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Abstract 
Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), 

and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and 

gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and 

imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high 

ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the 

level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By 

contrast, G46B had the lowest ABA content during seed development though at early developmental stage its 

ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the 

same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed 

development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development 

time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA 

metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been 

induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed 

imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water 

uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed 

embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of 

the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-

imposed dormancy. 
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Introduction 
By definition, seed dormancy is the inability of a viable seed to germinate under favorable conditions (Finch-

Savage and Leubner-Metzger, 2006) and determined by genetic factors with a substantial environmental 

influence (Bewley, 1997, Graeber et al., 2012). In spite of numerous factors affecting dormancy, the 



phytohormones, abscisic acid (ABA) and gibberellins (GAs), remain of great interest (Kermode, 2005, Kucera 

et al., 2005, Gianinetti and Vernieri, 2007). 

In Arabidopsis seed development, there exist two ABA accumulation phases. The first major peak occurred in 

the middle phase of seed development, which was mainly derived from maternal tissues while the second minor 

peak occurring later was the result of de novo ABA biosynthesis in the embryo (Karssen et al., 1983, Finkelstein 

et al., 2002, Xiong and Zhu, 2003). Kanno et al. (2010) demonstrated that ABA was synthesized in both maternal 

and zygotic tissues during seed development, and maternal ABA can be translocated to the embryos and induce 

seed dormancy. ABA content was appreciably high in developing cereal grains, such as wheat (Triticum 

araraticum) and barley (Hordeum vulgare), and substantially declined as the grains underwent maturation 

and desiccation (Benech-Arnold et al., 1999, Jacobsen et al., 2002). Furthermore, ABA deficient mutants in maize 

(Zea mays), Arabidopsis and tomato (Solanum lycopersicum) lost their dormancy and resulted in precocious seed 

germination (Groot and Karssen, 1992, Mccarty, 1995, Koornneef et al., 2002). On the contrary, overexpression 

of ABA biosynthesis genes increased seed ABA content, deepened seed dormancy and delayed germination 

(Finkelstein et al., 2002, Nambara and Marion-Poll, 2005, Holdsworth et al., 2008). 

However, mounting evidence also revealed no direct correlation between ABA content and seed dormancy 

(Black, 1991). For example, dormancy intensity in tomato was inconsistent with its ABA content (Hilhorst, 

1995, Bewley et al., 2012), Arabidopsis mutants, rdo1 and rdo2, lacked dormancy but possessed normal level of 

ABA (Léon-Kloosterziel et al., 1996), and application of ABA could recover all traits of Arabidopsis ABA deficient 

mutant, aba, except seed dormancy (Koornneef et al., 1989). Generally, ABA effect is dependent on the seed 

sensitivity to ABA, which is related to the balance between ABA biosynthesis and catabolism (Ni and Bradford, 

1992, LePage-Degivry et al., 1996, Schmitz et al., 2002, Feurtado et al., 2007). ABA content can be correlated 

with seed dormancy variation under the condition of similar seed sensitivity to ABA among different dormancy 

phenotypes (Hilhorst, 1995, De Castro and Hilhorst, 2000) and sensitivity thresholds are also crutial for such a 

correlation (Bradford and Trewavas, 1994). ABA biosynthesis, turnover, and sensitivity are therefore most likely 

modulated during seed dormancy (Kermode, 2005, Gianinetti and Vernieri, 2007). 

Moreover, the absence of such a correlation can be explained by a proposed role of ABA in seed dormancy, that 

is, ABA indirectly acts in the physiological modulation/maintenance of seed dormancy (Gianinetti and Vernieri, 

2007) and is in concert with other endogenous components (Kermode, 2005, Kucera et al., 2005, Hauser et al., 

2011). Another important phytohormone, GA, has an antagonistic role in controlling dormancy and germination 

(Finch-Savage and Leubner-Metzger, 2006, Finkelstein et al., 2008, Nambara et al., 2010). Changes in the 

ABA/GA balance are involved in the expression of dormancy in many species including Arabidopsis and many 

cereal crops (Kucera et al., 2005, Finch-Savage and Leubner-Metzger, 2006, Fang et al., 2008, Finkelstein et al., 

2008). In particular, a high ABA/GA ratio in early seed development programming is critical for the germination 

suppression and maturation induction (Koornneef et al., 1982, White et al., 2000). 

Seed dormancy in rice (Oryza sativa L.) has been undertaken to improve breeding program in pursuit of a 

balance between adequate control of pre-harvest sprouting and ensuring high rate of germination for deep 

dormant cultivars (Gao et al., 2008, Xie et al., 2011). Currently, the main approach to understand the underlying 

mechanism of rice seed dormancy depends on quantitative trait loci (QTL) analysis, which genetically dissects 

embryo- (Takeuchi et al., 2003, Gu et al., 2010, Sugimoto et al., 2010) and seed coat-imposed dormancy (Gu 

et al., 2003, Gu et al., 2005). It is found that the seed coat-imposed dormancy, associated with pericarp color in 

the lower epidermal cells, is controlled by a pleiotropic gene that regulates ABA and flavonoid synthesis in early 

seed development (Gu et al., 2011). Besides organic compounds, the importance of seed coat impermeability to 

water and/or oxygen is underscored in the study of seed dormancy as well (Kelly et al., 1992, Debeaujon et al., 

2000). 



To better understand the underlying mechanism of rice seed dormancy variation, we carried out a large-scale 

screening using rice germplasms and three rice cultivars representing three different degrees of seed dormancy 

were selected. We performed a comprehensive analysis of ABA and GA metabolism gene expression profiles and 

corresponding hormone amounts during seed development and imbibition processes and proposed that 

ABA/GA ratio before late seed development (i.e., during early and middle seed development) and the flavan 

compounds in the husk are two major aspects responsible for the dormancy variation in rice. 

Results 

Selection of rice cultivars representing different levels of seed dormancy 
To select rice cultivars representing different levels of dormancy under normal field conditions, approximately 

300 rice cultivars were repetitively screened in Beijing, Lingshui (Hainan Province), and Hangzhou (Zhejiang 

Province), China. Dormancy levels were evaluated by germination percentage following the method described 

by Wan et al. (1997). Using germination test results (Fig. S1), we selected three representative cultivars for 

further investigation: non-dormant G46B and deep dormant N22, which displayed >80% and <2% germination 

after seven days' imbibition, respectively, and the cultivar ZH11, whose dormancy was regarded as medium 

(50%–80% germination after seven days' imbibition). 

Sensitivity to exogenous ABA and GA of the three cultivars is well correlated with seed 

dormancy 
To determine the sensitivity of three rice cultivars to exogenous ABA, dehusked seeds of non-dormant G46B, 

medium dormant ZH11, and deep dormant N22 were incubated in water, 5 and 10 μmol/L ABA, and the 

germination percentage and plumule length were respectively measured on moistened filter paper on the 7th 

day after imbibition (Fig. 1A). The three cultivars had the same germination percentage without addition of ABA 

(Fig. 1B). By contrast, the germination rate was significantly lower for N22 (55.21%) than for G46B (91.23%) 

and ZH11 (84.76%) at the presence of 5 μmol/L ABA. In incubation with 10 μmol/L ABA, the germination rate 

of G46B and ZH11 was 87.41% and 65.74%, respectively, which was significantly higher than 33.11% 

for N22 (Fig. 1B). Moreover, the plumule length measurement after seven days of imbibition in ddH2O showed 

that the average plumule length of G46B (4.31 ± 0.12 cm) was significantly longer than those of the other two 

cultivars (3.42 ± 0.32 cm for ZH11 and 3.12 ± 0.41 cm for N22; P < 0.01) (Fig. 1C). The average plumule length 

exhibited significant difference after incubation with 5 μmol/L ABA (1.32 ± 0.12 cm for G46B, 0.27 ± 0.07 cm 

for ZH11, and 0.06 ± 0.05 cm for N22; P < 0.01), while 10 μmol/L ABA considerably inhibited seed germination of 

the three cultivars and resulted in the lowest overall average plumule length in all three treatments 

(0.32 ± 0.03 cm for G46B, 0.03 ± 0.04 cm for ZH11, and 0.00 ± 0.09 cm for N22; P < 0.01) (Fig. 1C). These results 

indicated that the sensitivity of G46B to exogenous ABA was weaker than that of ZH11 and N22, and the 

rice seed dormancy were correlated with ABA sensitivity. 



 
Fig. 1. ABA sensitivity of rice cultivars G46B, ZH11, and N22 (non-thermally treated). 

A: Germination of dehusked rice seeds in response to exogenous ABA after seven days of imbibition (compared 

to H2O control). Scale bar, 1 cm. B: Germination rate for seeds incubated at 0, 5, and 10 μmol/L ABA after seven 

days of imbibition. C: Measurement of plumule length seven days after the imbibition. Error bars represent 

standard errors. 

The α-amylase activity reflects the ability of endosperm starch degradation and thus indicates the state of seed 

dormancy (Yamaguchi, 1998). It was found that the difference of α-amylase activity between cultivars were 

proportional to their difference in embryo response to ABA (Benech-Arnold et al., 1999). The relative α-amylase 

activity in 10−7 mol/L GA3 for G46B was nearly 9 times higher than that in water (Fig. 2). For ZH11, there was also 

a significant difference with or without 10−7 mol/L GA3. However, α-amylase activity for N22 did not have 

appreciable change with or without exogenous GA3. These results suggested that aleuronic layer of N22 was less 

sensitive to GA compared to that of the other two cultivars. Taken together, the rice dormancy variation was 

associated with their sensitivity to exogenous ABA and GA. 

 
Fig. 2. GA3 induction of α-amylase activity. 

Embryoless half seeds (non-thermally treated) were incubated for 60 h at 25 °C in culture medium with and 

without 10−7 mol/L GA3. Values are the means ± SE (n = 5, biological replicates) and error bars represent 

standard errors. For significance an ANOVA test was performed. Asterisks indicate means that are significantly 

different (P < 0.01). 

Expression of ABA and GA metabolism genes during seed development 
Differences in seed dormancy can be attributable to differential expression of key hormone metabolism genes. 

We therefore assayed the expression of genes related to ABA and 

GA biosynthesis and catabolism using qPCR during seed development (Fig. 3A), including before pollination (BP) 



to 10 days after pollination (DAP, early developmental stage), 10 to 20 DAP (middle developmental stage), and 

20 to 30 DAP (late developmental stage). 

 
Fig. 3. Gene expression profiling during seed development. 

A: Seed morphological changes (ZH11) during the seed development from “before pollination” (BP) to “at 

pollination” (AP) and 5 to 35 “days after pollination” (DAP); B–D: qPCR analysis of metabolic gene expression 

profile of ABA and GA during seed development in rice cultivars G46B, ZH11, and N22. Relative expression levels 

of ABA and GA metabolic genes before pollination” (BP), at pollination (AP), and from 5 to 30 days after 

pollination (DAP) were shown. B: Expression levels of five members of the 

ABA biosynthesis genes OsNCED. C: Expression levels of three members of the ABA catabolic 

genes OsABA8OH. D: Expression levels of two members of the GA biosynthesis genes OsGA20ox and two 

members of the GA catabolic genes OsGA2ox. Values are the means ± SE (n = 3, biological replicates), and error 

bars represent standard errors. 

The expression levels of genes involved in ABA synthesis and turnover were examined during seed development. 

The 9-cis-epoxycarotenoid dioxygenase (OsNCED) and ABA 8′-hydroxylase (OsABA8OH) genes are rate-limiting 

steps of ABA biosynthesis and catabolism, respectively (Fang et al., 2008), and five OsNCED paralogs and 

three OsABA8OH paralogs were found in rice, among which OsNCED2 and OsABA8OH2 were predominantly 

expressed during seed development while the expression levels of other paralogs were quite low (Fig. 3B and C). 

Interestingly, the peak of OsNCED transcripts occurred at different stages of seed development for the three rice 

cultivars: early stage for the non-dormant G46B, middle stage for the medium dormant ZH11, and late stage for 

the deep dormant N22 (Fig. 3B). In contrast, the peak of ABA8OH2 transcripts occurred at late, middle, and late 

stage for G46B, ZH11, and N22, respectively (Fig. 3C). This indicated that the G46B seeds had low ABA content 

throughout seed development, whereas N22 transcripts in ABA synthesis and turnover coincidently peaked at 

late developmental stage, suggest that the mature N22 seeds accumulated high ABA content during early and 

middle seed development, which could activate ABA catabolism gene expression at late stage. 

The GA20 oxidase (OsGA20ox) and GA2 oxidase (OsGA2ox) are genes in the committed steps of GA biosynthesis 

and catabolism, respectively (Sakamoto et al., 2004). Expression analysis revealed that the transcripts of 

biosynthesis gene OsGA20ox1 had two peaks occurring at the early and late stage of seed development, while 

the transcripts of the GA catabolism genes OsGA2ox5 and OsGA2ox6 peaked at early developing stage 



overlapping with the first OsGA20ox1 peak in terms of the peak time for G46B (Fig. 3D). This indicated 

that G46B accumulated active GAs at the late stage of seed development. For ZH11, the transcript levels of GA 

biosynthesis and catabolism genes peaked in the middle and late developmental stages simultaneously, 

suggesting that the balance expression of GA metabolism genes led to a lower level of active GAs 

for ZH11 than G46B (Fig. 3D). N22 had minor changes in GA metabolism gene transcripts, suggesting 

that N22 accumulated few amount of active GAs during seed development (Fig. 3D). 

ABA and GA levels during seed development 
To determine whether ABA and GA levels correlated with the expression profiles of their metabolism genes 

during seed development, we measured ABA and GA3 amounts over the time course of seed development by 

indirect competitive enzyme-linked immunosorbent assay (icELISA) and quantified ABA at early, middle and late 

developing stages by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Fig. 4). ABA accumulation 

occurred at the early stage of grain filling, and the ABA content of N22 peaked higher than that of the other two 

cultivars (Fig. 4A). The ABA icELISA results are well fitted with ABA quantification by LC/MS/MS (Fig. 4A and C). 

The ABA level of deep dormant cultivar N22 was high at early (258.67 pg/mg) and middle (275.85 pg/mg) stages, 

then abruptly declined (54.12 pg/mg) and remained low at late stage. In contrast, ABA amounts in G46B were 

low during seed development (<50 pg/mg). For ZH11, average ABA amounts remained around 85 pg/mg during 

seed development (Fig. 4C). Meanwhile, GA3 levels were high in early seed development for all three cultivars 

and the non-dormant, medium dormant and deep dormant cultivars exhibited high, medium, and low peak 

levels, respectively (Fig. 4B). Taken together, though high ABA or GA accumulation during the early and middle 

stages of seed development were not correlated with the expression of their corresponding hormone 

metabolism genes (Fig. 3), the levels of ABA and GA3 at early and middle development stages are well correlated 

with the dormancy phenotypes of the three cultivars. 



 
Fig. 4. ABA and GA levels during seed development in rice cultivars G46B, ZH11, and N22. 

A and B: Indirect competitive enzyme-linked immunosorbent quantification of phytohormone levels during seed 

development. BP, before pollination; AP, after pollination; DAP, days after pollination. C: Liquid 

chromatography-tandem mass spectrometry quantification of ABA. Data presented are mean values of nine 

biological repeats with SD. 

Expression of ABA and GA metabolism genes during seed imbibition 
We further analyzed the expression profiles of ABA and GA metabolism genes during seed imbibition (Fig. S2). 

The transcript levels of ABA metabolism genes in G46B did not significantly change during seed imbibition, while 

the levels of its GA biosynthesis gene OsGA20ox1 peaked at 36 h, indicating that active GAs were synthesized 

(Fig. 5A-a, d, g). For the deep dormant cultivar N22 treated thermally, expression of ABA catabolism genes kept 

a relatively high level before 36 h while OsNCED2 were highly expressed prior to 12 h and peaked again at its 

germination onset (48 h), however, levels of OsGA20ox1 peaked at 48 h and 24 h (Fig. 5A-c, f, i). This suggested 



that a complicated antagonism or regulation between ABA and GA existed during the imbibition of N22. 

For ZH11, expression levels of the ABA and GA metabolism genes changed little during seed imbibition, but had 

small peaks around the time of coleoptile emergence, suggesting that a milder antagonism between ABA and GA 

during the imbibition of ZH11 (Fig. 5A-b, e, h and Fig. S2). 

 
Fig. 5. Gene expression profiling and ABA and GA levels during seed imbibition. 

A: qPCR analysis of metabolic gene expression profiles of ABA and GA during imbibition in rice seeds of 

cultivars G46B, ZH11, and N22. Relative expression levels of ABA and GA metabolic genes from 0 to 72 h of 

imbibition were shown. a–c: Expression levels of five members of the ABA biosynthesis genes OsNCED. d–

f: Expression levels of three members of the ABA catabolic genes OsABA8OH. g–i: Expression levels of two 

members of the GA biosynthesis genes OsGA20ox and two members of the GA catabolic genes OsGA2ox. Values 

are the means ± SE (n = 3, biological replicates), and error bars represent standard errors. B: ABA and GA levels 

during imbibition in rice cultivars G46B, ZH11, and N22. Indirect competitive enzyme-linked immunosorbent 

quantification of phytohormone levels during 72 h of seed imbibition. Liquid chromatography-tandem mass 

spectrometry quantification of ABA during 30 h of seed imbibition. Data presented are mean values of nine 

biological repeats with SD. 

ABA and GA contents during seed imbibition 
To determine ABA and GA levels after the antagonism effect between ABA and GA during seed imbibition, we 

measured ABA and GA3 amounts at different time-points in a certain interval during 72 h imbibition. In general, 

ABA levels were lower during seed imbibition compared to seed development and declined as imbibition 

onward (Fig. 5B-a). A significant small peak of ABA biosynthesis was observed only for thermally 

treated N22 right before radicle protrusion (Fig. 5B-a and Fig. S2). From the late stage of seed development (35 

DAP) to 30 h of imbibition, ABA levels for ZH11 were almost as high as N22, and were the lowest 

for G46B (Fig. 5B-c), indicating that seed dormancy is not determined by the absolute ABA content of mature 

seeds. In contrast, two peaks of GA3 occurred before and after the germination onset at 36 h for G46B, and 

GA3 contents for ZH11 and N22 only slightly fluctuated (Fig. 5B-b), which coincided with germination phenotypes 

of these three rice cultivars (Fig. S2). In addition, the GA3 content for N22 was low and further decreased after 

its germination onset at 48 h, which correlated with our observation of its slow radicle elongation. 

Husk-imposed dormancy and de novo ABA biosynthesis during seed imbibition 
To assess the husk permeability during imbibition, the percent of water uptake during the first 36 h of imbibition 

was measured (Fig. S3). The results demonstrated that seeds of three cultivars underwent similarly sustainable 



water uptake in the first 8 h, suggesting that the husks of three rice cultivars had similar water uptake ability and 

thus husk permeability did not affect seed dormancy. However, after 8 h, water uptake quickly increased 

for G46B, ZH11 and thermally treated N22, while untreated N22 did not (Fig. S3). This indicated that after 8 h 

imbibition, most cultivars began to initiate a series of germination events, such as RNA and protein (enzyme) 

repair and synthesis, which needed to absorb more free water. N22 seeds with husk (untreated thermally) were 

incapable of germinating; however, when they were dehusked, germination percent could reach up to 90% after 

60 h of imbibition (Fig. 6C). It was likely that some inhibitory effects of flavonoids released and leached out from 

the husks, and the vanillin-staining assay agreed with the existence of the flavan compounds (Fig. S4) and these 

compounds were detected in wheat (Kato et al., 2003). In all, this correlation suggested that the existence of 

germination inhibitory compounds in the husk could also affect the dormancy variation. 

 
Fig. 6. Effect of the ABA biosynthesis inhibitor norflurazon on seed germination among G46B, ZH11, and N22. 

A–C: Norflurazon effect on dormant in intact/dehusked seeds. NTD, non-thermally treated. D: Norflurazon effect 

on thermally treated (TD), intact/dehusked N22 seeds. E: Validation of norflurazon treatment for ZH11 by 

comparing the effect under dark and light conditions. 

To evaluate the contribution of de novo ABA biosynthesis to seed dormancy during seed imbibition, seeds 

germinated in the presence of the bleaching herbicide norflurazon, which interferes with ABA biosynthesis due 

to a block in the pathway of carotenoid biosynthesis (Chamovitz et al., 1991). Norflurazon stimulated 

germination of intact and dehusked seeds of G46B, ZH11, and N22 without or with thermal treatment (Fig. 6A–

D). These results suggested that de novo ABA biosynthesis during seed imbibition accounted for germination 

retardation to a certain extent. However, norflurazon didn't stimulate the germination of intact N22 seeds 

without thermal treatment, but can stimulate the germination when seeds were dehusked (Fig. 6C), suggesting 

that not only ABA but also some compounds in N22 husks can attenuate or even prohibit seed emergence. In 

addition, seedlings exposed to light appeared yellowish, which was in agreement with the 

function of norflurazon, namely, capable of blocking carotenoid biosynthesis and 

thus affecting chlorophyll biosynthesis and photosynthetic activity (Fig. 6E). 

ABA/GA ratio during seed development and imbibition 
The dynamic changes of the ABA/GA ratio during seed development and imbibition showed that N22 had 

significantly higher ABA/GA ratio than G46B during the seed development while the ratio of ZH11 was in 



intermediate level (Fig. 7). Moreover, two ratio peaks occurred at middle and late stages of seed development 

for N22. For G46B, ABA/GA ratio remained low until 20 DAP and had an increase at late development stage. At 

harvest stage (30 DAP), N22 had the highest ratio, and surprisingly ZH11 had a lower ratio than G46B (Fig. 7). In 

addition, the ABA/GA ratio for both G46B and ZH11 during the imbibition was low and experienced a slight 

decrease while for thermally treated N22, after an initial decrease the ABA/GA ratio increased again before the 

germination onset (48 h) (Fig. 7). These results were consistent with the observation of de novo ABA 

biosynthesis of N22 during imbibition. In conclusion, N22 kept higher ABA/GA ratio during seed development 

and imbibition, which can be accountable for its deep dormancy phenotype. 

 
Fig. 7. ABA to GA ratios during seed development and imbibition in rice cultivars G46B, ZH11, and N22. 

Discussion 
By screening approximately 300 rice cultivars, three rice cultivars representing three different seed 

dormancy levels were selected. Using the selected rice cultivars, we investigated the underlying mechanism of 

seed dormancy by comparing different dormancy features: (1) differences in sensitivity of mature embryos to 

ABA are observed in rice cultivars (Fig. 1); (2) different dormancy intensity exhibits different capacity to 

produce α-amylase activity during imbibition (Fig. 2); (3) ABA/GA ratio before late seed development (i.e., early 

and middle seed development phases) determines embryo-imposed dormancy (Fig. 3, Fig. 4, Fig. 5, Fig. 7); (5) 

flavan compounds in husk determine husk-imposed dormancy (Fig. S4); and (6) de novo ABA biosynthesis during 

seed imbibition also accounts for seed dormancy variation (Fig. 6). 

In response to exogenous ABA and GA, three rice cultivars were in line with the rule regarding the relationship 

between seed dormancy and phytohormone responsiveness, that is, the seed dormancy level is positively 

correlated with its sensitivity to ABA and negatively correlated with its capacity to produce α-amylase with 

exogenous application of GA (Yamaguchi, 1998, Gianinetti and Vernieri, 2007). Thus, it is justifiable to correlate 

embryo-imposed dormancy with ABA and GAs in rice cultivars. 

To address how seed dormancy works with ABA and GA during seed development, we monitored all five 

rice OsNCEDs which are key regulators of ABA biosynthesis in developing seeds, and all three 

rice OsABA8OH which are rate-limiting factors for ABA inactivation (Fang et al., 2008). With aid of bio-chip data 

(http://ricexpro.dna.affrc.go.jp/GGEP/index.html) and semi-quantitative PCR results (data not shown), 

expression levels for two of the four rice key GA biosynthesis genes (OsGA20ox1 and OsGA20ox3) and two of the 

six rice key GA catabolism genes (OsGA2ox5 and OsGA2ox6) were used. Meanwhile, active phytohormones of 

ABA and GA were measured in the same time-points. Interestingly, high level of ABA (and GAs) content at early 

developmental stage seemed to be independent of the synthesis of their metabolism genes because high level 

of ABA occurring at the early stage of seed development (Fig. 4A and C) was not concomitant with transcript 



accumulation of ABA metabolism genes (Fig. 3B and C), which was inconsistent with some of previous studies 

(Huh et al., 2013). A similar inconsistency occurred for GA counterparts (Figs. 3D and 4B). These inconsistencies 

were presumably due to maternal effects (Finkelstein et al., 2002, Xiong and Zhu, 2003, Donohue, 2009). High 

levels of maternal ABA biosynthesis capacity passed down for seeds of N22 and ZH11, which became active thus 

leading to the high ABA amount during early seed development, and alternatively, the ABA is directly 

transported from maternally vegetative tissues to the embryos. It was also possible that active ABA molecules 

have three possible fates: remained functional, inactivated through hydroxylation, or degraded (Schroeder and 

Nambara, 2006). Therefore, seeds with high levels of ABA biosynthesis gene transcripts do not necessarily 

generate high levels of active ABA instantly, but release the stored ABA at a later stage. With regard to 

GA, G46B had highest GA content at early seed development while N22 had the least (Fig. 4B), which did not 

match with the pattern changes of GA metabolism gene expression (Fig. 3D). A similar mechanism of maternal 

effects can also account for such an inconsistency. Notwithstanding inconsistent results between gene 

transcripts and hormone levels, in the three rice cultivars, N22 having highest ABA content and lowest GA 

content during seed development and G46B having highest GA content and lowest ABA content are consistent 

with a general principle – ABA is positively correlated with seed dormancy while GA is negatively correlated. 

Moreover, our results agree with the classic model, that is, the state of seed dormancy correlated with ABA/GA 

ratio (Fig. 7) (White et al., 2000), which was further clarified by Penfield and King (2009). The core feature of this 

model is that a heterodimetric complex that promotes germination exists and the conglomerate of one 

monomer is affected by ABA and the other affected by GA. It is noteworthy that at 30 DAP, the ABA/GA ratio 

of G46B was not lower than that of ZH11 (Fig. 7), intimating that a fine-tuning regulation or other mechanisms, 

for example interaction with other phytohormone, was involved in seed dormancy. 

In addition, the profiling of OsGAMYB expression was established, whose gene product is critical for floral organ 

development as well as the induction of α-amylase in aleurone (Kaneko et al., 2004). The expression levels 

of OsGAMYB peaked at early, middle, and late stages of seed development for N22, ZH11, and G46B, 

respectively (Fig. S5A). This indicated that the formation of seed dormancy has a positive correlation with the 

gene expression time. 

The covering tissues have been hypothesized as a physical barrier to the germination of dormant seeds, and/or 

contain germination inhibitors (Bewley et al., 2012). Husk-imposed dormancy of N22 was reported (Seshu and 

Sorrells, 1986) but its mechanism was not clarified. In rice, ABA and flavonoid synthesis in the lower epidermal 

cells of the pericarp tissue have been associated with husk-imposed dormancy (Gu et al., 2011). Our results 

demonstrated that the compounds rather than the husk permeability yielded husk-imposed dormancy in our 

rice cultivars using water uptake (Fig. S3) and vanillin-staining assay (Fig. S4). During seed imbibition, an obvious 

ABA increase was observed in N22 and the expression of ABA and GA metabolism genes appreciably changed 

(Fig. 5A-c, f, i and 5B-a), suggesting the occurrence of ABA de novo biosynthesis and the existence of fine-tuning 

regulation on ABA and GA during seed imbibition. Such a detectable change was probably the attribute of deep 

dormant cultivar, N22, with some influence of thermal treatment. Nevertheless, no ABA accumulation had been 

observed for G46B and ZH11 in imbibition. Moreover, there were no significant transcript changes of ABA and 

GA metabolism genes (Fig. 5A and Fig. S5B), which might be due to that the 12 h intervals for collecting 

materials were too long to capture swift changes of low dormant cultivars or the three cultivars have evolved 

different dormancy mechanisms. Additionally, the thermally treated N22 had the highest OsGAMYB expression 

(Fig. S5B), indicating that N22 required more GA to initiate germination which is consistent with the result of α-

amylase assay (Fig. 2). Furthermore, expression levels of GA biosynthesis genes showed an abrupt increase at 

the late stage of seed development in G46B (Fig. 3D), which could account for the first peak of active GA at the 

onset of seed imbibition (Fig. 5B-b). Transcripts for G46B GA biosynthesis genes did not increase until 36 h after 

imbibition but there was an active GA accumulation at 12 h after imbibition (Fig. 5A-g). A possible explanation is 

that G46B seeds activated GA biosynthesis enzymes that had been synthesized in inactivated state during late 



seed development. In contrast, the second GA peak right after the germination onset at 36 h was consistent 

with the up-regulation of the GA biosynthesis gene GA20ox1 at this point (Fig. 5A-g). Thus, biosynthesis of active 

GA before and after the germination onset breaks dormancy and promotes germination, respectively, for G46B. 

Overall, the characteristics of GA biosynthesis gene transcripts in imbibition are consistent with different 

dormancy levels of three rice cultivars. 

ABA and GA contents were measured on a tissue fresh weight basis during seed maturation and imbibition, as 

such, the significant difference in water content of the seeds throughout seed development and imbibition 

(Fig. S3) might be the reason that ABA content in N22 declined at late developmental stage compared to 

previous stages. Nonetheless, it is still safe to conclude that ABA content in imbibition stages is lower than that 

in development stages. 

Taken together, we conclude that seed dormancy imposed by embryo is determined by ABA/GA ratio during 

early and middle seed development phases, and the flavan compounds in husks determine husk-imposed 

dormancy and de novo ABA biosynthesis during seed imbibition affects seed dormancy variation as well. 

Materials and methods 

Plant materials 
The rice (Oryza sativa L.) cultivars G46B, ZH11, and N22 were used throughout the experiments. Approximately 

20 spikelets per panicle in the center of florets at pollination were tagged with a marker to guarantee the same 

developmental stage for all samples. The spikelets were harvested from the field every five days after pollination 

(DAP) at six sequential time-points and then immediately frozen in liquid nitrogen. Thirty days after pollination, 

seeds attained harvest maturity with around 20% water content were harvested, sealed, and stored at −20°C to 

maintain dormancy. These grains were used in subsequent experiments. 

Seed germination tests 
Approximately 200 mature and dormant seeds were placed on three filter papers moistened with 8 mL of 

double-distilled water in 55 mm diameter Petri dishes and incubated at 28°C in a light-proof chamber. Seeds 

were first surface-sterilized with a solution containing 1% (w/v) sodium hypochlorite (NaClO) and 0.05% (v/v) 

Tween-20 and then rinsed with ddH2O. Fungicide (Carbendazim, 0.5 g/L) was applied on the fourth 

day. Germination was scored at the first germination stage (S1) when radicle or coleoptile was visually ≥1 mm 

(Counce et al., 2000). Due to the extraordinarily deep dormancy of N22, which is unable to germinate right after 

harvest, some N22 seeds were dried at 50°C for 72 h to break its dormancy prior to plating (Lu et al., 2011b). 

During imbibition, 30 seeds were collected every 12 h for 72 h, and then immediately frozen in liquid nitrogen. 

Moreover, to test if ABA biosynthesis occurs during imbibition, norflurazon (dissolved in pure dimethyl 

sulfoxide (DMSO) and then diluted to a final concentration of 0.1 mmol/L with ddH2O) was applied. To assess 

ABA sensitivity, 50 dehusked seeds were imbibed in water (control) or in 5 or 10 μmol/L ABA (Lu et al., 2011a). 

The percentage of germinating seeds was scored and the plumule length was measured at the 7th day after 

incubation. For the water uptake assay, fifty gauze wrapped seeds were immersed in ddH2O and the seed weight 

was measured at a 12 h interval until 72 h. The surface water was removed with paper tissue prior to the 

measurement. The assays were carried out in two independent seed batches with three replicates for each. 

Significance analysis was conducted by SAS® ver. 9.1.3 (SAS Institute, 1999). 

RNA extraction from rice seed 
Rice seeds at different developmental stages and the different treatments were powdered in a mortar and 

pestle with liquid nitrogen and then transferred to Eppendorf tubes with 800 μL ice-cold extraction buffer 

[200 mmol/L Tris-HCl (pH 9.0), 200 mmol/L LiCl, 5 mmol/L EDTA, 1% SDS, 1/1000 (v/v) β-mercaptoethanol]. After 



vortexing, the sample was centrifuged at 13,000 r/min for 5 min, and the supernatant was collected. An identical 

volume of water/phenol was added to the supernatant before vortexing and centrifugation at 13,000 r/min for 

10 min at 4°C. The water phase was transferred into new tubes and an identical volume of chloroform/isoamyl 

alcohol (24:1) was added. The mixture was centrifuged at 13,000 r/min for 5 min, the new water phase was 

collected into a new tube and a 1/300 volume of acetic acid and an identical volume of isopropanol was added. 

After storage at −20°C for 30 min, tubes were centrifuged at 13,000 r/min for 5 min, and the supernatant was 

discarded. The precipitate was dissolved in 30 μL TE buffer and a 1/5 volume of 10 mol/L LiCl was added. After 

storage overnight at 4°C, samples were centrifuged at 13,000 r/min for 10 min, and the precipitate was 

dissolved in 50 μL TE buffer with 125 μL ethanol added. The centrifuged precipitate was rinsed with 70% ethanol 

and then treated with DNase using the TURBO DNA-free kit (Ambion, Applied Biosystems, USA) to eliminate 

genomic DNA contamination. Finally, RNA concentrations were measured spectrophotometrically and the RNA 

quality and the accuracy of the concentration were checked with an RNA gel. 

Quantitative real-time PCR 
Two μg of RNA was reverse-transcribed into cDNA using M-MLV Reverse Transcriptase (Promega, Madison, WI, 

USA). First-strand cDNA synthesis products were diluted 5-fold, and 1 μL of cDNA was first used for semi-

quantitative PCR. The quantitative PCR was performed using the Bio-Rad CFX96 Real-time System following 

established laboratory protocols (Tong et al., 2009). Efficiency calculation and normalization were performed 

using real-time PCR Miner (www.miner.ewindup.info/) (Zhao and Fernald, 2005) and data quality was confirmed 

through internal controls and no-template-controls (NTCs) and by comparing replicates' repeatability. An 

average expression value for each gene at each time-point was generalized from the normalized data. Actin1 

and ubiquitin were used for the internal standards. Experiments were repeated three times. 

Liquid chromatography-tandem mass spectrometry quantification of ABA 
Approximately 150 mg of powdered rice seeds, as described for seed RNA extraction, were used for ABA 

quantification following a published method (Kojima et al., 2009) with minor modifications. Briefly, plant tissues 

were homogenized and extracted for 24 h in methanol containing 2H-ABA (CDN Isotopes) as an internal 

standard. Oasis Max solid phase extraction cartridges (150 mg/6 mL; Waters, Milford, USA) were used 

for purification after centrifugation. The entire sample was injected into a liquid chromatography-tandem mass 

spectrometry system consisting of an Acquity Ultra Performance Liquid Chromatograph (Acquity UPLC; Waters) 

and a triple quadruple tandem mass spectrometer (Quattro Premier XE; Waters). 

Indirect competitive enzyme-linked immunosorbent quantification of ABA and GA3 
Approximately 200 mg powdered rice seeds was homogenized in 5 mL of ice-cold extraction medium (80% 

methanol, 1 mmol/L dibutyl hydroxy toluene) and extracted overnight at 4°C for indirect competitive enzyme-

linked immunosorbent assay (icELISA). After centrifugation at 1000 g for 10 min, the supernatant was removed 

and passed through a C18-SepPak classic cartridge (Waters). The extract was evaporated and was diluted 8- and 

16-fold in diluent [PBS; 0.1% (v/v) Tween-20; 0.1% (w/v) glutin] for GA3 and ABA measurements, respectively. 

ABA and GA3 were analyzed by competitive-binding ELISA employing commercially available monoclonal 

antibodies specific for (+)-ABA and GA3, respectively (Sigma, St Louis, MO, USA) according to the Phytodetek 

protocol and essentially as previously described (Zhao et al., 2006). A standard curve of different ABA and 

GA3 dilutions was constructed to calculate the sample ABA and GA3 concentrations. Each measurement was 

repeated three times. 

α-amylase activity assay 
Alpha-amylase activity analysis using embryoless half seed were performed as described previously with some 

modifications (Yamaguchi, 1998). Rice seeds were surface-sterilized with 1% NaClO for 15 min, and then rinsed 



three times with ddH2O. Grains were then de-embryonated and transferred aseptically to 5 mL of aqueous 

buffer (0.02 mol/L calcium chloride, 0.05 mol/L sodium citrate, 10 mg/L streptomycin sulfate, pH 6.2) with or 

without 10−7 mol/L GA3. This concentration is reportedly sufficient to induce the α-amylase saturation (Ueguchi-

Tanaka et al., 2000). Samples were then incubated in dark at 25°C on an orbital shaker at 100 r/min for 60 h. 

Soaked half seeds were ground in their buffer and centrifuged at 3000 r/min for 15 min. Subsequently, the 

aqueous phase was divided into two portions with 2 mL to each tube and then kept at 37°C for 10 min. The α-

amylase activity was determined by the Phadebas® Amylase kit according to the manufacturer's instructions 

(Magle, Sweden). Significance analysis was conducted by SAS® ver. 9.1.3 (SAS Institute, 1999). 

Vanillin-staining assay 
Intact mature seeds were incubated in a 1% (w/v) vanillin solution (SCRC, Beijing, China) at room temperature 

for 3 h as previously described (Aastrup et al., 1984). Vanillin turns red upon binding to flavan-3,4-diols 

(leucoanthocyanidins) and flavan-4-ols (catechins), which are present either as monomers or as terminal 

subunits of proanthocyanidins (Deshpande et al., 1986, Berridge et al., 1996). 
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