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Abstract: This review lays the foundation for why nutrient recovery must be 

a key consideration in design and operation of biorefineries and 

comprehensively reviews technologies that can be used to recover an array of 

nitrogen, phosphorus, and/or potassium-rich products of relevance to 

http://dx.doi.org/10.1016/j.biortech.2016.02.093
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Bioresource Technology, Vol 215 (September 2016): pg. 186-198. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

2 

 

agricultural applications. Recovery of these products using combinations of 

physical, chemical, and biological operations will promote sustainability at 

biorefineries by converting low-value biomass (particularly waste material) 

into a portfolio of higher-value products. These products can include a natural 

partnering of traditional biorefinery outputs such as biofuels and chemicals 

together with nutrient-rich fertilizers. Nutrient recovery not only adds an 

additional marketable biorefinery product, but also avoids the negative 

consequences of eutrophication, and helps to close anthropogenic nutrient 

cycles, thereby providing an alternative to current unsustainable approaches 

to fertilizer production, which are energy-intensive and reliant on 

nonrenewable natural resource extraction. 

Graphical abstract 

 

Keywords: Nitrogen, Phosphorus, Potassium, Fertilizer, Wastewater 

1. Introduction 

We live in the age of the Anthropocene, in which today’s earth 

can be characterized as human dominated. This domination is 

exemplified through alterations to biogeochemical cycles including 

carbon, nitrogen, phosphorus, and water. The harsh realities of a 
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growing global population in the face of nonrenewable resource 

constraints, environmental quality concerns, and technological impacts 

in both economic and social/political realms dictate a shift toward 

more sustainable development. Biorefineries provide one route toward 

more sustainable production by valorizing waste and utilizing 

renewable resources. 

Somewhat analogous to a petroleum refinery, a biorefinery is an 

integrated facility which utilizes extraction/conversion processes to 

produce various fuels, platform chemicals, and energy (Naik et al., 

2010). Unlike conventional petroleum refineries, however, biorefineries 

use renewable biomass as a feedstock to produce these carbon-based 

products, thereby providing a sustainable option for fulfilling future 

product demands. Nutrients are an additional, albeit oft-omitted, 

biorefinery product attracting increased attention, and must also be 

considered as part of an integrated biorefinery and environmental 

management approach (Anex et al., 2007 and Tonini et al., 2013). 

This review begins by establishing the importance of nutrient 

recovery as an integral aspect of biorefinery design and operation. The 

relative nutrient value of different feedstocks is assessed. Next, an 

overview of the nutrient-rich products that can be recovered from 

biorefineries is presented, followed by a comprehensive review of the 

technologies that can be implemented to recover these products for 

agricultural application. For brevity, major reviews are cited when 

feasible, while a more detailed list of relevant references 

recommended for further reading is included in the Supplementary 

Material. 

2. The compelling case for nutrient recovery 

All biological growth relies on the availability of essential 

elements. For plants, the three primary macronutrients are nitrogen 

(N), phosphorus (P), and potassium (K) as these elements are needed 

in relatively large amounts and are most commonly responsible for 

limiting growth (Leibig’s mineral theory circa 1840). During the late 

1800s and early 1900s, population growth and rapid urbanization led 

to the need to supplement crop production with nutrients beyond 

levels available in natural soil or locally available organic matter (i.e., 

manure and human excreta) ( Cordell et al., 2009 and Galloway and 
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Cowling, 2002). Increased nutrient demand initiated development of 

synthetic fertilizers produced using P mined from phosphate rock 

reserves, K mined from potash reserves, and atmospheric N fixed by 

the Haber–Bosch process. Harnessing access to these nutrients helped 

to spawn the Green Revolution, and resulted in rapid intensification of 

anthropogenic flows of N, P, and K over the last 200 years, leading to 

major impacts on earth systems. 

Rock P regenerates on geologic timescales, analogous to fossil 

fuels, meaning that P is essentially a nonrenewable resource. At 

current rates of consumption, P reserves may be exhausted as soon as 

the next century (Cordell et al., 2009). Since approximately 90% of 

mined P is used for food-related activity, this looming shortage of raw 

material imperils food production, and subsequently, the human 

population (Cordell et al., 2009). Moreover, P reserves are 

geographically concentrated, with about 83% of the world’s resources 

located in only four countries (Vaccari, 2009). As there is no substitute 

for P, it is essential to move towards closing the anthropogenic P cycle 

by recovering P from renewable biomass and reusing it to promote 

agricultural productivity. 

Unlike P, N is a readily renewable resource procured from vast 

atmospheric reserves for human use via the Haber–Bosch process. 

Approximately 80–90% of Haber–Bosch-fixed N is used for fertilizer 

production, and more than half of the food consumed in the world is 

now grown using N fertilizer produced by this process (Galloway and 

Cowling, 2002 and Galloway et al., 2008). The remaining N is used for 

chemical production, e.g., nylon, plastic, explosives, rocket fuels, and 

animal feed supplements (Galloway and Cowling, 2002 and Galloway 

et al., 2008). Today, Haber–Bosch is responsible for more N fixation 

(121 Tg/yr in 2010) than all natural terrestrial processes combined 

(Galloway and Cowling, 2002). The magnitude of human influences on 

N flows has substantially altered the global N cycle, which may have 

serious consequences in water (eutrophication), the lithosphere (soil N 

saturation and impacts on biodiversity), the atmosphere (greenhouse 

gases, acid rain, smog), and human systems (resource constraints and 

economics). Although N is a renewable resource, the Haber–Bosch 

process is extremely energy intensive, accounting for an estimated 1–

2% of the world’s total energy consumption (Matassa et al., 2015). 

Energy-efficient recovery of N from biorefineries would reduce reliance 
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on the Haber–Bosch process, thereby avoiding the associated energy 

consumption and downstream consequences. 

In comparison to N and P, K recovery has received considerably 

less attention, yet K is also an essential growth nutrient with finite 

global reserves. Although there are likely several centuries of supply 

remaining, the more precarious global issue is that 90% of K 

production is concentrated in only three countries (Ciceri et al., 

2015 and Vaccari, 2009). As there are large amounts of K available in 

certain waste materials, e.g., sugar cane and beet processing, spent 

grains, yeast, and manure, global demands (approximately 90% of 

which stem from fertilizer production) could be fully satisfied by 

recovery and reuse of K from renewable waste biomass ( Batstone et 

al., 2015). K recovery would proactively alleviate future sourcing 

concerns due to availability, pricing, and geopolitical relations. 

Likewise, nutrient recovery from waste streams has the potential to 

largely satisfy P demand in high use efficiency scenarios (i.e., in 

combination with improved agricultural and food chain efficiency and 

consumption patterns) as well as approximately 50% of global N 

demands ( Batstone et al., 2015 and Cordell et al., 2009). 

Fig. 1 illustrates trends in N, P, and K fertilizer production 

alongside historic fertilizer prices. As shown, production increased 

dramatically in the latter half of the 20th century, although prices 

remained relatively stable until spiking in the last decade. In the 

future, increased fertilizer demand (and the substantial environmental 

footprints associated with fertilizer production) is a likely consequence 

of growing global population and affluence. Economics suggest that as 

supplies decrease and demand increases, prices will likewise increase. 

Though future production patterns remain uncertain, the inexact 

estimation of reserves and timing of peak consumption of essential 

non-renewable resources is not the critical issue here. Instead, the 

important take away is that the sustainability of a prosperous global 

population depends on transition to renewable resource utilization. 
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Fig. 1. Fertilizer nutrient trends. (A) Global fertilizer production (million metric tonnes 
of nutrient/year) alongside world population. Historical trends from 1900 to 2013 are 
shown. While future projections are uncertain, recovered nutrients must play a major 
role in supplementing nonrenewable supplies. (B) Average annual prices for 
representative N, P, and K fertilizers paid by U.S. farmers (1960–2013, $US). Data 

sources used to create the figure are described in the Supplementary Material. 

 

A simultaneous advantage of recovering nutrients from waste 

biomass is protection from environmental degradation stemming from 

eutrophication. Eutrophication results in decreases in the dissolved 

oxygen content of environmental waters caused by algal overgrowth 

as a result of excess P and/or N concentrations. According to the U.S. 

Environmental Protection Agency, eutrophication is the biggest overall 

source of impairment of U.S. waterbodies (Mayer et al., 2013), and is 

responsible for more than 400 coastal dead zones around the world 

(Diaz and Rosenberg, 2008). To address this issue, limitations on 

nutrient levels in waste discharges have been established around the 

world. As nutrients must be removed from waste streams prior to 

discharge to achieve regulatory compliance, biorefineries provide an 

excellent opportunity to recover nutrients from wastes and recycle it 

directly back into fertilizer production, thereby short circuiting the 
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lengthy natural-anthropogenic cycle. Characterization of biorefinery 

feedstocks gives some insight into the fraction and recoverability of 

these nutrients, i.e., what are the optimal feedstocks for nutrient 

recovery? 

2.1. Where is the N, P, and K? 

Biorefinery feedstocks generally consist of biomass containing a 

high fraction of carbon. For example, bioenergy production typically 

emphasizes the use of lignocellulosic biomass consisting primarily of 

the carbon-rich polymers cellulose, hemicellulose, and lignin. However, 

all biomass also contains nutrients, meaning that N, P, and K are 

theoretically recoverable from any biomass, including, but not limited 

to, crop residue, vegetative material, animal waste, and food 

byproducts (Naik et al., 2010). Inputs to biorefineries are generally in 

the form of raw biomass, with an average biomass composition of 95% 

proteins, carbohydrates, lignin and lipids (Octave and Thomas, 2009). 

Non-structural components such as protein, ash, and organic acids 

make up only a small fraction of the feedstock, but their presence can 

be significant in sustainable operation of an industrial-scale biorefinery 

(Sluiter et al., 2010). For perspective, Table 1 lists the nutrient 

content of a range of potential biorefinery feedstocks, while Table 2 

lists approximate nutrient contents of cellular structures. Waste-based 

biomass generally has higher N, P, K content relative to lignocellulosic 

plants, and is thus ideal biorefinery feedstock from the perspective of 

nutrient recovery. 

Table 1. Approximate nutrient content of various potential biorefinery 

feedstocks.a 

Category Feedstock N P K (unit) 

Waste Biomass 

Beef cattle feedlot wastewater 54–113 14–105 465–503 (mg/L) 

Coffee production wastewater 85–173 4–38 20–46 (mg/L) 

Coke plant wastewater 757 0.5  (mg/L) 

Dairy wastewater 185 30  (mg/L) 

Distillery wastewater 2700 680 
9600–
17,500 

(mg/L) 

Domestic wastewater 20–85 4–15 30 (mg/L) 

Empty fruit bunch palm oil 
waste 

0.33 0.03 0.80 % 

Molasses vinasse 
1660–
4200 

225–
3040 

9600–
17,500 

(mg/L) 

Palm oil mill effluent 700 450 1710 (mg/L) 
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Category Feedstock N P K (unit) 

Paper mill wastewater 11 0.6  (mg/L) 

Pig manure 2.0–3.0 9.9–12.5 3.5–6.0 % 

Poultry feedlot wastewater 802 50  (mg/L) 

Soybean processing water 
1700–
2550 

125–183  (mg/L) 

Sugar cane stillage 2980 239  (mg/L) 

Sugar cane vinasse 600–4200 
100–
3800 

 (mg/L) 

Swine feedlot wastewater 895–3200 66–324 1.4 (mg/L) 

Tannery wastewater 273 21  (mg/L) 

Textile wastewater 90 18 30–50 (mg/L) 

Winery wastewater 110 52 201 (mg/L) 

 

Microbial 
Biomass 

Algae 7–20 1  % 

Microbial biomass 12 2  % 

 

Plants 

Cereals (wheat) 0.1   % 

Corn cob 1.38 0.09 0.46 % 

Corn grain 2.15 0.34 0.42 % 

Corn leaves 1.30 0.21 1.48 % 

Corn silage 1.3 0.16 0.9 % 

Corn stem 0.84 0.09 1.23 % 

Giant brown kelp 1.22   % 

Peach leaves  0.14 2.45 % 

Pine 0.1   % 

Rapeseed crop biomass 3.3–5.4   % 

Sugar cane begasse 0.73   % 

Water hyacinth 1.96   % 

Wood 0.07–0.39   % 

a References provided in the Supplementary Material. 

 

Table 2. Macronutrients in cellular structures.a 

Nutrient Nutrient-containing 
structure 

Concentration of 
element in structure 

(%) 

Descriptions of organisms 
associated with higher 

concentrations of structure 

P Free Phosphate 39  

Polyphosphate <39 Anoxic polyphosphate 
accumulating organisms 

DNA/RNA 8  

ATP 18  

Phospholipids 5 Organisms with cell walls or gram 

negative bacteria 

Hydroxylapatite 18 Organisms with bone, cartilage, 
and enamel 

 

N Ammonia/ammonium 78–82  

Nitrate/nitrite 23–30  
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Nutrient Nutrient-containing 
structure 

Concentration of 
element in structure 

(%) 

Descriptions of organisms 
associated with higher 

concentrations of structure 

Amino acids 632 Organisms with high protein 
content 

DNA/RNA 14 Value represents average in total 
structure 

Chlorophyll 6–9 Photosynthetic organisms 

 

K Free potassium ion 100  

aReferences provided in the Supplementary Material. 

Approximately 15% of agricultural N input ends up in 

wastewater, while another 19% is found in animal manure (Matassa et 

al., 2015), making these wastes an important target for N recovery. 

Municipal and agricultural wastewater are also major caches of P, as 

approximately 15% and 40% of mined P ends up in these domains, 

respectively (Cordell et al., 2009 and Rittmann et al., 2011). In 

addition to excreta, food commodities also generate municipal solid 

waste, which accounts for approximately another 5% of mined P 

(Cordell et al., 2009 and Rittmann et al., 2011). A simplistic analysis 

of K flows suggests that >90% of agricultural inputs of mined K reside 

in animal waste, while municipal waste contains <1% (analysis 

detailed in the Supplementary Material). In addition to high nutrient 

content, waste biomass feedstock offers a double benefit of 

transforming a nuisance waste into a beneficial product, prices of 

which are expected to rise in the future. Although N, P, and K 

concentrations and availabilities in biorefinery feedstocks vary greatly, 

Table 1 and Table 2 provide good general values. The biomass 

processing approach will further determine the potential for recovery 

of nutrient-rich products. 

3. Nutrient-rich recoverable products 

Before examining the nutrient recovery technologies, the 

relevant recoverable products are reviewed, as selection of the desired 

product dictates process implementation. Although there is some 

potential for recovery of nutrients via platform or specialty chemical 

production at biorefineries, levels of N, P, and K are essentially 

negligible in the top 12 valuable building block chemicals (Werpy et 

al., 2004), accounting for 1.7%, 0%, and 0% by mass, respectively. 

These values ignore relative abundance of the products, but this 
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demonstrates that chemical production represents a relatively minor 

route of nutrient reuse. This, in combination with the fact that 

approximately 90% of anthropogenic flows of P, K, and N are funneled 

to agricultural food production, leads to the emphasis in this review 

being on recovery and reuse of nutrient-rich products for agricultural 

applications. Recoverable agricultural nutrient products can include 

complex organic mixtures, e.g., biomass; mixed residuals from 

thermochemical processes, e.g., char and ash; or separated N, P, K-

specific chemicals, e.g., NH4
+ or K-based struvite. Table 3 lists the 

nutrient value of these recoverable products alongside commercial 

fertilizers for comparison. 

Table 3. Fertilizer potential (NPK) of recovered nutrient products and 

commercial fertilizers.a 

Category Product 
Chemical 
formula 

NPK ratingb 

Mixed nutrient products 

Wastewater biosolids Organic mixture 35-0 

Heat-dried wastewater biosolids 
(Milorganite) 

Organic mixture 6-2-0 

Incinerated sewage sludge ash (ISSA) Organic mixture 0-6-2 

Wastewater-derived biochar Organic mixture 6-13-0 

Bone meal Organic mixture 4-2-0 

 

N, P, K-specific products 

Struvite (N) NH4MgPO4 10-52-0 

Struvite (K) KMgPO4 0-45-30 

Hydroxylapatite Ca5(PO4)3 0-44-0 

Ammonium sulfate (NH4)2SO4 21-0-0 

Ammonium nitrate NH4NO3 35-0-0 

Anhydrous ammonia NH3 82-0-0 

Iron(III) phosphate FePO4 0-47-0 

Calcium nitrate Ca(NO3)2 17-0-0 

Urea (NH2)2CO 64-0-0 

 

Commercial-grade 
fertilizers 

Ammonium polyphosphatec [NH4PO3]n 14-73-0 

Monoammonium phosphate NH4H2PO4 12-62-0 

Diammonium phosphate (NH4)2HPO4 21-54-0 

Potassium nitrate KNO3 14-0-47 

Monocalcium phosphate Ca(H2PO4)2 0-61-0 

Potassium sulfate K2SO4 0-0-54 

Potassium chloride KCl 0-0-63 

aReferences provided in the Supplementary Material. 
bBased on N, P2O5 and K2O rating system. 
cSmall variations expected in NPK based on polymer length. 
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3.1. Mixed nutrient products 

The primary means of nutrient recovery and reuse today is 

through land application of organic solids such as biosolids, which are 

the bacterial biomass byproduct from wastewater treatment. Biosolids 

have long been used as a nutrient source for agriculture, although 

location-specific restrictions on the basis of pathogens, heavy metals, 

trace organic contaminants, and/or NPK ratios are important 

considerations. Once biosolids are applied to agricultural fields, the 

nutrients are slowly released through natural biodegradation. 

Similarly, the nutrients locked in large organic biomass structures, 

particularly single cell biomass which does not have any further use, 

provides an opportunity to serve as a value-added recoverable product 

for human food and animal feed. Plant, algae, and microbial-derived 

biomass may also be directly land applied, but additional research is 

needed to establish efficacy (e.g., nutrient release rates) ( Mehta et 

al., 2015). Composted organic materials also provide excellent 

agricultural properties (Hargreaves et al., 2008). Additionally, bone 

meal produced from animal or slaughterhouse waste is another 

nutrient-rich byproduct that can be beneficially recycled into 

agriculture as a slow release P source (Mondini et al., 2008). 

Char and ash are increasingly popular soil amendments, offering 

potential for carbon sequestration, heavy metal immobilization, and 

improved soil quality (Mehta et al., 2015). These heterogeneous 

products may contain appreciable amounts of nutrients, depending on 

feedstock and process operation. Bridle and Pritchard (2004) found 

that 100% of the P and K in sewage sludge and 55% of N were 

retained in the solid biochar product following pyrolysis. Biochar has 

been shown to stimulate plant growth when used as an amendment in 

soil lacking nutrients (Liu et al., 2014). Biochar may also be used to 

adsorb N and K prior to land application, as wastewater-saturated 

biochar can stimulate grass growth (Carey et al., 2015). The viability 

of char and ash use in agricultural applications depends on nutrient 

bioavailability and levels of heavy metals co-concentrated in the mixed 

product. 
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3.2. N, P, and K chemical products 

Although complex mixed nutrient products will continue to play 

an important role in agriculture (and sustainable resource 

management scenarios), separate streams of NH3-N, PO4-P, and K 

salts are undeniably desirable as they afford greater flexibility in 

broader applications and have higher market value (Gerardo et al., 

2015). Table 3 summarizes the recoverable N, P, and K chemical 

products used in agricultural fertilizer applications. Box 1 provides a 

brief description of the speciation and terminology associated with 

agriculturally-relevant nutrients. 

Box 1. Agriculturally-relevant nutrients. Related references are found 

in the Supplementary Material. 

Phosphorus: Soluble P species may be classified as organic P, 

orthophosphates, or polyphosphates. Organic P is usually considered 

nonreactive and nonbioavailable, and must be converted to inorganic 

forms to enable recovery and/or biological uptake. The 

orthophosphates, also called reactive P, include species (e.g., PO4
3−, 

HPO4
2−, H2PO4

−, H3PO4) that are readily available for biological 

metabolism without being further broken down. Polyphosphates 

include complex molecules with two or more P atoms, oxygen, and 

sometimes hydrogen. These species can be converted to 

orthophosphates via hydrolysis. For agricultural fertilizer applications, 

P must be in the orthophosphate form. 

Nitrogen: Plants are able to uptake several different forms of N, 

including ammonium (NH4
+), nitrate (NO3

−), and urea ((NH2)2CO). 

Unless fresh source-separated urine is used as the biorefinery 

feedstock, NH4
+ and its conjugate base, ammonia (NH3), as well as 

NO3
− and its reduced form, nitrite (NO2

−), will be most commonly 

encountered. Their relative distribution will depend on the oxygen 

concentration in the matrix. All of these species are water soluble, 

although NH3 may volatilize depending on pH and temperature 

(KH = 57 M/atm). 

Potassium: The water soluble free ion form, K+, is needed for plant 

growth as K is involved in over 60 different enzyme systems in plants 

and regulates electrochemical and osmotic pressure across cell 

membranes. Very little free K is available in nature, and most 

synthetic fertilizers are in the KCl form, although other K salts are also 

used, as shown in Table 3. 

The most commonly recovered N species are NH3 and NH4
+, 

which are most often recovered in solid precipitate forms. The most 

recoverable form of P in biorefining processes is phosphate, which can 

be recovered from aqueous streams as solid precipitates. P reuse as 
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struvite and hydroxylapatite is currently favored as these granular 

products feature qualities comparable to mineral fertilizers (Johnston 

and Richards, 2004). In addition to its use as fertilizer, hydroxylapatite 

can be substituted for rock phosphate as a feedstock for fertilizer and 

chemical production (Cornel and Schaum, 2009). P precipitation is 

relatively effective; however, speciation of the product is very 

important in terms of fertilizer reuse. For example, when P is 

precipitated with iron or aluminum, it exhibits limited bioavailability. 

The major recovered K-product today is K-struvite, which provides the 

advantage of simultaneously recovering P. Additionally, K salts can be 

recovered for use as fertilizers. 

Biorefineries offer an opportunity to recover any and all of these 

nutrient-rich products, and selection of the desired product(s) will 

determine which recovery technologies should be employed, as 

reviewed in the following section. 

4. Nutrient recovery technologies 

Biorefineries are characterized by great diversity in terms of 

both feedstock inputs and desired product outputs, with both of these 

choices governing the sequence of physical, chemical, and biological 

processes needed to recover nutrients. This diversity presents a 

challenge in that process selection can vary widely; yet, this flexibility 

also presents an opportunity as some nutrient recovery technologies 

may already exist in some biorefineries, while other processes may be 

new additions for nutrient recovery. 

As outlined by Mehta et al. (2015), nutrient recovery can be 

accomplished through various sequences involving any or all of the 

following steps: (1) capture and concentration of nutrients from dilute 

streams, (2) release of nutrients from complex structures, and (3) 

final extraction of nutrient products. In the first step, nutrients in 

dilute streams may be concentrated since the efficiency of most 

nutrient recovery processes is proportional to nutrient concentrations, 

but levels in biomass feedstock are often low. In the second step, 

complex organics or solids containing nutrients may undergo 

processing to release soluble inorganic P, K, and (also possibly 

volatile) N, as these forms are more readily recoverable (Batstone et 

al., 2015, Mehta et al., 2015 and Rittmann et al., 2011). In the final 
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step, the actual nutrient product, e.g., precipitate, is extracted for 

reuse. The following sections provide a comprehensive review of 

nutrient recovery technologies, including processes addressing each of 

these three steps, which can be integrated into biorefineries to 

produce valorized mixed nutrient, P, N, and K products for reuse in 

agricultural applications. Additional details related to operational 

parameters and performance for nutrient recovery processes can be 

found in several excellent reviews focused on wastewater treatment, 

including: Batstone et al., 2015, Mehta et al., 2015 and Morse et al., 

1998, and Rittmann et al. (2011). 

4.1. Mixed nutrient recovery technologies 

4.1.1. Anaerobic digestion to produce biosolids 

Anaerobic digestion is a widely-used biological process to 

convert organic waste to methane (CH4). By converting solids to 

gases, the volume of waste is reduced, making it popular for handling 

both agricultural waste and municipal wastewater residuals. In 

addition to the value of the CH4 in the biogas, the heterogeneous, 

nutrient-rich biosolids product is valuable as a fertilizer, and over half 

of the wastewater biosolids produced in the U.S. are land applied 

(NEBRA, 2007). Thus, anaerobic digestion could be one key nutrient 

recovery process used in biorefineries. 

Moreover, anaerobic digestion can release nutrients ahead of 

extraction technologies as part of an N, P, and K-chemical recovery 

scenario since it alters nutrient speciation and solubility. Anaerobic 

digestion could be especially useful for producing a liquid stream that 

facilitates N and K recovery because neither element readily 

precipitates or volatilizes in digesters, generally leading to higher 

effluent concentrations of recoverable N and K in the form of NH4
+ and 

K+, respectively (Marti et al., 2008 and Sanchez et al., 2000). N that is 

not in a readily available form, such as the organic-bound N found in 

amino acids, proteins, or urea, is biotransformed into simple 

carbohydrates and lipids and then into NH4
+ during anaerobic digestion 

(Batstone and Jensen, 2011). The breakdown of organic N is impacted 

by both temperature and pH, with higher temperature and neutral pH 

favoring conversion of organic N to NH4
+ (Sanchez et al., 2000). 
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The fate of P-species during anaerobic digestion is heavily 

dependent upon the other chemicals present. Inevitably, some P is 

assimilated into biomass, but P is more economically viable as a 

precipitate than it is in biosolids (Gerardo et al., 2015 and Latif et al., 

2015), especially because the N:P ratio in biosolids can differ from 

crop requirements, and over application of P can have negative 

impacts in the environment (Massé et al., 2007). Organic P is 

converted to inorganic P during digestion, but this inorganic P is not 

typically present in the effluent as soluble phosphate because it forms 

chemical precipitates, including Ca-P, Mg-P, and Fe-P solids (Güngör 

and Karthikeyan, 2008 and Latif et al., 2015). While some of these 

precipitates have economic value as fertilizers, they are difficult to 

recover from the biosolids matrix. Thus, to optimize the portfolio of 

recovered products, a well-designed biorefinery will likely include 

processes to recover P-specific products ahead of anaerobic digestion 

or in the nutrient-rich solids dewatering stream. Treatments focused 

on releasing organic P to facilitate recovery ahead of anaerobic 

digestion or from the biosolids include lowering pH, microwave 

thermochemical pretreatment, ultrasonic, or advanced oxidation 

processes (Jin et al., 2009, Latif et al., 2015, Rittmann et al., 

2011 and Wang et al., 2010). 

4.1.2. Thermal processing to produce biochar or ash 

Pyrolysis and gasification are possible keystone operations for a 

biorefinery scenario (Gebreslassie et al., 2013 and Naik et al., 2010). 

Both technologies rely on an oxygen-limited atmosphere and high 

temperatures to produce three possible phases of materials: gas (py-

gas, syngas), liquid (py-oil), and solid (ash, biochar) (Inguanzo et al., 

2002). Although both technologies are high temperature (>350 °C) 

non-oxidative processes, gasification typically refers to a process 

which uses higher temperature (>700 °C) and longer retention times 

to obtain complete conversion of organic material to an energy gas 

(syn-gas), leaving a solid-phase ash (inorganic non-volatile 

constituents) (Mohan et al., 2014). Pyrolysis is a lower temperature 

operation which leaves some of the organic fraction in a solid form 

(i.e., biochar) and may also result in a fraction of gas which condenses 

to liquid at ambient temperatures. 
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In the case of gasification, only inorganic components (i.e., ash) 

are left as a solid form. This may contain metals or other components 

which do not volatilize at high temperatures. No N will be retained in 

the solid product, whereas all recoverable P and K will be in the ash 

since they are not present in appreciable concentrations in volatile 

compounds ( Azuara et al., 2013). The P-rich ash may be used as a 

soil amendment if it complies with metals-applications standards. 

Alternatively, using downstream ash processing, as discussed in 

Section 4.2.2, P and K-specific nutrient products may be separated 

from the ash for agricultural reuse. 

In pyrolysis, the solid biochar product can contain a sizeable 

fraction of C, N, P, and K (Bridle and Pritchard, 2004 and Carey et al., 

2015). The gas contains energy-rich compounds such as CO, H2, CH4, 

and short chain hydrocarbons. The non-condensable gas is typically 

combusted for energy, before or after refinement (Conesa et al., 

2009 and Gebreslassie et al., 2013). Unlike many other biorefinery 

processes, a portion of recoverable N will be in the gas phase, 

primarily as NH3. One study of pyrolysis of biosolids at temperatures 

above 500 °C found an approximately even distribution of N among 

the gas, char, and condensable oils phases (Tian et al., 2013). From 

the gas phase, chemical N products can be extracted by absorption or 

stripping, as discussed in Section 4.3.2. The condensable liquid 

fraction, or oil, has many components which can be separated to 

utilize as platform chemicals, and may also be chemically transformed 

to create drop-in liquid fuels (Volli and Singh, 2012), but is 

inconsequential in terms of P and K content and recovery potential. 

Nitrogenous species found in liquid condensates are in the form of 

amino, heterocyclic-N, and nitrile compounds (Tian et al., 2013) which 

are potentially recoverable as N-specific chemicals using downstream 

processing. 

Incineration is an additional thermal process that can be 

employed using inputs of dry biomass for direct energy production, 

while the ash produced would be expected to contain the P and K, and 

may have reuse potential as a soil amendment. For example, 

incinerated sewage sludge ash (ISSA) may contain 10–25 wt% as P2O5 

(Donatello and Cheeseman, 2013). However, further processing to 

separate metals and extract specific nutrients from ISSA is currently a 

more common approach to nutrient recovery. 
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4.1.3. Aerobic composting to produce soil amendments 

Composting is defined as “the transformation of biodegradable 

organic material from various sources into humic substances” under 

aerobic conditions (de Bertoldi et al., 1983). During the composting 

process, the long-chained organic matter in biomass is oxidized to 

short-chain products, while a mixture of biogases are released to the 

atmosphere, including CO2, NH3, and a small amount of N2O or CH4 

(He et al., 2001 and Hellebrand, 1998). Mature composting products 

are often land applied directly as fertilizer (Bernal et al., 2009). 

Since composting products are widely used for agricultural 

applications, the main nutrient recovery focus is mitigating N losses to 

the atmosphere (Beck-Friis et al., 2001) while converting 

polyphosphate to orthophosphate. The extent of gaseous N emissions 

is affected by composting process design and operational parameters 

including aeration rate and mode, temperature, water content, C/N 

ratio, and porosity (Bernal et al., 2009, Jeong and Kim, 2001, Yang et 

al., 2008 and Yang et al., 2009). In terms of total N losses, gaseous 

NH3 emission are generally much larger than N2O (Beck-Friis et al., 

2001 and Jeong and Kim, 2001). However, since N2O has a 310-fold 

higher global warming potential than CO2, it is necessary to reduce 

atmospheric emissions of both N-containing gases. Limiting 

denitrification by minimizing anoxic or anaerobic microenvironments is 

a practical means of reducing N2O generation, and can be done by 

increasing the efficiency of oxygen transfer and reducing water 

content, e.g., adding biochar ( Wang et al., 2013). Ammonia emissions 

depend on the N content in the biomass (NH3 can represent 25–78% 

of initial total N), pH, and temperature ( Komilis and Ham, 

2006 and Leytem et al., 2011). Addition of Mg or other metallic salts 

and optimization of aeration strategies can reduce emissions of NH3 

(Jeong and Kim, 2001), thereby retaining N in the matured compost, 

which can serve as a direct source of N for plants. 

Most of the P is retained in the composted solids except for that 

lost in the leachate (Parkinson et al., 2004). Well-adjusted biomass 

water content and optimized aeration rates can minimize leachate 

generation, thereby reducing P losses. Dosing of external metallic salts 

such as Mg can also shift P fractions by converting readily-soluble P to 

slow-release P, thereby increasing its value as a fertilizer (Jeong and 
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Kim, 2001 and Yang et al., 2009). During composting, the fraction of 

water-soluble K also increases (Nishanth and Biswas, 2008). The end 

result is that composting reduces the solids fraction but retains N, P, 

and K. Thus, composting increases the nutrient value of the solids, 

thereby producing a nutrient-rich biomass suitable for nutrient-

deficient soils. 

4.2. Phosphorus-selective recovery technologies 

Value-added chemical P products can be recovered either from 

solid or liquid phases. The solid phase offers an advantage of smaller 

working volumes as P is often concentrated into the solid phase from a 

more dilute aqueous solution. Although the solid-bound P must be 

released prior to final extraction of the P product, higher starting 

concentrations are advantageous because recovery processes tend to 

perform better at higher P levels. Nutrient-extractable solid phases 

include biomass, biochar, and ash. 

4.2.1. Biological P selection for P-extractable solids 

Nutrient-extractable biomass can include the biosolids produced 

during anaerobic digestion, as described in Section 4.1.1, or plant and 

microorganism biomass. One of the best established approaches to P 

accumulation in solids is the use of phosphate accumulating organisms 

(PAOs), which uptake and store greater amounts of P than typical 

organisms. Enhanced biological P removal (EBPR) selects for PAOs 

using alternating anaerobic/aerobic conditions, and when applied in 

wastewater treatment, EBPR sludge can contain up to 5 times more P 

in comparison to typical activated sludge treatments (Rittmann and 

McCarty, 2001). Although EBPR was developed to improve P removal 

from wastewater, once concentrated in the sludge, P chemicals may be 

recovered following release of the P under anaerobic conditions or 

further physicochemical processing. 

Several other microbes, including purple nonsulfur bacteria, 

cyanobacteria, and algae, exhibit potential to bioaccumulate 

potentially extractable nutrients in forms such as proteins or 

polyphosphate (Mehta et al., 2015). P-rich bacteria tend to settle 

easily by gravity, but harvesting algal biomass poses greater 

challenges for full-scale applications (Christenson and Sims, 2011). 
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Several additional challenges to overcome in scaled-up operations 

include sufficient nutrient supply to the microbes, gas transfer, and 

process footprint (Christenson and Sims, 2011). Ongoing algal-based 

biorefinery research seeks to exploit the potential for co-recovery of 

biofuel, nutrients, and other high-value byproducts while sequestering 

carbon and treating wastewaters. 

The success of technologies targeting recovery of P-rich 

chemical products depends on P being present in the inorganic form. 

Thus, prior to implementation of any P recovery technology, organic P 

must be released from complex structures via processes such as 

oxidation or hydrolysis (Rittmann et al., 2011). 

4.2.2. Chemical P extraction from solids 

Chemical extraction processes using combinations of acid/base 

addition and/or thermo/chemical/electrical operations can be used to 

release P from solids such as municipal solid waste, wastewater 

sludge, or the ash and char produced by thermochemical processes. 

Wet acid leaching at a pH less than approximately 3 has been applied 

for recovery of P minerals from ISSA as chemical P products exhibit 

increased bioavailability in comparison to the ash itself (Donatello and 

Cheeseman, 2013). One potential disadvantage of acid leaching (or 

bioleaching using select microorganisms, e.g., Acidithiobacillus 

ferrooxidans) is that metals leach alongside P, which may necessitate 

further processing if heavy metals are present in the waste matrix 

( Donatello and Cheeseman, 2013 and Mehta et al., 2015). Thermal 

processing of ash or char with 5–15% KCl or MgCl2 can remove heavy 

metals; however, a large proportion of the K is also lost ( Donatello 

and Cheeseman, 2013 and Mehta et al., 2015). A number of 

technologies have been commercialized targeting nutrient recovery 

from sludge and ISSA, as summarized by Donatello and Cheeseman, 

2013 and Mehta et al., 2015, and Morse et al. (1998), many of which 

operate at higher temperatures and pressures to aid nutrient 

extraction. 

4.2.3. Physicochemical recovery of soluble P 

Once released in the soluble orthophosphate form, a range of 

physicochemical processes can be applied to further concentrate P and 

http://dx.doi.org/10.1016/j.biortech.2016.02.093
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0065
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0290
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0240
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0240
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0240
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0255


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Bioresource Technology, Vol 215 (September 2016): pg. 186-198. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

20 

 

recover chemical P fertilizers. Eventually, however, all paths to P 

recovery for agricultural applications currently lead to precipitation of 

solid mineral products, the most common of which are struvite and 

hydroxylapatite. As precipitation occurs spontaneously at high 

concentrations, P may have to be concentrated from dilute streams 

using initial treatments such as adsorption, ion exchange, or 

electrochemical processing. 

Conventional coagulants such as iron effectively adsorb P, but 

reuse of the resulting products is often constrained by limited 

agricultural bioavailability (Mayer et al., 2013 and Rittmann et al., 

2011). Innovative adsorbents and ion exchangers that selectively and 

reversibly capture P from complex waste streams are much more 

effective and relevant to recovery applications. As summarized by 

Mayer et al. (2013) and Rittmann et al. (2011), polymeric hydrogels, 

iron-based layered double hydroxides, hydrotalcite, and layered double 

hydroxides demonstrate promise for P recovery. P-specific anion 

exchangers, including iron and copper-loaded polymeric resins offer 

strong potential to selectively and reversibly capture P by exchanging 

it with other anions such as Cl−. These materials can concentrate P up 

to 100 times influent levels, thereby facilitating precipitation of P-rich 

products (Williams et al., 2015). Other P adsorbents reported in the 

literature include zirconium, zirconium-loaded orange waste gel, and 

numerous metal oxide-based byproducts (e.g., fly ash, steel slag, and 

red mud) ( Mayer et al., 2013, Mehta et al., 2015 and Rittmann et al., 

2011). The recovery efficiency and bioavailability of the recovered P 

varies widely among these adsorbents, dependent on the affinity 

between P and the binding material. By binding nutrient-specific 

adsorbents to a magnetic carrier such as magnetite, montmorillonite, 

or zirconium ferrate, high recovery efficiency may be obtained with a 

small process footprint, but additional research is needed to better 

define process performance and economics ( Mehta et al., 

2015 and Rittmann et al., 2011). 

Emerging electrochemical technologies such as electrodialysis 

and capacitive deionization also offer promise for nutrient recovery (Li 

et al., 2015 and Rittmann et al., 2011). Electrodialysis selectively 

separates anions such as PO4
3− from cations such as NH4

+ and K+ 

using an applied electric field and ion exchange membranes. While 

electrodialysis has the potential to recover all of the nutrients, it is 
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currently hampered by high energy consumption (Li et al., 2015). 

Capacitive deionization uses a charged electrical field to attract ions to 

the electrodes. Developed for desalination, the potential of this 

technology for nutrient recovery has yet to be established (Rittmann et 

al., 2011). 

Once concentrated, precipitation of P-rich solid fertilizer 

products is typically facilitated using additions of Mg2+ and pH ⩾ 8.5 or 

Ca2+ and pH ⩾ 10 to achieve molar ratios and equilibrium conditions 

suitable for struvite or hydroxylapatite precipitation, respectively. 

4.3. Nitrogen-selective recovery technologies 

Analysis of the anthropogenic N cycle reveals key processes and 

targets for N recovery. Approximately 34% of total N entering the 

agricultural system is ultimately present in animal waste and municipal 

wastewater (Matassa et al., 2015), making them excellent biorefinery 

feedstocks to maximize N recovery. Current biological wastewater 

treatment plants convert NH3 to NO3
− through nitrification, with 

potential conversion to N2 gas through denitrification, essentially 

releasing N back to the atmosphere. By recovering NH3-N instead of 

converting it to NO3
− or N2, substantial energy savings may be realized 

through reduction of Haber–Bosch energy requirements for N fixation 

and aeration processes to drive nitrification. In the following section, N 

recovery using both biological and physiochemical processes is 

discussed, with an emphasis on wastewater and animal waste as the 

most fruitful biorefinery feedstocks for N recovery. 

4.3.1. Biological N recovery in the form of single cell proteins 

Ammonia-N can be recovered from biomass in the form of 

microbial cells (single cell protein, SCP). The concept of SCP recovery 

originated from research on algae and lithotrophic bacteria (Vincent, 

1969), and reports have shown that the SCP synthesized by methane 

oxidizing bacteria is suitable for animal feed (D’Mello, 

1972 and Matassa et al., 2015). As protein is a key dietary need, SCP 

has great potential to be used to feed not only animals, but also as 

food to directly satisfy human dietary needs, thereby augmenting the 

food production system by bypassing resource-intensive fertilized crop 

production (Matassa et al., 2015). 
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Multiple approaches to SCP synthesis can be used to improve N 

recovery. Anaerobic digestion can serve as the first step for SCP 

synthesis from biomass or wastewater as it directly releases high 

concentrations of NH3 and large volumes of CH4 (D’Mello, 

1972 and Rittmann and McCarty, 2001). NH3 can satisfy the N needs 

of the methane oxidizing bacteria used for SCP production, while CH4 

serves as the C source (Bough et al., 1972 and D’Mello, 1972). In 

addition to methane oxidizing bacteria, algae and fungi can also 

synthesize SCP using NH3 from biomass (Cysewski and Wilke, 

1976 and Anupama and Ravindra, 2000). The review by Anupama and 

Ravindra (2000) summarizes many species of fungi and algae (e.g., 

cyanobacteria) suitable for SCP synthesis. This bioconversion approach 

lends itself well to implementation in biorefineries as low value organic 

material can be used to produce multiple value-added products, 

including biofuels and SCP, as well as treated wastewater. 

4.3.2. Physicochemical recovery of N from biomass 

As described for P, N recovery technologies can be applied to 

concentrated N streams released from N-rich solids as well as 

mainstream liquids. Typical physicochemical approaches for N recovery 

have been well summarized, including NH3 stripping and distillation, 

NH4
+ precipitation as struvite, ion exchange for NH4

+ and NO3
− 

recovery, and NH3 adsorption (Anthony, 1971, Capodaglio et al., 2015, 

Rulkens et al., 1998 and Williams et al., 2015). The form of N present 

(either NH3/NH4
+ or NO3

−/NO2
−) and concentration dictate the best 

strategy for N recovery. Nitrate can only be recovered using anion 

exchange resins (Samatya et al., 2006), followed by precipitation as 

an inorganic nitrate salt (as listed in Table 3) for agricultural 

application. Conversely, multiple NH3/NH4
+ recovery technologies are 

available. 

The concentration of NH3 is one of the most important factors 

for determining the most suitable means of recovery. When there is a 

high concentration of NH3, (i.e., NH4-N >2000 mg/L), air stripping and 

distillation are effective for N recovery, although pH (>9.5) and 

temperature adjustments are needed (>80 °C) ( Bonmatí and Flotats, 

2003 and Mehta et al., 2015). Capture efficiency of NH3 during 

stripping is high (up to 98%), and recovery can be improved through 

application of a vacuum ( El-Bourawi et al., 2007 and Ippersiel et al., 

http://dx.doi.org/10.1016/j.biortech.2016.02.093
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0095
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0095
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0295
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0045
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0095
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0090
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0090
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0285
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0285
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0285
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0010
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0055
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0300
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0360
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0305
http://www.sciencedirect.com/science/article/pii/S0960852416302309#t0015
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0040
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0040
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0240
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0120
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0175


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Bioresource Technology, Vol 215 (September 2016): pg. 186-198. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

23 

 

2012). The final N fertilizer product (i.e., NH3/NH4
+ salts or 

concentrated NH3 solution, as shown in Table 3) is obtained via 

condensation, absorption, or oxidation of the separated NH3 (Mehta et 

al., 2015). Although higher concentrations always favor improved and 

faster recovery rates, when lower NH4
+ concentrations are 

encountered, NH4
+ may be concentrated, e.g., using clinoptilolite ion 

exchange media, followed by precipitation as struvite ( Williams et al., 

2015). 

Ammonia can also be recovered from the liquid phase using gas 

permeable membranes which allow NH3 to permeate through a 

hydrophobic membrane, after which it can either be absorbed into an 

acidic solution or condensed to produce concentrated NH4
+ liquid. 

Efficiency is improved by driving the distribution toward NH3 rather 

than NH4
+ using higher temperatures (up to 80 °C) and pH (>9) 

(Mehta et al., 2015). 

For large volumetric flows of wastewater, an emerging strategy 

using complete anaerobic treatment (e.g., anaerobic membrane 

bioreactors) can be an effective option in terms of co-recovery of 

nutrients and energy. Using conventional treatment approaches, the 

energy used for wastewater treatment is about 3–4% of total 

electricity generated in the U.S. ( USEPA, 2012), and a large amount 

of this is used for N removal from wastewater. Alternatively, complete 

anaerobic wastewater treatment does not need aeration, which 

eliminates the aeration-associated costs. Additionally, NH4
+ remains in 

the wastewater (as does PO4
3−), which avoids the release of N back to 

the atmosphere that occurs during nitrification–denitrification. 

Subsequent physicochemical treatments can recover the soluble NH4
+ 

and PO4
3−. Anaerobic treatment can also facilitate the degradation of 

proteins, which enables additional N recovery (Grady et al., 1999). 

Thus, anaerobic treatment is a beneficial pretreatment step for 

physicochemical N recovery, and ongoing research continues to 

improve process efficiency and feasibility of implementation (e.g., low 

temperature operation). 

4.4. Potassium-selective recovery technologies 

The level of K is particularly high in vinasses from fermentation 

of molasses or sugar, making this waste an excellent feedstock choice 
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for K recovery (Decloux et al., 2002 and Zhang et al., 2012). To 

facilitate the final extraction of crystalline K fertilizers (i.e., K-struvite 

or K salts, as shown in Table 3), K is typically concentrated and/or 

released using the technologies previously described for P and N 

recovery. Notably, membrane filtration, electrodialysis, and 

adsorption/ion exchange show strong potential for effective recovery 

of K products ( Ciceri et al., 2015 and Mehta et al., 2015). 

Electrodialysis and strong acid cation exchange resins have been used 

to separate more than 99% K from winery and distillery waste, 

respectively ( Decloux et al., 2002 and Zhang et al., 2012). Moreover, 

ion exchange resins can be regenerated using sulfuric acid to produce 

a concentrated K solution, leading directly to precipitation of K2SO4 

fertilizer (Zhang et al., 2012). 

5. Integrated biorefinery technologies to build a 

nutrient factory 

Section 4 provided a comprehensive review of nutrient recovery 

technologies with potential for integration in a biorefinery. The 

technologies ranged from well-established with lower-value products 

(e.g., anaerobic digestion to produce biosolids) to relatively nascent 

technologies with potential for higher-value products (e.g., 

electrodialysis followed by precipitation of N, P, and K-chemical 

fertilizers). Many technologies are inherently specific towards a single 

nutrient species, while others can co-recover multiple nutrients, 

sometimes in a less concentrated (or mixed product) form. The 

primary products of major recovery technologies are summarized in 

Table 4. Relative assessment of the recoverable portion of each 

nutrient in the main product is also indicated, as well as additional 

technologies which can further enhance recovery. 

  

http://dx.doi.org/10.1016/j.biortech.2016.02.093
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0105
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0375
http://www.sciencedirect.com/science/article/pii/S0960852416302309#t0015
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0070
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0240
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0105
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0375
http://www.sciencedirect.com/science/article/pii/S0960852416302309#b0375
http://www.sciencedirect.com/science/article/pii/S0960852416302309#s0115
http://www.sciencedirect.com/science/article/pii/S0960852416302309#t0020


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Bioresource Technology, Vol 215 (September 2016): pg. 186-198. DOI. This article is © Elsevier and permission has been 
granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be 
further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

25 

 

Table 4. Nutrient recovery technology potential and implementation criteria. 

Major 
Techn
ology: 

Anaero
bic 

Digesti
ona 

Pyrolysis/G
asificationa 

Compo
stinga 

Bio-Nb Bio-Pb Precipit
ationb 

Adsorpt
ionb 

Ion 
Exchan

geb 

Electroc
hemical 
Processi

ngb 

Implementation 

Ideal 
Inputs 

Wastew
ater, 
animal 
wastes, 
food 
byprodu
cts 

Dry biomass, 
crop residue, 
vegetative 
material 

Vegetat
ive 
materia
ls, 
animal 
wastes, 
food 
byprod

ucts 

Solubl
e N 
wastes
; N-
rich 
water 
such 
as 

munici
pal, 
animal 
or food 
proces
sing 
wastes 

Solubl
e P 
wastes
; P-
rich 
water 
such 
as 

munici
pal, 
animal 
or food 
proces
sing 
wastes 

Concentr
ated N, 
P, K; 
concentr
ate from 
adsorpti
on or ion 
exchang

e 

Hydroph
obic or 
ionic N, 
P, K 
species 
in 
aqueous 
matrix 

Ionic 
species 
of N, P, 
K in 
aqueous 
matrix 

Soluble 
wastes, 
N, P, K-
rich 
water 
such as 
municipal
, animal 

or food 
processin
g wastes 

Techno
logy 
Maturit
yc 

∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗ 

Costd ∗∗ ∗∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗∗ 

 

Recovery Potential 

Primar
y 
recover
y 
produc
ts 

Biosolid
s 

Biochar, ash Compo
st 

Biomas
s (Org-
N), 
single 
cell 
protein 
(Org-
N) 

Biomas
s 

Struvite, 
hydroxyl
apatite, 
ammoni
um 
salts, 
phospha
te salts 

NH3, 
NH4

+, 
NO3

−, 
K+, 
orthopho
sphates 

NH4
+, 

NO3
−, 

K+, 
orthopho
sphates 

NH4
+, K+, 

orthopho
sphates 

Recove
rable N 
fraction
d 

∗∗ ∗∗ ∗ ∗∗∗ ∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗ 

Recove
rable P 
fraction
d 

∗ ∗∗∗ ∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ 

Recove
rable K 
fraction
d 

∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ 

Co-
proces
ses to 
increas
e 
recover
y 

Air 
strippin
g, 
precipita
tion, 
adsorpti
on, ion 
exchang
e, 
electroc

Ammonia 
condensation/
adsorption 
from gas 
phase, oil 
refinement, 
wet acid 
leaching, 
thermal 
processing 

NH3 or 
N2O 
capture 
from 
gas; 
adsorpt
ion, 
precipit
ation, 
or ion 

Precipi
tation, 
adsorp
tion, 
ion 
exchan
ge 

Precipi
tation, 
adsorp
tion, 
ion 
exchan
ge 

Adsorpti
on, ion 
exchang
e, air 
stripping
, 
electroch
emical 
processi
ng 

Precipita
tion, 
electroch
emical 
processi
ng 

Precipita
tion 

Precipitat
ion 
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Major 
Techn
ology: 

Anaero
bic 

Digesti
ona 

Pyrolysis/G
asificationa 

Compo
stinga 

Bio-Nb Bio-Pb Precipit
ationb 

Adsorpt
ionb 

Ion 
Exchan

geb 

Electroc
hemical 
Processi

ngb 

hemical 
processi
ng 

exchan
ge from 
leachat
e 

aCommonly used primary process in biorefineries. 
bTechnologies targeting nutrient recovery. 
cMature, widely implemented = ∗∗∗; limited use in industry = ∗∗; emerging 

technology = ∗. 
dHigh = ∗∗∗; intermediate = ∗∗; low = ∗. 

Fig. 2 depicts three possible processes representing scenarios 

designed to recover A) mixed nutrient products, B) chemical N, P, and 

K precipitates, and C) SCP. As shown, the different process 

combinations are likely to recover multiple nutrient products. In all 

scenarios, biological and/or physicochemical processes are used to 

concentrate the dilute nutrients in the waste biomass feedstock into 

solid forms, e.g., biomass, biochar, ion exchange media, after which 

direct agricultural application may follow or further processing to 

produce liquid or solid chemical fertilizer products. In keeping with the 

multi-route biorefinery approach to produce an array of value-added 

products, these technologies are likely to be implemented in various 

multi-part configurations which optimize recovery of mixed nutrient 

and N, P, K-specific fertilizer products alongside biofuels, energy, and 

platform chemicals. This is exemplified by the multi-process 

biorefinery flow diagram shown in Fig. 3. Although not all processes 

are shown in the figure, this example arrangement highlights the 

potential for co-recovery of nutrient products. 
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Fig. 2. Example biorefinery processes focused on production of (A) mixed 

nutrient fertilizer and soil amendment products, (B) N, P, and K-specific 

fertilizer precipitates, and (C) single cell protein (SCP) for food and feed. 
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Fig. 3. Material flow diagram depicting an example of how nutrient recovery 

may fit into an integrated biorefinery. 

 

As innumerable configurations are possible, a life-cycle 

assessment (LCA) approach could be appropriate to help optimize 

biorefinery performance. In particular, removal of nutrients can lower 

eutrophication and acidification potential while offsetting natural 

resource extraction through reuse of the recovered fertilizer products. 

Capital and operating costs are also critical considerations in 

biorefinery process design. Direct cost comparisons among 

technologies are inherently complex as the processes represent a wide 

range of technology maturity, ability to integrate with other biorefinery 

processes, and sensitivity to feedstock and operating conditions. 

Additionally, the future economic demand for nutrient products is 

expected to have a major role in implementation of these 

technologies. For perspective, relative comparisons of cost and 

technology maturity (which may dictate risks associated with 

implementing a specific process) are shown in Table 4. Lowering 

energy inputs, while optimizing product volume and value will prove 
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useful for implementing sustainable biorefinery nutrient recovery 

scenarios. 

6. Conclusions 

It is imperative to capitalize on opportunities to recover and 

reuse agricultural nutrients, and biorefineries provide an excellent, 

though yet underutilized, approach for doing so. Waste feedstocks 

offer the greatest opportunity to recover nutrients as part of the 

biorefinery product portfolio. Depending on the feedstock and desired 

nutrient product, a number of physical, chemical, and biological 

technologies can be used to recover mixed nutrient or N, P, K-specific 

fertilizers. Nutrient recovery technologies may have substantial 

implications for the sustainability of biorefineries while providing an 

alternative to current unsustainable approaches to fertilizer 

production. 
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The Supplementary Material contains additional information related to the basic assessment of 12 

the fate of agricultural flows of potassium (K). Additionally, citations and references for sources 13 

used to create all figures and tables shown in the text are presented along with a list of other 14 

recommended resources which provide greater detail for interested readers. 15 

 16 

Assessment of K flows 17 

Although there are good materials balances published describing the fate of N and P through 18 

agricultural systems, there is no analogous report for K. Thus, we performed a crude assessment 19 

to determine the percent of mined agricultural inputs of K that winds up in human and animal 20 

waste using the following data. The global potash production in 2013 was 34.5 million tonnes 21 

K2O, and 90% of that was assumed to be used for agricultural fertilizer (Jasinski, 2013). Humans 22 

excrete a total of 3.5 g/d per person K (Esrey, 2001). Animal waste contains 0.5 – 2.3% K (Smith 23 

and Wheeler, 1979), and using the average of these values and the total dry weight production of 24 

animal manure from the world’s farms in 1997 of 1.7 billion tonnes (Sheffield, n.d.), the K 25 

content of animal waste was computed. 26 

 27 

Recommended reading 28 

Table S1 identifies all of the sources of information used to create the respective Figures, Tables, 29 

and Boxes in the text. In addition to the references included in the text, Table S1 also lists a 30 

number of excellent references that are recommended for additional reading. 31 

 32 

  33 
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Table S1. Categorized references recommended for additional reading 34 
Anthropocene influences and global cycles 
 (Chowdhury et al., 2014; Crutzen, 2002; Erisman et al., 2008; Smil, 2002, 2000; Steen, 

1998; Steffen et al., 2007; Vitousek et al., 1997) 
Fertilizer production, use, needs, and impacts 
 (Horn and Sartorius, 2009; Jasinski, 2015; Rosmarin, 2004; Smil, 2004, 2002; Tanabe and 

Nishibayashi, 2013; Tucker et al., 2010) 
General resource recovery 
 (Guest et al., 2009; Matassa et al., 2015; Peccia and Westerhoff, 2015; Sonesson et al., 

2000; Sturm and Lamer, 2011; Wilsenach et al., 2003) 
Phosphorus recovery 
 
 

(Ashley et al., 2011; Biswas et al., 2008; Blaney et al., 2007; Cordell and White, 2011; 
Cordell et al., 2011; Gaterell et al., 2000; Gifford et al., 2015; Hao et al., 2013; Johnston 
and Richards, 2003; Le Corre et al., 2009; Mihelcic et al., 2011; Sartorius et al., 2012; 
Schroder et al., 2009; Sengupta and Pandit, 2011; Shaikh, Ahamad and Dixit, 1992; Tan 
and Lagerkvist, 2011) 

Nitrogen recovery 
 (Benemann, 1979; Bonmatí and Flotats, 2003; Coullard and Mercier, 1993; Graeser et al., 

2008; Vincent, 1971) 
Potassium recovery 
 (Ciceri et al., 2015; Espana-Gamboa et al., 2011; Sheehan and Greenfield, 1980; Yuan et 

al., 2012) 
Biorefineries and biomass 
 (Cherubini and Ulgiati, 2010; Cook et al., 2002; Fava et al., 2015; Fernando et al., 2006; 

García et al., 2014; NREL, 2002; Octave and Thomas, 2009; Pleissner and Lin, 2013; 
Yokoyama, 2008) 

Waste treatment 
 (Lu et al., 2012; McCarty et al., 2011; Tchobanoglous et al., 2003) 
Information referenced in Box 1 
 Phosphorus: (McKelvie, 2005; Tchobanoglous et al., 2003) 

Nitrogen: (Cao et al., 2010; Mattson et al., 2009) 
Potassium: (California Fertilizer Foundation, 2009; Ciceri et al., 2015) 

Information referenced in Table 1 
 (Azuara et al., 2013; Christenson and Sims, 2011; Delivand and Gnansounou, 2013; 

Doblinski et al., 2010; Grady et al., 1999; Hussein, 2013; Juneja et al., 2013; Latshaw and 
Miller, 1924; Mosse et al., 2011; Olguín, 2012; Rahman et al., 2013; Reimann et al., 2001; 
Selvamurugan et al., 2010; Shivajirao, 2012; Zhang et al., 2012) 

Information referenced in Table 2 
 Summarized from: (Madigan et al., 2009) 
Information referenced in Table 3 
 Representative organic mixtures: (Bridle and Pritchard, 2004; Tchobanoglous et al., 2003; 

Zhang et al., 2002) 
Information referenced in Figure 1 
 World population: (US Census Bureau, 2015) 

Global fertilizer production statistics from the United Nation’s Food and Agricultural 
Organization, FAO (FAO, 2015), were used as-is for available years (1961 and afterward). 
These datasets specifically note that different methodologies were used for data before and 
after 2002, which may result in the introduction of discontinuities in the figure due to 
linking multiple datasets together. For pre-1961 P and K production data, USGS statistics 
(Kelly and Matos, 2013) were used, while N estimates were made from data presented by 
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(Mulder, 2003). All units were converted to metric tonnes as nutrients, and an assumption 
was applied that 90% of world production reported by the USGS was used for fertilizer 
production. Fertilizer prices paid by U.S. farmers for representative N, P, and K fertilizers 
were collected from the FAO. For each year 1961 – 2013, the prices reported at different 
times during the year (n = 1-4) were averaged to report a mean annual price. Additional 
sources used to create the figure included: (Batstone et al., 2014; Cordell and White, 2011; 
Cordell et al., 2011). 

 35 
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