Signal and Noise in Complex-Valued SENSE MR Image Reconstruction

Daniel B. Rowe
Marquette University, daniel.rowe@marquette.edu
Iain P. Bruce
Marquette University - Graduate Student

Presented at The Eastern North American Region of the International Biometric Society (ENAR) in Miami, Florida, March 2011.

Signal and Noise in Complex-Valued SENSE MR Image Reconstruction

Daniel B. Rowe, Ph.D.

(Joint with lain P. Bruce)
Associate Professor
Computational Sciences Program
Department of Mathematics,
Statistics, and Computer Science

Adjunct Associate Professor
Department of Biophysics

OUTLINE 1. Motivation

2. Background
3. Methods
4. Results
5. Discussion

Motivation
 In MRI it is not voxel values that are measured.

The actual measurements are spatial frequencies (k-space).
The k-space measurements are not acquired instantaneously.
In parallel imaging, k-space is subsampled and measured in parallel then combined to form a single image.

Image and volume measurement time is decreased at the expense of increased image reconstruction difficulty and time.

One popular parallel imaging method is SENSE.

Background
Image inverse Fourier Reconstruction for single coil.
$\left(\Omega_{y R}+i \Omega_{y I}\right) *\left(F_{R}+i F_{I}\right) *\left(\Omega_{x R}+i \Omega_{x I}\right)^{T}=\left(V_{R}+i V_{I}\right)$

Rowe, Nencka, Hoffmann,Signal and noise of Fourier reconstructed fMRI data. JNSM 159:361-369, 2007.

Background
In parallel imaging there is more than one receive coil.

Each coil measures a

 k-space array where every $A^{\text {th }}$ line is skipped.

Full k-space.

Skipped k-space.

Background

The k-space arrays where every $A^{\text {th }}$ line is skipped are reconstructed into an aliased image to be combined to form a single image.

Skipped k-space.

```
coil }
```

Aliased images.

Combined image.

Background

The combination of aliased images to form a single image utilizes coil sensitivities.

Aliased images. a_{C}

Coil sensitivities. S_{C}

coil 3

Combined image. v_{C}

Rowe

Methods

The SENSE model for aliased voxel values from n coils is

$$
\begin{aligned}
& \qquad a_{C}={\underset{n \times 1}{C}}_{S_{n \times A}}^{v_{A \times 1}}+\varepsilon_{n \times 1} \quad, \quad \varepsilon_{C} \sim C N\left(0, \Psi_{C}\right) \\
& \text { where for each voxel }
\end{aligned}
$$

a_{C} is a vector of the n complex-valued aliased voxel values

$$
\begin{aligned}
& a_{C}=a_{R}+i a_{I} \\
& v_{C}=v_{R}+i v_{I}
\end{aligned}
$$

v_{C} is a vector of the A unaliased voxel value
S_{C} is an $n \times A$ matrix of complex-valued coil sensitivities

$$
S_{C}=S_{R}+i S_{I}
$$

ε_{C} is a vector of the n complex-valued error values

$$
\varepsilon_{C}=\varepsilon_{R}+i \varepsilon_{I}
$$

Pruessmann et al.: SENSE: Sensitivity Encoding for Fast MRI. MRM 42:952-962, 1999.
Bruce, Karaman, and Rowe: In Submission, 2011.

Rowe

Methods

$$
n \times 1
$$

Bruce, Karaman, and Rowe: In Submission, 2011.

Rowe

Methods

coil 1

The SENSE process

$a_{C}={\underset{c}{C}}_{n \times 1}^{n \times A} \underset{\substack{C \times 1}}{v_{C}}+\underset{\substack{n \times 1}}{S_{C}} \quad, \quad \varepsilon_{C} \sim C N\left(0, \Psi_{C}\right)$
$n \times 1 \quad n \times A \quad A \times 1 \quad n \times 1 \quad \Psi_{C}=\Psi_{R}+i \Psi_{t}$
uses the complex-valued normal distribution
H is the conjugate $f\left(\varepsilon_{C}\right)=(2 \pi)^{-n}\left|\Psi_{C}\right|^{-1} e^{-1 / 2 \varepsilon_{C}^{H} \Psi_{C}^{-1} \varepsilon_{C}}, \quad$ transpose (Hermetian)
and for n coil measurements
$f\left(a_{C}\right)=(2 \pi)^{-n}\left|\Psi_{C}\right|^{-1} e^{-1 / 2\left(a_{C}-S_{C} v_{C}\right)^{H} \Psi_{C}^{-1}\left(a_{C}-S_{C} v_{C}\right)}$

Rowe

Methods

(

coil 2 coil 3
$+\varepsilon_{C}$

From the distribution for the n coil measurements
$f\left(a_{C}\right)=(2 \pi)^{-n}\left|\Psi_{C}\right|^{-1} e^{-1 / 2\left(a_{C}-S_{C} v_{C}\right)^{H} \Psi_{C} \Psi_{C}^{-}\left(a_{C} s_{C} v_{C}\right)}$
the voxel values can be estimated as

$$
v_{C}=\left(S_{C}^{H} \Psi_{C}^{-1} S_{C}\right)^{-1} S_{C}^{H} \Psi_{C}^{-1} a_{C}
$$

with knowledge of S_{C} and Ψ_{C}.

Rowe

Methods

Instead of writing the model with complex numbers as

$$
\begin{gathered}
a_{C \times 1}=\underset{n \times 1}{S_{C}} \quad v_{C \times 1}+\underset{A \times 1}{\varepsilon_{C}}, \\
a_{C}=a_{R}+i a_{I} \quad S_{C}=S_{R}+i S_{I} \quad v_{C}=v_{R}+i v_{I} \quad \varepsilon_{C}=\varepsilon_{R}+i \varepsilon_{I}
\end{gathered}
$$

we can write the model using an isomorphism as

$$
\begin{aligned}
& \underset{2 n \times 1}{a}=\underset{2 n \times 2 A}{S} \underset{2 A \times 1}{v}+\underset{2 n \times 1}{\mathcal{E}} \\
& a=\binom{a_{R}}{a_{I}} \quad S=\left(\begin{array}{cc}
S_{R} & -S_{I} \\
S_{I} & S_{R}
\end{array}\right) \quad v=\binom{v_{R}}{v_{I}} \quad \mathcal{E}=\binom{\varepsilon_{R}}{\varepsilon_{I}} .
\end{aligned}
$$

Wooding The multivariate distribution of complex normal variables. Biometrika 43:212-215, 1956.

Rowe

Methods

Then the distribution for n coil measurements is

$$
f(a)=(2 \pi)^{-n}|\Psi|^{-1 / 2} \mathrm{e}^{-1 / 2(a-S v)^{\prime} \Psi^{-1}(a-S v)}
$$

with

$$
a=\binom{a_{R}}{a_{I}} \quad \underset{2 n \times 1}{S=\left(\begin{array}{cc}
S_{R} & -S_{I} \\
S_{I} & S_{R}
\end{array}\right) \quad \underset{2 A \times 2 A}{ } \quad v=\binom{v_{R}}{v_{I}} \quad \underset{2 n \times 1}{\varepsilon}=\binom{\varepsilon_{R}}{\varepsilon_{I}}, ~}
$$

and the imposed skew-symmetric covariance structure

$$
\Psi=\left(\begin{array}{cc}
\Psi_{R} & -\Psi_{I} \\
\Psi_{I} & \Psi_{R}
\end{array}\right)
$$

Wooding The multivariate distribution of complex normal variables. Biometrika 43:212-215, 1956.
Bruce, Karaman, and Rowe: In Submission, 2011.

Methods

The SENSE voxel values can be estimated by
or in terms of an isomorphism

$$
v_{C}=\left(S_{C}^{H} \Psi_{C}^{-1} S_{C}\right)^{-1} S_{C}^{H} \Psi_{C}^{-1} a_{C}
$$

$$
\binom{v_{R}}{v_{l}}=\left[\left(\begin{array}{cc}
S_{R} & -S_{I} \\
S_{I} & S_{R}
\end{array}\right)^{T}\left(\begin{array}{cc}
\Psi_{R} & -\Psi_{I} \\
\Psi_{I} & \Psi_{R}
\end{array}\right)^{-1}\left(\begin{array}{cc}
S_{R} & -S_{I} \\
S_{I} & S_{R}
\end{array}\right)\right]^{-1}\left(\begin{array}{cc}
S_{R} & -S_{I} \\
S_{I} & S_{R}
\end{array}\right)^{T}\left(\begin{array}{cc}
\Psi_{R} & -\Psi_{I} \\
\Psi_{I} & \Psi_{R}
\end{array}\right)^{-1}\binom{a_{R}}{a_{I}}
$$

$$
2 A \times 1
$$

$2 A \times 2 n$
$2 n \times 2 n$
$2 n \times 2 A$
$2 A \times 2 n$
$2 n \times 2 n$
$2 n \times 1$
$\left.\binom{v_{R}}{v_{I}}=\underset{2 A \times 1}{\left(\begin{array}{c}U \times 2 n\end{array}\right.} \underset{2}{\left(a_{R}\right.} \begin{array}{c}2 n \times 1\end{array}\right)$

$$
n=4 \text { real } / n=4
$$ imaginary true aliased voxel values

Acceleration A $A=3$ real $/ A=3$ imaginary un-aliased fold values

Methods

SENSE unfolding $\binom{v_{R}}{v_{I}}=U *\binom{a_{R}}{a_{I}}$

Methods

Real-valued
isomorphism

Methods

Methods

Bruce, Karaman, and Rowe: In Submission, 2011.
here is a for each voxel
$\downarrow a$

Rowe

Methods

$$
y=\underbrace{O_{I} P_{u}} \quad U \quad P_{s} P_{C} \quad\left(I_{n} \otimes \Omega_{a} O_{k}\right) \quad f
$$

where
k-space vector
O
$f=\left(f_{1}, \ldots, f_{n}\right)^{\prime}$ are coil k-space
O_{k} is k-space preprocessing
Ω_{a} is adj. inverse Fourier matrix $\Omega_{a}=\Omega \begin{aligned} & \text { adjusted for } \\ & \text { and for } T_{2}^{*}\end{aligned}$
P_{u}, P_{S}, P_{C}, permutation matrices $O_{I}=S_{m} \longleftarrow$ Image smoothing
U SENSE unfolding matrix
O_{I} is image space preprocessing

Rowe

Methods

Statistical Expectation and Covariance.
If $\mathrm{E}(f)=f_{0}$, then for $M f, \mathrm{E}(M f)=M f_{0}$.
If $\operatorname{cov}(f)=\Gamma$, then for $M f, \operatorname{cov}(M f)=M \Gamma M^{\prime}$.
This means that with $y=O f$,

$$
\begin{aligned}
& E(y)=O f_{0} \quad \text { and } \quad \operatorname{cov}(y)=O \Gamma O^{\prime}=\sum_{2 \mu \varepsilon_{p}} \\
& \rightarrow \operatorname{cor}(v)=D_{\Sigma}^{-1 / 2} \Sigma D_{\Sigma}^{-1 / 2}
\end{aligned}
$$

So even if $\Gamma=\sigma^{2} I$, it is not necessarily true that $\Sigma=\sigma^{2} I$!
This has $\mathrm{H}_{0} \mathrm{fMRI}$ noise and fcMRI connectivity implications!

Results

Since

$$
y=O f,
$$

we inverted and made the n coil spatial frequencies from

$$
\left(O^{T} O\right)^{-1} O^{T} v=f
$$

where O and v are known
v is true/noiseless Shepp-Logan phantom (scaled by 50)

$$
O=S_{m} P_{U} U P_{S} P_{C}\left(I_{n} \otimes \Omega\right)
$$

The number of coils, n, and the reduction factor, A, are specified in the dimensions of operators, O.

Rowe

Results

$$
y=O f
$$

Noiseless data $f=\left(O^{T} O\right)^{-1} O^{T} v$ generated for $N_{X}=N_{Y}=96$,
$O=S_{m} P_{U} U P_{S} P_{C}\left(I_{n} \otimes \Omega\right)$ $n=4, A=3$
O had diagonal blocks $U_{j}=\left(S_{j}^{T} \Psi^{-1} S_{j}\right)^{-1} S_{j}^{T} \Psi^{-1}$

Sensitivities, S

Markovian coil covariance, Ψ

$$
\begin{aligned}
& \Psi=\left(\begin{array}{cc}
\Psi_{R} & \Psi_{R I} \\
\Psi_{R I}^{\prime} & \Psi_{I}
\end{array}\right) \quad \Psi_{R}=\left(\begin{array}{cccc}
1 & .33 & .11 & .33 \\
.33 & 1 & .33 & .11 \\
.11 & .33 & 1 & .33 \\
.33 & .11 & .33 & 1
\end{array}\right) \\
& \text { Not skew-symmetric }
\end{aligned}
$$

$$
\Psi_{I}=\Psi_{R} \quad \Psi_{R I}=\left(\begin{array}{cccc}
0 & -.11 & -.07 & -.11 \\
.26 & 0 & -.11 & -.07 \\
.42 & .26 & 0 & -.11 \\
.26 & .42 & .26 & 0
\end{array}\right)
$$

Results

Gaussian Smoothing applied in image-space

- FWHM = 3 voxels,
-Normalized to leave variance unaffected (Scales mean by 4.516)
By definition, smoothing induces a covariance and correlation between voxels and their neighbors.

This effect is in turn transferred to the correlated voxels from each fold in SENSE.

Gaussian smoothing kernel, S_{m}, was applied in image-space to reconstructed images.

```
Bruce, Karaman, and Rowe: In Submission, 2011.
Nencka et al.: A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) Preprocessing
Operators on Observed Voxel Measurements in fcMRI and fMRI. Journal of Neuroscience Methods 181:268-282, 2009.
```


Results

Phase

Ghosting because symmetric coil cov Ψ used $\rightarrow \Psi=\left(\begin{array}{cc}\Psi_{k} & -\Psi_{t} \\ \Psi_{i} & \Psi_{k}\end{array}\right)$ Alternatice symmetric coil cov Ψ proposed.
Phase is important in complex-valued fMRI!

$$
\Psi=\left(\begin{array}{ll}
\Psi_{R} & \Psi_{R I} \\
\Psi_{R I}^{\prime} & \Psi_{I}
\end{array}\right)
$$

5×5 correlation image

Correlations induced about the center voxel.

Bruce, Karaman, and Rowe: In Submission, 2011.

Results

Extrapolate to human, mistakenly conclude regions correlated!

Discussion

The SENSE image reconstruction method was described.
Wrote SENSE reconstruction with an isomorphism
$y=O_{I} P_{U} U P_{S} P_{C}\left(I_{n} \otimes \Omega O_{k}\right) f=O f$.
The new mean $E(y)=O f_{0}$ and covariance $\Sigma=O \Gamma O^{\prime}$ of complex-valued SENSE described.

Theoretical results of SENSE reconstruction presented.
Ghosting present in SENSE magnitude and phase images.
Induced correlation between folds of no biological origin.

Thank You

Acknowledgements: lain Bruce, Marquette University Muge Karaman, Marquette University

Sweet 16!

Go Marquette!

