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Abstract: It has been assumed that the fiber-reinforced polymer/concrete 

interface is subjected to in-plane shear condition when intermediate crack 

debonding failure occurs. Therefore, the single shear pull-out test results are 

often used to predict the intermediate crack debonding failure in beams. In 

this study, the behavior of fiber-reinforced polymer-strengthened concrete 

beams and single shear pull-out specimens were studied experimentally and 

numerically. The bond–slip behavior of the fiber-reinforced polymer/concrete 

interface was obtained by single shear pull-out and beam tests. In all beam 

specimens, a concrete wedge located at the edge of the notch detached with 

the fiber-reinforced polymer debonding failure. This phenomenon shows that 

the initiation of debonding is due to a diagonal crack formation close to the 

major flexural/shear crack inside the concrete. The diagonal crack formation 

is due to a local moment at the tip of the notch. This causes the different 

stress state and slip of the fiber-reinforced polymer/concrete interface of 

beam specimens from that of the pull-out specimens. It is found that the 

bond–slip relation obtained from the pull-out test does not represent the 

bond–slip relation of the fiber-reinforced polymer/concrete interface in the 

fiber-reinforced polymer-strengthened concrete beams, and it cannot be 

directly used for predicting the load capacity of the fiber-reinforced polymer-

strengthened concrete beams. 

Keywords Fiber-reinforced polymer/concrete interface, bond, intermediate 

crack debonding, pull-out test, fracture energy, finite element 

Introduction 

In civil infrastructure applications, fiber-reinforced polymer 

(FRP) composite materials have been mainly used for repair or retrofit 

of concrete structures. When used for these purposes, FRP is usually 

bonded to the exterior surface or mounted inside the cover concrete of 

the repaired member. In this type of application, debonding along the 

FRP/concrete interface is a principal failure limit state. 

When a concrete beam is strengthened with bonded FRP 

composite materials, FRP debonding along the FRP/concrete interface 

can be categorized into two main failure modes1 as shown in Figure 1. 

The first failure mode is plate-end (PE) debonding (Figure 1(a)) which 

initiates at the ends of the FRP plate and propagates in the direction of 

increasing moment. Many studies have been carried out to investigate 

and predict this type of debonding failure mode.2–4 End wrapping and 

mechanical anchorage have been found to be efficient methods of 

mitigating the PE debonding failure in FRP repaired or retrofitted 

concrete beams.5 The second failure mode is the intermediate crack 

induced debonding (IC debonding) which initiates at a flexural/shear 
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crack (intermediate crack) in the concrete within the shear span and 

propagates toward the plate end in the direction of decreasing moment 

as shown schematically in Figure 1b. This type of FRP debonding 

failure, unlike PE debonding, is difficult to prevent. Therefore, it must 

be explicitly taken into consideration in the design process and 

addressed as a limit state.  

 
Figure 1. FRP debonding failure: (a) PE debonding and (b) IC debonding. 

There are no universally accepted standards for determining 

bond capacity between FRP and concrete. Normally, the bond between 

FRP and concrete is tested by applying shear stress to the 

FRP/concrete interface of a FRP bonded concrete specimen. According 

to Chen and Teng6 and Chen et al.,7 general test methods include 

double shear pull-out tests,8–11 single shear pull-out tests,12–16 and 

beam tests.17–19 These test methods are presented in Figure 2(a) 

through (c), respectively. There are a number of variations in the 

beam tests as summarized by Harries et al.20 Besides of the test 

methods applying shear stresses, normal stresses,21–23 and mixed 

normal and shear stresses24,25 are also applied to the FRP/concrete 

interface to evaluate the bond capacity between FRP and concrete.  
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Figure 2. FRP/concrete bond test methods: (a) double pull-out test, (b) single pull-
out test, and (c) beam test. 

In the single shear pull-out test, an in-plane shear stress is 

applied to the FRP/concrete interface by applying a uniaxial tension 

load in the plane of the FRP, in the strong or longitudinal direction of 

the FRP fiber orientation. The tensile strain gradient in the FRP 

(representing the shear strain along the interface) is recorded and 

used to determine the bond–slip relation. A typical bond–slip curve is 

shown in Figure 3. The area under the bond–slip curve is defined as 

the mode II fracture energy, 𝐺fII, which is a property of the FRP-

concrete system. Such a relationship is often used for nonlinear 

fracture mechanics or cohesive crack models in numerical analyses to 

predict FRP debonding from a concrete substrate. The single-shear 

pull-out test is also used to test the bond behavior between other 

types of innovative composites, such as steel stranded wire mesh and 

polymer mortar (SMPM) and concrete.26 
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Figure 3. Typical bond–slip curve of a FRP/concrete interface. 

It has been concluded from the available literature that using 

the results of single-shear pull-out test for the calculation of bond–slip 

relationship of the FRP/concrete interface results in large irregular 

differences among the bond–slip curves along the bonded length.27,28 

This large scatter of the bond–slip behavior may be due to local FRP 

composites defects in the application of strengthening systems in-situ 

such as wrinkles and scratches,29,30 and/or possible heterogeneity of 

the concrete substrate. Mohammadi et al.31 showed a significant 

variation in the interface stiffness using the statistical Brownian motion 

in a stochastic method that may cause the variation in the 

FRP/concrete interface behavior. 

Typically, it is assumed that the FRP/concrete interface in IC 

debonding is subjected to a pure Mode II loading (in-plane shear) 

condition. Therefore, the single shear pull-out test results are 

commonly used to predict the IC debonding failure in beams. However, 

there is no systematic study to validate if the shear test results can be 

directly used to predict the debonding failure of FRP-strengthened 

concrete beams. D’Antino and Pellegrino32 assessed twenty analytical 

models for the evaluation of the FRP–concrete bond strength found in 
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literature, which are mainly calibrated with single and double shear 

tests. It is found that those models are very inaccurate to predict the 

bond strength for full-scale bending tests. In this study, the behavior 

of FRP-strengthened concrete beams and comparable single shear 

pull-out specimens were studied experimentally and numerically to 

verify the application of the single shear pull-out test results in 

strengthened beam design. In order to achieve this objective, the 

single shear pull-out test was conducted to experimentally establish 

the bond–slip relationship of the FRP/concrete interface. 

Corresponding beam specimens were tested to investigate the FRP 

debonding behavior in the FRP bonded concrete beams. The 

experimental results were then used to validate finite element (FE) 

models of the specimens. The FRP/concrete interface stresses in both 

types of tests, which were found in the FE models, were compared to 

determine whether the single shear pull-out test results could be used 

directly to predict the IC debonding failure in FRP-strengthened 

concrete beams. 

Experimental Methods 

Five single shear pull-out specimens (CS1-CS5) and six beam 

specimens (CMC0-1 to CMC0-6) were tested in the experimental 

program. Since the main purpose of carrying out the pull-out test in 

this study was to compare the bond–slip behavior of the pull-out 

specimens to the bond–slip behavior of the FRP-strengthened beam 

specimens, the pull-out specimens were made to represent one half of 

the beam specimens both in terms of dimensions and boundary 

conditions. The beam test specimens and the pull-out specimens are 

shown schematically in Figure 4. As shown in the figure, the length of 

the concrete block and the FRP plate of the pull-out specimen 

represent one half of the beam specimen. The cross section of the 

concrete substrate and FRP width were also same in both specimens. 

In the beam specimens, a half-depth saw-cut notch was located at 

mid-span to simulate a pre-existing flexural crack. A recent study33 

shows that the boundary condition of the concrete block has a 

significant effect on the bond–slip behavior in single shear pull-out 

tests. To mimic the same boundary conditions of beam specimens in 

the pull-out specimens, the concrete block was positioned on a rigid 

frame with two steel reaction elements as shown in Figure 4(b). 
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Element A in Figure 4(b) provides the horizontal reactions to simulate 

the un-cracked part of the beam at the top of the notch, and element 

B provides the vertical reactions to simulate the support forces in the 

beam specimens. A 25-mm horizontal precrack (unbonded FRP length) 

between FRP and concrete was provided in the single shear pull-out 

specimens and only at one side of the notch in the beam specimens. 

The bonding length of FRP plate was 406 mm, which is larger than the 

effective length (192 mm calculated by using the method 

recommended by FIB34).  

 
Figure 4. Experimental specimens: (a) beam specimens and (b) single shear pull-out 
specimens. 

Material Properties 

Although placed at different times, the concrete mix design was 

intended to be the same for both beam and single shear pull-out 

specimens. The 28-day compressive strength of the beams and pull-

out specimens were 30.4 and 32.9 MPa, respectively. The tensile 

strength of the beam specimens was determined from split cylinder 
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tests to be 3.2 MPa (a comparable test was not conducted on the 

concrete for the pull-out specimens). Both specimens used a 

51 mm × 1.5 mm preformed CFRP laminate strip having manufacturer-

reported tensile modulus, ultimate tensile strength, and longitudinal 

Poisson’s ratio of 155 GPa, 2800 MPa, and 0.25, respectively. The ∼1-

mm thick epoxy adhesive used for the beam specimens had 

manufacturer-reported tensile modulus, ultimate tensile strength, and 

Poisson’s ratio of 4.48 GPa, 24.8 MPa, and 0.3, respectively. The ∼1-mm 

thick epoxy adhesive used for the pull-out specimens had 

manufacturer-reported tensile modulus, ultimate tensile strength, and 

Poisson’s ratio of 1.2 GPa, 22.7 MPa, and 0.3, respectively. 

Beam Test 

Six beam specimens (CMC0-1 to CMC0-6) were tested to study 

the behavior of IC debonding failure when the major flexural/shear 

crack is at mid-span of the beam. The tests were conducted under 

displacement control. During the beam test, flexural load, axial strains 

in the FRP plate at different locations, and vertical deflection at the top 

of the notch were recorded. FRP axial strains were measured using 

electrical resistance strain gauges on the FRP surface. The first strain 

gauge was applied at the FRP plate surface at the location of the 

precrack tip and additional strain gauges were attached to the FRP 

plate surface along its centerline at intervals of 25 mm. An external 

LVDT bracket was affixed to the beam at its mid-depth in order to 

measure the vertical deformation at the top of the notch correcting for 

any support settlement.35 

The IC debonding failure processes were the same in all beam 

specimens and included:  

1. Flexural cracking initiated at the top of the notch (Figure 5(a)). 

2. A diagonal flexural/shear crack started close to the notch, about 

25 mm from the notch (Figure 5(b)) at one or other side of the 

notch, or occasionally both sides. 

3. FRP debonding along the FRP/concrete interface initiated at the 

tip of the diagonal crack and propagated toward the support 

(Figure 5(c)). 
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4. Sudden, essentially instantaneous failure steps included: the 

diagonal crack merging with the notch, the crack at the top of 

the notch propagating to the loading point, and FRP debonding 

continuing to the end of the FRP plate (Figure 5(d)). 

 
Figure 5. IC debonding failure processes of beam CMC0-5. 

In all specimens, there was a wedge of concrete attached to the 

FRP plate (Figure 5(d)) that shows diagonal cracking inside the 

concrete. In all cases, the debonding cracking did not start at the tip of 

the precrack. Instead, it started at the tip of the diagonal crack to 

either side of the notch. Therefore, the applied precrack did not work 

as the initiation point of the FRP debonding and it did not control to 

which side of the notch FRP debonding would occur. 

Single Shear Pull-Out Test 

Five specimens were used for the single shear pull-out test 

(CS1-CS5). During the test, the applied load, FRP axial strain and the 

slip between FRP and concrete at the tip of precrack were recorded. 

The FRP strains were measured using electrical resistance strain 

gauges attached to the FRP plate surface along its centerline at 

intervals of 25 mm. A digital dial gauge was used to measure the 
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relative slip between the concrete and FRP at the precrack tip as 

shown in Figure 6.  

 
Figure 6. Application of digital dial gauge to obtain the relative slip at the precrack 
tip. 

Figure 7 shows the FRP debonding failure in specimen CS5, 

which is typical for the single-shear pull-out tests. The debonding 

initiated at the tip of the precrack and propagated along the FRP plate 

to the end of the specimen. The failure plane was in the concrete a few 

millimeters (1–2 mm) away from the FRP/concrete interface.  
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Figure 7. FRP debonding failure of pull-out specimen CS5. 

Experimental Bond–Slip Relationship 

In order to obtain the local bond stress–slip relationships of 

FRP/concrete interfaces from the conducted tests, the measured FRP 

axial strain data were applied in the following equations27: 𝜏𝑖 =
𝑡𝑓𝐸𝑓

𝛥𝑥
(ɛ𝑖 − ɛ𝑖−1) 

𝛿𝑖 =
𝛥𝑥

2
(ɛ0 + 2∑ɛ𝑗 + ɛ𝑖

𝑖−1

𝑗=1

) 

 

where τi is the average interfacial bond stress in the increment i 

having length Δx between strain gage data ɛi and ɛi−1 representing the 

ith and (i−1) th gauges arranged along the FRP plate; Ef and tf are the 

elastic modulus and thickness of the FRP plate, respectively; δi is the 

local slip between the FRP plate and concrete at the section i; ɛ0 is the 

strain in the FRP plate at the free end of bonded area; and ɛj is the 

strain value of the jth gauge. Figure 8 shows a representative bond–

slip curve of the beam test (specimen CMC0-6) and the single shear 

pull-out test (specimen CS5) for comparison.  
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Figure 8. Bond–slip curves of beam specimen CMC0-6 and single shear pull-out 
specimen CS5. 

The maximum bond stress, τmax, was calculated by using equations (1) 

and (2) and the experimentally obtained FRP strain values. The critical 

interfacial fracture energy, Gf, was obtained from the area under the 

bond–slip curve. The obtained values of maximum bond stresses and 

interfacial fracture energies for beam and single shear pull-out 

specimens are reported in Table 1. The average of the maximum bond 

strength of the six beam specimens was τmax=3.23MPa with standard 

deviation STD=0.27MPa, and the average of the interfacial fracture 

energy was Gf=0.65N/mm with STD=0.14N/mm. The average bond 

strength and fracture energy values of the five single shear pull-out 

tests were τmax=3.65MPa with STD=0.34MPa and Gf=1.41N/mm with 

STD=0.24N/mm, respectively. It can be seen that both bond strength 

and fracture energy are smaller in the beam specimens. In order to 

find an explanation for the smaller values of the bond–slip behavior of 

the FRP/concrete interface in beam specimens, the stress state of the 

interface in both test arrangements needed to be analyzed and 

compared. Numerical analyses were performed for this purpose as 

discussed in the following section.  

 
Table 1. Experimental values of τmax 
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Table 1. Experimental values of τmax and Gf obtained from beam test 

and single shear pull-out test. 

 

Finite Element Method 

The commercial software ABAQUS/standard 6.13 was used for 

the FE analysis. The plane stress 4-node bilinear 2D elements (CPS4R) 

were applied for the modelling of all materials. Figure 9 shows the 

typical FE meshes of the beam and the single shear pull-out 

specimens.  

 
Figure 9. Typical finite element mesh: (a) beam specimen and (b) pull-out specimen. 

It was observed in the experimental program that FRP 

debonding in both specimen types occurred in concrete cover a few 

millimeters away from the FRP/concrete interface and was essentially 

parallel to the interface. This phenomenon results from at least two 

factors: first, the penetration of adhesive into the (usually ground or 

otherwise abraded) cover concrete increases the toughness and 
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strength of a thin layer of mortar adjacent to the interface and 

provides significant mechanical beyond in this region.36 Secondly, the 

concrete substrate is the weakest component in the 

FRP/epoxy/concrete interface with a relatively small tensile strength. 

Based on this experimental observation, a thin damage band of 2 mm 

thicknesses was modeled along the interface as shown in Figure 9. 

Although a 25-mm long precrack was made in one side of the notch in 

the beam specimens, the debonding did not start from the precrack 

tip, but from the diagonal crack tips at either sides of the notch as 

discussed previously in the experimental program. Therefore, the 

applied precrack did not work as the initiation point of the FRP 

debonding and it did not control to which side of the notch FRP 

debonding would occur. In the finite element analysis, in order to 

capture the diagonal cracking, the damage band was included along 

the whole FRP length for the beam specimens as shown in Figure 9(a). 

To model the FRP/concrete interface, the cohesive zone method 

was applied. This method models the debonding behavior using the 

bond–slip curve of the interface. In this study, the constitutive 

response of the damage band was defined by a bilinear bond–slip 

relationship as shown in Figure 10. According to this figure, the stress–

slip curve was assumed linear up to the bond strength and debonding 

was initiated. The postcracking behavior was presented by a 

descending linear damage law using the fracture energy value, Gf, that 

is equal to the area under the bond–slip curve. In the present 

numerical analysis, the fracture energy and bond strength were 

assumed equal to the experimentally obtained results presented in the 

previous section.  
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Figure 10. Bilinear bond–slip curve. 

For the modeling of concrete, the concrete damaged plasticity 

model was applied. This method uses the maximum principal stress 

criterion for prediction of tension cracking in concrete. It assumes that 

a crack initiates if the maximum principal tensile stress reaches the 

tensile strength of the concrete.37 The crack propagates in a direction 

perpendicular to the direction of the maximum principal tensile stress. 

The crack propagation criterion is the fracture energy of plain 

concrete, GF, taken as equal to 0.12 N/mm consistent with 

recommendations of Wittmann.38 FRP and epoxy were modeled using a 

brittle cracking model. The thicknesses of FRP plate and epoxy are 1.5 

and 1 mm, respectively. A summary of the material properties in the 

FE analysis is presented in Table 2.  

  

http://dx.doi.org/10.1177/0731684415623088
http://epublications.marquette.edu/
http://journals.sagepub.com/doi/10.1177/0731684415623088
http://journals.sagepub.com/doi/10.1177/0731684415623088
http://journals.sagepub.com/doi/10.1177/0731684415623088
http://journals.sagepub.com/doi/10.1177/0731684415623088


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Reinforced Plastics and Composites, Vol 35, No. 5 (March 2016): pg. 375-386. DOI. This article is © SAGE 
Publications and permission has been granted for this version to appear in e-Publications@Marquette. SAGE Publications 
does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express 
permission from SAGE Publications. 

16 

 

Table 2. Material properties applied in FE analysis. 

 
 

Numerical Results 

Figure 11 shows the FE-predicted FRP debonding failures. In the 

single shear pull-out test specimens (Figure 11(a)), the debonding 

started at the tip of precrack and propagated along the FRP/concrete 

interface to the end of the plate in a manner similar to the 

experimental observations (Figure 7). In the beam specimens shown 

in Figure 11(b), the applied method is able to predict the cracking at 

the top of the notch and also the diagonal crack about 25 mm from the 

notch. After the diagonal crack formation, the FRP debonding started 

at the tip of the diagonal cracks parallel to the interface. In the FE 

analysis, when the strain energy in the element at the top of the notch 

(Figure 11(b)) reached the critical fracture energy of concrete, this 

element was no longer able to transfer stress. At this stage, the 

behavior of concrete and the whole model became unstable. 

Therefore, the analysis was terminated and this stage was considered 

to be the final failure step of the FE analysis. Because of the symmetry 

of the FE model, the diagonal crack and partial FRP debonding were 

seen at both sides of the notch. The FE-predicted debonding processes 

of the beam specimens are in a very good agreement with the 

experimental observations (Figure 5(a)–(d)).  
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Figure 11. FRP debonding failure predicted by FE analysis: (a) single shear pull-out 
test and (b) beam test. 

Figure 12 compares the load vs displacement curves of the 

numerical and experimental results. Finite element method is able to 

predict the trend of behavior and also the maximum bearing load of 

the single shear pull-out test and the beam test with error of 2.2 and 

2.5%, respectively.  
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Figure 12. Load vs. displacement curves obtained by experimental tests and 
numerical analysis: (a) single shear pull-out specimens and (b) beam specimens. 

Discussion 

It can be seen in Figure 11(b) that the vertical displacement of 

FRP element below the notch (node A) is less than the displacement of 

the element at the tip of diagonal crack (node B). Figure 13 presents 

the vertical displacement of node B relative to that of node A indicating 

that node B deflects a greater amount and shows that this relative 

deflection is proportional to the applied load. This deflection behavior 

is due to a local moment created by the tension force in the FRP plate 

by the vertical downward displacement of the concrete, and causes a 

different stress state at the FRP/concrete interface in the beam 

specimens from that in the single shear pull-out specimens. Figure 14 
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shows the numerically obtained stress state of an element at the 

FRP/concrete interface in the beam and the single shear pull-out 

specimens. In the beam specimens, the concrete element attached to 

the FRP/concrete interface is under shear stress, τ, and longitudinal 

tension stress, σx>0. The magnitude of longitudinal tension stress is 

larger than shear stress, σx>τ. In the single shear pull-out specimens, 

the concrete element at the tip of the precrack is under shear stress, 

τ, and longitudinal compression stress, σx<0 , while the absolute value 

of σx is smaller than shear stress, |σx|<|τ|. 

 
Figure 13. Relative vertical displacement of node B to node A. 
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Figure 14. Comparison of the stress states at the FRP/concrete interface between 

beam and single shear pull-out beam specimens. 

Since the FRP debonding failure occurs in the concrete close to 

the FRP/concrete interface, it is reasonable to express the bond 

strength as a function of concrete strength. Thus, when the maximum 

principle tension stress in the element at the tip of precrack reaches 

the concrete tensile strength, ft, a crack initiates in the element. Based 

on this assumption and assuming that σy is negligible; the crack 

initiation criterion can be defined as 

𝑓𝑡 =
𝜎𝑥,max

2
+ √(

𝜎𝑥,max

2
)2 + 𝜏max

2  

Therefore, the bond strength, τmax, as a function of concrete tensile 

strength and the maximum normal stress component in the element 

can be expressed as:  

𝜏max = √(𝑓𝑡 −
𝜎𝑥,max

2
)2 − (

𝜎𝑥,max

2
)2 

Equation (4) shows that the bond strength is greater in the presence 

of compression stress (σx<0; i.e., the pull-out test) than in the 
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presence of tensile stress (σx>0; i.e., the beam test). Therefore, the 

bond strength determined from the FRP-strengthened beams is less 

than the bond strength determined from the single shear pull-out 

specimens, and the single shear pull-out test result does not represent 

the bond strength of the FRP/concrete interface in the FRP-

strengthened concrete beams. 

By comparing the experimental bond–slip curves (Figure 8), it 

can be seen that the slips at the tip of the diagonal crack close to the 

notch (i.e., the mid-span flexural/shear crack) in the beams are 

smaller than the slips of the FRP plate at the tip of the precrack in the 

pull-out specimens. The slip is largely affected by the modulus of the 

adhesive layer which is smaller by a factor of 3.7 in the single shear 

pull-out specimens (Table 2). Therefore, the slip of the shear 

specimens is greater than that of the beams specimens. Since the 

bond strength of the beam specimens is also smaller than that of the 

pull-out specimens, the interfacial fracture energy of the bond (the 

area under the bond–slip curve) in the beams is less than that in the 

pull-out specimens. However, the FE analyses show that the fracture 

energy value of the bond–slip relationship does not control the final 

failure of the beam specimens. As explained in the section of finite 

element analysis, the final failure of the beam occurs when the 

fracture energy in the element at the top of the notch (Figure 11(b)) 

meets the critical fracture energy of the plain concrete. Therefore, the 

plain concrete fracture energy, which is considerable less than the 

FRP/concrete interfacial fracture energy, plays the key role for the 

beam failure. 

Conclusions 

In the present study, the bond–slip relationship of the 

FRP/concrete interface was obtained separately by beam and single 

shear pull-out tests for the comparison. In the beam specimens, a 

concrete wedge attached to the FRP after debonding failure was 

observed in all cases. This phenomenon indicates that the initiation of 

FRP debonding was due to a diagonal crack formation close to the 

major flexural/shear crack inside the concrete. 
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FE analysis was performed for the FRP-strengthened concrete 

beams and the single shear pull-out test specimens by using the 

bond–slip relations obtained from the experimental tests. The applied 

numerical method is able to predict the load vs. deflection relations 

and the debonding processes, which are compatible with the 

experimental observations. According to the numerical analyses, the 

diagonal crack in concrete beam is due to a local moment at the tip of 

the notch. 

The local moment at the tip of the notch causes the different 

stress state at the FRP/concrete interface and different behavior of 

beam specimens from those of the single shear pull-out specimens. 

Experimental observations and numerical analyses show that the bond 

strength and critical fracture energy in the beam specimens are 

smaller than those in the single shear pull-out specimens even when 

the same boundary conditions are used. Therefore, the single shear 

pull-out test results cannot be directly used for the analysis of IC 

debonding failure in the FRP strengthened concrete beams. The beam 

test presented in this study can better represent the in situ conditions 

of the FRP-strengthened concrete beams and a standard beam test 

method should be developed in order to provide more reliable design 

parameters to designers. 
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