to 

maximum) X-ray intensity scale, was preprocessed as previously described (21) to correct the image intensifier 

spatial distortion, to locate the axis of rotation, and to correct for nonuniform illumination intensity. After 

preprocessing, cone-beam reconstruction was performed on the projection data to yield an isotropic 

reconstruction matrix of 497 × 497 × 497 voxels representing a volume of ∼3.8 × 3.8 × 3.8 cm3. The Feldkamp 

(8, 19) cone-beam algorithm was utilized to account for the variation in the angle of the incident X-ray beam at 

each pixel in the projection images. A filtered [Shepp-Logan filter kernel (32)] backprojection reconstruction was 

then performed. 

Measurements. 
The three-dimensional (3D) surface-shaded renderings of the arterial tree in Figs. 1 and 2 help to demonstrate 

the concept behind the subsequent measurements made on the reconstructed image volume. 

Figure 1A illustrates a rat lung image volume with the threshold set to eliminate the tissue and smallest vessels, 

which tend to obscure the pulmonary arterial tree structure viewed at this magnification. Figure 1B was 

obtained by electronically pruning the tree so that the main pathway, composed of the main trunk and the 

stumps of its immediate branches, is separated from the rest of the tree. Figure2 presents two views obtained 

after ligating the right pulmonary artery and physically removing the right lung before imaging. This was done to 

provide a less cluttered view of the smaller branches than in the whole lung image in Fig. 1. When this left lung 

image is rotated, so that a given small portion is close to being in the plane of the page, one can appreciate the 

self-consistent appearance by comparing the two circled portions. That is, one could imagine that swapping the 

positions of the two circled portions would hardly affect the overall tree structure. 

 
Fig. 1. A: surface-shaded rendering of the rat pulmonary arterial tree with the threshold chosen to obscure the 
smallest vessels to provide an uncluttered view of the overall structure. B: main trunk, with the stumps of its 
branches attached, was obtained by electronically pruning the image on the left. Measurements of diameter of 
the main trunk along its length and the positions and diameters of branches off of the main trunk compose the 
principal pathway data set. 
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Fig. 2. Surface-shaded renderings after ligating the right pulmonary artery and physically removing the right lung 
before imaging. This was done to provide a less cluttered view of the smaller branches than in the whole lung 
image in Fig. 1. When this left lung image is rotated so that a given small portion is close to being in the plane of 
the page, one can appreciate the self-consistent appearance exemplified by two circled portions. The graphs 
below the two images are of the diameter vs. distance along the trunk within the circle as a means of making a 
quantitative assessment of the similarity between the two regions. CCW, counterclockwise. 
 

In what follows, the full data set, with no artificial threshold, was used to make quantitative measurements 

wherein the gray scale number (GSN), obtained from the reconstruction is the measure of X-ray absorption 

within a given voxel (21). 

Mapping the principle pathway. 
For this analysis, a trunk is a pathway through the tree defined by following the path of the largest diameter 

branch at each bifurcation. The main trunk is the trunk that starts at the main pulmonary artery. Because of the 

correlation between the distance between bifurcations and diameter, the main trunk is either the longest, or 

very nearly the longest, pathway through the tree. A minor trunk can start at any bifurcation. To begin the 

principal pathway analysis, several trunks were followed through transaxial slices of the three-dimensional 

volume from their respective inlets to their most distal resolved vessel segments. The first step in this process 

was to identify axialx,y,z coordinates along a trunk that could be used to specify locations for measuring trunk 

and branch diameters and their distances from the trunk inlet. These coordinates were identified interactively 

using an approach similar to that described previously (21) but with modification required to track a vessel 

regardless of its angle relative to the rotation axis of the image volume. 

In the description of the method for identifying x,y,z coordinates, the terms trunk and branch can be 

interchanged. The only distinction is that downstream from a bifurcation the trunk has the larger of the two 
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diameters. In the most common case, the trunk and branch cross sections were oblique to the transaxial slices 

and the branch and trunk diverged on progression through the transaxial slices. This is shown diagrammatically 

by the trunk and branch A in Fig.3. In this case, a bifurcation was located by observing the trunk cross-section 

while progressing through the sequence of transaxial slices until the single ellipsoid became bilobular and then 

split into two. The slice number, in which there was visible separation between the two new ellipsoids (the 

crotch of the bifurcation), was taken as the z coordinate as depicted in Fig. 3 (gold-colored diamonds). The 

central x,y coordinates of each of the two ellipsoids on the slice at which the single ellipsoid completely 

separated into two, were recorded along with thez coordinate. 

 
Fig. 3. Identification of vessel segments in the image volume. The numbered horizontal lines through the surface 
shaded rendering on the upper left designate the numbered locations of the transaxial slices on the right. The 
transaxial slices are used by the operator to locate bifurcation points and the central axes of trunk and branch 
vessel segments. This section of the tree was chosen for diagrammatic purposes because it contains all three 
bifurcation types encountered on traversal through a stack of transaxial slices. That is, branches likebranch 
B that converge with the trunk, or likebranch A that diverge from the trunk, or likebranch C, that are nearly in 
the plane of the transaxial slices, as observed during a traversal through the stack of slices that compose the 
image volume. The lower left image specifies branch types, bifurcation points (gold diamonds), and line 
segments identified in text (see methods). The blue circles are located on the axes of the branches. The white 
circles are located on axes of the trunk. Planes orthogonal to the axes designated by the black lines are the 
planes on which the trunk diameters are measured. Red arrows are the distance measurements contributing to 
the cumulative distancex. 
 

The two additional cases are also illustrated in Fig. 3. When the branch and trunk converged (branch B), so that 

the ellipsoids merged on progression through the slices, z was identified as being in the plane just before the 

merger. The centralx,y coordinates were then recorded in the same manner as in the first case. The third case is 

evident when one of the vessels is oriented so nearly parallel to the transaxial slices that the lobulation 

indicative of a bifurcation appears elongated rather than as a distinct ellipse (e.g., branch C in Fig. 3). 
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Thez coordinate was identified by observing the proximal intersection of the branch with the trunk, and by 

proceeding through the volume half the number of slices encompassing the full width of the horizontal vessel 

segment. The central x,ycoordinates of the oblique vessel segment were identified on this plane as in cases 

A and B. The centralx,y coordinates of the horizontal segment were placed on this same plane but on the visually 

interpolated edge of the oblique vessel ellipse. 

Once these x,y,z coordinates of the main trunk (white circles in Fig. 3) and the upstream ends of the branches 

(blue circles in Fig. 3) were located, the upstream branch coordinates were revisited. Each branch was followed 

as it diverged from the trunk until the first bifurcation was reached. The downstreamx,y,z coordinates were then 

identified in the same manner as described for cases A, B, and C. For most branches, the process ended at this 

first bifurcation off the main trunk. However, nine branches were designated minor trunks and followed to their 

respective terminations as was the main trunk. 

Having identified these coordinates, the midpoints [(x1 + x2)/2, (y1 + y2)/2, (z1 + z2)/2] of the line between 

consecutive trunkxi,yi,zicoordinates and between upstream and downstream branchxi,yi,zicoordinates were 

identified. Two vectors intersecting these midpoints, orthogonal to each other and to the central axis, specified 

an orthogonal plane through the midpoint of the central axis line segment. The thick black lines in Fig. 3, bottom 

left, represent one of each pair of these vectors. Cubic interpolation was performed to obtain the GSN values of 

the orthogonal slice on this plane. The vessel segment diameter was estimated from its cross-sectional image in 

this slice as previously described (21). The distance along a trunk was computed as the cumulative distances 

between consecutive midpoints, beginning at the x,y,z of the inlet segment. 

Note that Fig. 3 represents the identification of the coordinates and central axes. The diameter measurements 

were made on the orthogonal slices wherein the vessel cross sections appear as circles rather than ellipses as 

shown previously (21). Whereas the identification of the x,y,zcoordinates was interactive, once the coordinates 

were specified, the diameter measuring algorithm was automatic. One can appreciate that the orthogonal slice 

through the midpoint between the case A and case B bifurcations on Fig. 3 would be circular, whereas the 

orthogonal slice through the midpoint betweencase A and case C would be distorted due to the fact that the 

two branches come off the trunk less than a full branch diameter apart. The effect of this distortion is averaged 

in the vessel diameter estimate by the optimization procedure (21). These cases contribute to the apparent 

roughness of the taper of the trunks observed in the diameter- versus-distance plots presented in Principal 

pathway parameterization. If the trunk segment was distorted to the extent that the diameter-measuring 

algorithm did not converge, the next downstream trunk location was assigned two branches rather than one 

(the algorithmic definition of a trifurcation). The overall result was robust with regard to the operator choices. 

For example, as case A or case B bifurcation approaches a case Cbifurcation, the choice of method makes little 

difference to the outcome. Confusion with regard to a case A or case B does not occur. 

RESULTS 
The data obtained was a contiguous sequence of axial segments consisting of the main trunk and nine minor 

trunks, and the diameter of the branch off of the main trunk associated with each segment. 

Principal pathway parameterization. 
The distances through the lumen from the inlet to the ends of the contiguous sequence of axial segments 

consisting of the main trunk and nine minor trunks are plotted on Fig. 4,A, C, and E. To further investigate the 

self-consistency of the arterial tree, we begin by observing that the diameter, D, vs. distance, x, along the main 

trunk has an appearance reminiscent of the following functional form 

𝐷(𝑥) = 𝐷(0)(1 − 𝑥/𝐿tot)
𝑐 

https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F3
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F3
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F3
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B21
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F3
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B21
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F3
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#B21
https://journals.physiology.org/doi/full/10.1152/ajpheart.2001.281.6.H2747#F4


Equation 1 

where D(0) is an approximation to the trunk diameter atx = 0; Ltot would be the total length of the trunk if 

extended until D = 0, i.e.,D(0)/Ltot is a measure of the average taper of the entire trunk, and c is the measure of 

the concavity-convexity of the taper, i.e., when c < 1, the curvature of the taper is convex to the trunk axis, and 

whenc > 1, the curvature of the taper is concave to the axis. A conceptual representation of Eq. 1 is shown in Fig. 

5. 

 
Fig. 4. A: same surface-shaded renderings as in Fig.1, with 10 trunks identified by colored lines. B: The 10 colored 
lines have been bent and placed along the main trunk to demonstrate diagrammatically where the minor trunks 
would superimpose on the main trunk. C: diameter (D) versus distance (x) relationships for the 10 individual 
trunks identified in the top images, with Eq. 2 fit through the data. The distance, x = 0, is where the branch 
leaves the main trunk. D: superposition of the nine trunks on the main trunk by shifting the distance axis bysi to 
the right. E: cumulative number of branches (NBr) vs. x along the 10 trunks identified at top. On this graph, the 
branches start at their respective locations, si, along the main trunk. The lines are Eq. 4 fit though the data.F: 
superposition of the 9 minor trunks on the main trunk accomplished by shifting up byni. 
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Fig. 5. Schematic representation of the parameters of Eq.1 describing the main trunk geometry. D(0), 
approximation to the trunk diameter at x = 0;Ltot, total length of the trunk if extended until D = 0; c is the 
measure of the concavity-convexity of the taper. 
 

Self-consistency implies that if Eq. 1 describes theD versus x relationship for the main trunk, then 

the D versus x graph of any trunk would be described by Eq. 2 

𝐷(𝑥) = 𝐷(0)[1 − (𝑥 + 𝑠𝑖)/𝐿tot]
𝑐 

Equation 2 

where D(0), Ltot, andc would be the same for all trunks, andsi would be the distance along thex-axis of 

Fig. 4C that an individual trunk would need to be shifted to match the equivalent distal portion of the main 

trunk. Thus fitting Eq. 2 to all of the data from the 10 trunks on Fig. 4C simultaneously yields 12 parameters, 9 

unique si values (si for the main trunk is 0) and 1 common value each for D(0),Ltot, and c for the 10 pathways. 

Because of its distortion due to the cannulation, the main pulmonary artery is not included in the main trunk 

data set. Instead,x = 0 occurs at the bifurcation of the pulmonary artery, so that D(0) is the Eq. 2 approximation 

to the right pulmonary artery inlet diameter. The fitting of this and the subsequent equations to the data was 

carried out using the FMINS routine in the Matlab version 6 optimization toolbox. Because a value of D(x) 

at x >Ltot is not a real number (i.e., a negative number raised to the power c), Eqs. 1 and 2 were set to 0 

when x >Ltot (or x +si > Ltot) occurred during this and subsequent optimizations for equations having similar form. 

To construct Fig. 4D, the data for the minor trunks were horizontally translated to the right by the distancesi. 

The resulting superposition is a characteristic of self-consistency. 

Another characteristic of self-consistency is that the branches off any trunk should be similarly distributed. 

Figure 4E again shows the 10 trunks, but with the number of upstream branches (NBr) plotted versus x. On the 

left, each trunk begins at its respective si. The progression of the curves is again suggestive of self-consistency. 

To further investigate this aspect of self-consistency of the arterial tree, we note that NBr versus x along the main 

trunk has the appearance of the following functional form 

𝑁Br(𝑥) = 𝑁tot{1 − [1 − (𝑥/𝐿tot)]}
𝑏 

Equation 3 

where Ntot is an approximation to the total number of branches off the main trunk, i.e.,Ntot/Ltot is a measure of 

the average number of branches per unit length, and b is the measure of how the branches are distributed along 

the length, i.e., when b is >1, the number of branches per unit length increases with x and when b is <1, the 

number of branches per unit length decreases with x. Thus a change inNtot/Ltot would reflect a change in branch 

density, whereas a change in b would distinguish the large versus small vessel contribution to such a change. 

Self-consistency implies that if Eq. 3 describesNBr versus x relationship for the main trunk, then the number 

versus x graph of any trunk would be fit by Eq. 4 

𝑁Br(𝑥) = 𝑁tot{1 − [1 − (𝑥 + 𝑠𝑖)/𝐿tot]}
𝑏 − 𝑛𝑖  

Equation 4 

where Ntot and b would be the same for all trunks and ni would be the number of branches an individual trunk 

would need to be shifted to match the equivalent distal portion of the main trunk. Thus, fitting Eq.4 to all of the 

data from the 10 trunks shown in Fig.4E, simultaneously yields 11 parameters, 9 uniqueni values (ni for the main 

trunk is 0) and 1 common value each forNtot, and b for the 10 pathways. Because a value of x > Ltot is not a real 
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number, x > Ltot (orx + si >Ltot) were ignored if they occurred during this and subsequent optimizations for 

equations having similar form. The resulting superposition, in Fig. 4F, along with that in Fig.4D, is the basis of the 

following parameterization of the tree structure. 

Under the assumption of self-consistency, only the dimensions of the main trunk and the diameters of its 

immediate branches need to be measured to fully characterize the tree structure. With Eq.1 as the 

representation of the main trunk diameter versus distance relationship, Eq. 5 can represent the diameters,DBr, of 

the vessel segments branching off the main trunk at x 

𝐷Br(𝑥) = 𝐷Br(0)(1 − 𝑥/𝐿tot)
𝑐 + 𝜑 

Equation 5 

where DBr(0) is an approximation to the diameter of the first branch off the main trunk (the left pulmonary 

artery), and, assuming self-consistency,DBr(0)/D(0) is an average ratio of branch-to-trunk diameters. Although 

represented by a continuous function, the branches are actually placed only at the number,Ntot, of discrete 

locations along the main trunk, and their diameters vary with x proportionately much more than the main trunk 

diameter. The φ is a variable diameter increment reflecting this heterogeneity of the branch diameter along the 

principle pathway. Figure 6 represents an entire principle pathway data set with Eqs. 1 and 5 fit simultaneously 

with four free parameters:D(0), DBr(0),Ltot, and c, and with φ = 0. φ was then represented by a coefficient of 

variation (CVBr) obtained from the variance in the measured branch diameter around the fitted Eqs. 1 and 5, 

namely 

𝐶𝑉Br =
√(

𝐷Brdata −𝐷Brfit
𝐷Brfit

)
2

− (
𝐷data − 𝐷fit

𝐷fit )
2

𝑁 − 4
 

Equation 6 

where data refers to the measured value and fit refers to the value predicted by the fit of Eq. 5 to the data for 

each of the Ntot branches along the principal pathway. The rationale behind Eq. 6 is the concept that there is an 

underlying smooth taper to the main trunk that can be represented byEq. 1, and that the variability in measured 

data about the fitted line reflects the irregular distortion of the smooth taper near bifurcations as well as errors 

in the diameter estimates. Assuming that these sources of variance also exist in the branch diameter data, 

subtracting the variance about the fit to Eq. 1 from that around Eq. 5 provides an approximation to the variance 

in the branch diameters due to the heterogeneity in the branch-to-trunk diameter ratio. 
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Fig. 6. Principal pathway data including the main trunk diameter at x from the bifurcation of the main pulmonary 
artery and the diameters and x locations of the branches off of the main trunk. Data are from images obtained 
at an arterial pressure of 21 mmHg. Below the x-axis is another schematic representation of the main trunk to 
emphasize the concept that the principal pathway is a tapered tube with branches, represented in this depiction 
as depressions or scars where the branches have been broken off. 
 

From Eqs. 1, 3, and 6, the parameter vector summarizing the tree morphometry at a given vascular pressure 

would be [D(0), DBr(0),Ltot, Ntot, c,b, CVBr]. However, as illustrated in Fig. 7, the vessel diameters are also a 

function of vascular pressure, which over the pressure range studied can be approximated by Eq. 7 (1, 39, 42) 

𝐷(𝑥, 𝑃) = 𝐷(𝑥, 0)(1 + 𝛼𝑃) 

Equation 7 

where α is a distensibility coefficient, namely, the fractional change in diameter per unit change in pressure. 

Assuming that α is diameter independent (1, 21), Eqs. 2 and 4 can be written as 

𝐷(𝑥, 𝑃) = 𝐷(0,0)(1 + 𝛼𝑃)(1 − 𝑥/𝐿tot)
𝑐 

Equation 8 

and 

𝐷Br(𝑥, 𝑃) = 𝐷Br(0,0)(1 + 𝛼𝑃)(1 − 𝑥/𝐿tot)
𝑐 + 𝜑 

Equation 9 
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Thus the [D(0,0), DBr(0,0),Ltot, Ntot, c,b, CVBr, α] vector can be obtained by fitting Eqs. 8, 9, and 3 to all of the 

principal pathway data obtained over the entire pressure range studied. The approach was to first 

simultaneously fit Eqs. 8 and 9 to the D(x,P) andDBr(x,P). The two surfaces representing this fit are shown in 

Fig.8. Then the Ltotwas used as an input to Eq. 3, which was then fit to theNBr(x) data as shown in Fig.9 to obtain 

the estimates ofNtot and b for all pressures simultaneously. Although a slight increase inLtot with increasing 

pressure can be observed in Fig. 9 it was not considered to be of sufficient magnitude to warrant consideration 

in the model expressions. We suspect that it is mainly due to a small stretching of the vertically oriented lungs as 

the lung weight increased with increasing mass of PFOB. In any case, there is no evidence for a substantial effect 

of intravascular pressure on vessel lengths. The parameter values obtained in this manner for the lung studied 

are as follows: D(0,0) = 1.34 mm,DBr(0,0) = 0.610 mm,Ltot = 41.2 mm,Ntot = 37, c = 0.695,b = 1.67, CVBr = 54.6%, 

and α = 2.25% mmHg 

.  
Fig. 7. Principal pathway data similar to Fig. 6, but from images obtained with the arterial pressure set at 30 
mmHg (A) and 12 mmHg (B) to demonstrate vessel distensibility. 
 

 
Fig. 8. The entire principal pathway diameter versus distance data set from the images obtained at all pressures. 
The two surfaces are fit simultaneously from Eqs. 8 and 9 to the entire data set. 
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Fig. 9. Entire NBr vs. x data set from the images obtained at all pressures. The line is Eq.3 fit simultaneously to the 
entire data set. 
 
One objective of this study was to develop a method for morphometric analysis with high enough throughput 

that comparisons can be made between lungs and between groups of lungs in future studies. We envision this 

parameter vector to be the basis of such comparisons. In addition, elements of the parameter vector can also be 

used to extrapolate the relatively small number of measurements made to an entire tree structure. An example 

approach would be as follows. The first step is to determine the distances between branches,L(NBr), in the model 

tree usingEq. 10 

𝐿(𝑁Br) = 𝐿tot{[1 − (1 − (𝑁Br/𝑁tot)]
1 𝑏⁄ } 

Equation 10 

−{1 − [1 − [(𝑁Br − 1)/𝑁tot)]
1 𝑏⁄ ]} 

Then the branch x positions along the trunk are identified from the cumulativeL(NBr). In a self-consistent tree, 

the main trunk diameter must decrease monotonically from the inlet. Therefore, the next step is to calculate the 

model main trunk diameter using Eq. 8 for the particular pressure chosen for the model. The branch diameters 

(the average from the five pressures for each branch normalized to the Eq. 8 trunk surface) can then be used to 

determine the model branch diameters. This is done by reassigning each branch diameter the trunk diameter 

closest to the mean branch diameter, unless the branch diameter was smaller than the smallest measured trunk 

diameter. In the latter case, the trunk was extended along the Eq. 1 line to include the branch diameter. An 

entire tree down to the resolution of the image data can then be constructed using the self-consistency 

recursion relationship that results from all vessels down stream from a givenNBr having the same dimensions. As 

with any model specified by a smaller number of parameters than the dimensions of the real system, the tree 

constructed is a stereotypical approximation to the real tree. However, it retains representations of asymmetry 

and heterogeneity missing from some morphometric synopses (6) and in a way that can provide input to a 

computationally efficient hemodynamic model (9). This model tree is depicted in Fig. 10 in the format of 

Figs. 6 and 7 except that lines representing the minor trunks and their immediate branches have been added to 

give an impression as to how the principal pathway data are extrapolated to the entire tree. The entire tree 

would be represented by many more lines because the branches off of the minor trunks become minor trunks 

and so on. 
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Fig. 10. Self-consistent model tree, for a pressure of 21 mmHg, constructed from the parameter vector obtained 
from the Eq.8 and 9 fit to the surfaces in Fig. 8 and Eq. 3 fit to the data in Fig. 9. Model trunk diameters (■) at 
the x locations correspond to each branch diameter (  ). The solid lines are the individual trunk diameter 
versus xrelationships for the main trunk and those minor trunks beginning at a branch off the main trunk. 
Dashed lines are the Eq. 9 for each minor trunk. 
 

DISCUSSION 
The results suggest that the rat pulmonary arterial tree is self-consistent and conducive to principal pathway 

analysis. This property may be useful for summarizing the pulmonary arterial morphometric data available in the 

three-dimensional volume reconstruction of the lung. A practical consequence of self-consistency is that it 

minimizes the number of measurements needed to characterize the complex tree structure consisting of 

thousands of vessel segments. This will be important, at least until completely automated image segmentation 

methods become available. Another practical consequence is that self-consistency lends itself to a 

computationally efficient means of evaluating the hemodynamic impact of changes in the structure (9). 

The expectation is that the parameter vector obtained as described will serve three interrelated purposes as 

indicated in the introduction. One is to provide a basis for comparing the lumenal morphometry of pulmonary 

arterial trees in animals exposed to different remodeling stimuli and to interventions directed at putative 

mechanisms involved in the remodeling. Also, if any element of the vector is found to exhibit differential 

susceptibility to a particular remodeling stimulus in a specific rat strain, it may be a useful phenotype for 

quantitative trait localization by genetic linkage analysis (7). A third purpose is as input to mathematical models 

relating pulmonary vascular structure and function in normal and remodeled pulmonary arterial systems 

(2, 6, 42). In this regard, the parameter vector can be translated into a structure amenable to hemodynamic 

modeling similar in concept to the airway modeling of Fredberg and Hoenig (9, 10). The recursion relationships 

that result from self-consistency (alluded to in Fig. 10) provide computational efficiency for large heterogeneous 

asymmetrical structures. The objective of that kind of modeling would be to determine how changes in the 

morphometry and vessel mechanics, revealed by changes in the parameter vector, contribute to the changes in 

function, e.g., pulmonary hypertension, abnormal distributions of flow, shear stress, etc. 

We chose the rat lung for this developmental study because of its history of use in studies of pulmonary vascular 

remodeling (28,29, 36), because of its increasing importance in genetic studies (7, 17, 31, 34), and because a 

small lung takes advantage of the geometric magnification possible with microfocal imaging. For the 

combination of image-acquisition procedures in the present study, the smallest arteries for which diameters 

were confidently measured were ∼50 μm in diameter (21). The diameters of terminal pulmonary arteries, i.e., 
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arteries connecting directly to capillaries, have reported to range from ∼13 to 30 μm in diameter in various 

studies and species (5), which is just beyond the resolution in the present study. Improvements in computational 

capacity to take advantage of the higher resolution capabilities of the detector system and the use of volume of 

interest reconstruction (23, 30) to allow for higher geometric magnification than in the full lung reconstruction 

used in the present study, are examples of feasible enhancements for future development. 

The algorithms developed to quantify the 3D image volumes are partially automated (containing some 

interactive steps). Whereas advances are being made in the field of vessel segmentation in micro CT images 

(11, 37) that may be applicable to lung images in the future, the method described for locating a bifurcation 

seems to produce a satisfactory result and can be easily and robustly implemented by the operator. Each branch 

is associated with a segment of the trunk, but no attempt was made to establish a specific location along the 

segment. Other approaches are possible. For example, Wood et al. (38) defined the bifurcation (branch) point as 

the intersection of the central axes of the parent and two daughters, and they developed a means for identifying 

that point. One criterion for judging the value of adding such a method in the future might be the sensitivity of a 

hemodynamic model to how the branches are distributed along the total length of the principle pathway. Given 

the relative sensitivity of the pressure-flow relationship to the diameter versus the length of a vessel segment, 

one might anticipate that the sensitivity will not be great. In fact, the robustness with regard to individual length 

variations may be one of the reasons that evolutionary forces have not done more to narrow the wide variation 

in segment length-to-diameter ratio in the pulmonary vascular bed (35), or in other vascular beds (35, 41). With 

the approach taken, cumulative distance along a pathway, which is insensitive to the definition of the length of 

an individual segment, is given primacy. 

The functional forms fit to the data in the present study were chosen because they represent major trends in 

the data with a minimum number of parameters, the forms are similar to those resulting from a previous 

symmetrical tree analysis (5), and the parameters have clear interpretations with respect to the shape of the 

principal pathway (Figs. 5 and 6). It remains to be seen whether this parameter vector has the flexibility to 

represent all of the systematic and important variations that might occur. However, it might be considered a 

nested version of a higher dimensional model that might need to be constructed to include such variations. For 

example, the representation of the vascular distensibility by a single diameter-independent parameter may 

need adjustment if the diameter-dependent remodeling of the vessel walls, which has been reported in rats 

exposed to various stimuli (22, 26, 28), also results in diameter-dependent distensiblity. It may be surprising that 

the distensibility can be represented by a single parameter even in the normal rat. This uniformity has been 

observed previously for the rat (21) and other species (1), and it can be appreciated by observing the 

proportionate changes in the diameters of the trunk and branches along the trunk length in Fig. 7 as well as in 

the surface fit in Fig. 8. 

Although the rat was used in the present study, it seems likely that other mammalian species will have self-

consistent pulmonary arterial trees. The morphometric analysis of Liu et al. (24) on the portions of the dog 

pulmonary arterial tree having dimensions accessible in whole animal CT scans would appear to support that 

contention. Likewise, insofar as the arterial tree follows the airway structure, airway self-consistency (9, 15) 

would predict arterial self-consistency. When the entire pulmonary arterial tree is in the field of view, species 

differences in gross structure are generally discernible (6). One of the distinguishing features at the whole tree 

level of observation is the degree to which the structure is dominated by a branching pattern wherein the two 

daughter branches at a bifurcation are more nearly equal in diameter [dichotomous (4, 14)] or a pattern 

wherein one of the two daughters tends to be much smaller than the parent [monopodial (4, 14)]. These are 

sometimes referred to as maple tree versus pine tree-like structures, respectively. The latter has a more obvious 

main trunk than the former. Application of the principal pathway analysis does not imply a predominantly 

monopodial branching pattern. Such a pattern may make it easier to decide which pathway to follow at a 
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bifurcation. However, if two equal branches were ever encountered (an uncommon event even in the most 

dicotomously branching trees), according to the self-consistency concept, following either pathway would 

produce the same result. As a related point, gross differences between species that can be observed at low 

magnification tend to disappear at high magnification (6). This is probably related to the fact that the functional 

respiratory units also tend to have similar species-independent structures and the fact that the arteries 

eventually have to hook up to the capillaries that are essentially all one size. Self-consistency, as we have used 

the term, implies that, having traversed the longest pathway through the tree, the structure downstream of any 

vessel of a given diameter is known. Thus, using local diameter as the landmark, self-consistency requires a 

continuous taper along each pathway (i.e., that the daughter branches at a bifurcation are smaller than the 

parent). This self-consistency does not extend into the capillary bed because local capillary diameter provides no 

information about how much of the capillary bed lies downstream from that location. This self-consistency does 

not require the scale independence of a fractal structure, but it does imply that, as one progresses through the 

tree, the local diameter specifies (in a statistical sense) the downstream structure. A self-consistent tree 

structure has attributes of a fractal in entreating simplified mathematical representation of the complex 

structure. Whereas a fractal tree can be self-consistent, self-consistency does not require scale independence. 

However, the transformation imposed by certain ordering schemes can reveal fractal relationships in the 

transformation space that are not necessarily evident in the direct appearance of the structure (6, 18, 41). 

In conclusion, the results demonstrate self-consistency in the rat pulmonary arterial tree. An approach for 

exploiting this property is presented. The approach may be one way that high spatial resolution volumetric X-ray 

CT can contribute to the information required for understanding normal pulmonary arterial structure-function 

relationships and how these relationships are affected by pulmonary vascular remodeling associated with 

pulmonary vascular development, adaptations to environmental stress, or disease. 
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