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ABSTRACT
NOVEL CONVERGENCE RESULTS

IN NONLINEAR FILTERING

Jennifer L. Bonniwell, B.S., M.S

Marquette University, 2016

In this dissertation, the discrete-time extended Kalman filter is analyzed
for its ability to attenuate finite-energy disturbances, known as the H∞-property.
Though the extended Kalman filter is designed to be a locally optimal minimum
variance estimator, this dissertation proves that it has additional properties, such
as H∞. This analysis is performed with the extended Kalman filter in direct form.
Since this form reduces assumptions placed on the system in previous works on
convergence and H2-properties of the extended Kalman filter, the extended
Kalman filter used as a nonlinear observer for noise-free models is revisited using
the direct form to demonstrate these properties.

Additionally, two representations for the discrete-time uncertain
measurement model with finite-energy disturbances are considered: 1) each
sensor in the measurement can fail independently with different failure rates and
2) all of the sensors in the measurement fail at the same time. The discrete-time
extended Kalman filters designed for such models are analyzed for general
convergence, the H2-property, and the H∞-property.

As an extension of this work, the continuous-time extended Kalman filter
is applied to systems with finite-energy disturbances. This continuous-time
extended Kalman filter is shown to inherently have the H∞-property. Simulation
studies have been performed on all of the extended Kalman filters in this
dissertation. These simulation studies demonstrate that when the extended
Kalman filters converge, they will also exhibit the H2 and H∞ properties. The
bounds developed on these properties are affected by the same constraints that
affect convergence, i.e. magnitudes of the initial estimation error and the
disturbance as well as the severity of the nonlinearities in the model.
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CHAPTER 1

INTRODUCTION

In this dissertation, the discrete-time extended Kalman filter is analyzed

for its ability to attenuate finite-energy disturbances, known as the H∞-property.

Though the extended Kalman filter is designed to be a locally optimal minimum

variance estimator, this dissertation proves that it has additional properties, such

as H∞. This analysis is performed with the extended Kalman filter in direct form,

which reduces assumptions placed on the system in previous works on

convergence and H2-properties of the extended Kalman filter. In addition to the

basic nonlinear model with finite-energy disturbances, two representations for

the discrete-time uncertain measurement model with finite-energy disturbances

are considered: 1) each sensor in the measurement can fail independently with

different failure rates and 2) all of the sensors in the measurement fail at the same

time. The discrete-time extended Kalman filters designed for such models are

analyzed for general convergence, the H2-property, and the H∞-property. As an

extension of this work, the continuous-time extended Kalman filter is applied to

systems with finite-energy disturbances. This continuous-time extended Kalman

filter is shown to inherently have the H∞-property.

1.1 Filter Properties

Why do we need filters and estimation techniques? Consider a signal

being sent from a satellite to a ground station. The signal begins as a ”clean”

signal (without noise) at the satellite, but as this signal travels through space and

then through the Earth’s atmosphere, noise is added to the signal. When the

ground station receives the signal, one of the tasks it has to perform is to filter the
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noise from the signal, which implies estimating the original signal sent from the

satellite. The error signal resulting from the difference between the ”clean” signal

and the estimate is the central point for generating an accurate estimate. For this

reason, properties relating to the error signal are essential to know when choosing

a filter for use in the design of an estimation system. This work focuses on the

analysis of the estimation error resulting from variations of the extended Kalman

filter (EKF). There are three specific properties that are of interest: (1) convergence

of the error; (2) H∞, the effect of disturbances on the energy of the error; and (3)

H2, the effect of initial conditions on the energy of the error.

1.1.1 Convergence

Convergence of the error describes if the error reaches the desired value of

zero, or if the error is moving away, or diverging, from zero. There are various

methods used in convergence analysis; in this work, Lyapunov methods are used.

In Lyapunov convergence analysis of the estimation error, a Lyapunov energy

function candidate, V, is defined, which is a positive function of the error signal

and must equal zero when the initial error is zero. If this Lyapunov energy

function candidate accurately represents the energy of the system, the energy will

decrease over time for a converging system. This is the reason that the time

evolution and time derivative of the Lyapunov energy function candidate is

analyzed to determine if it is negative as shown here for discrete- and

continuous-time, respectively

Vk+1 −Vk < 0 (1.1)

V̇(t) < 0 (1.2)

If the inequality holds, then the filter exhibits convergence.
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1.1.2 H∞- and H2-Properties

If the filter is known to converge, then further analysis can lead to values

for the H∞- and H2-properties. One of the main contributions of this dissertation

is the analysis of the H∞-property of several variations of the EKF. There are two

types of disturbances considered in the analysis, both with finite energy. In the

discrete-time analysis, a disturbance, wk that is an element of stochastic `2,

defined in Section 1.5, is a random disturbance with bounded estimated energy

defined in discrete-time as

∞

∑
k=0
‖wk‖2 < ∞ (1.3)

Similarly in the continuous-time analysis, a disturbance, w(t), that is an element

of L2, defined in Section 1.5, is a deterministic disturbance with bounded energy

defined in continuous-time as

∫ ∞

0
‖w(t)‖2dt < ∞ (1.4)

If a system contains one of these bounded energy (or finite-energy)

disturbances and has the H∞-property, then the energy of the estimation error in

discrete-time, ek, and continuous-time, e(t), respectively, are guaranteed to be

bounded as

∞

∑
k=0
‖ek‖2 ≤ αd

∞

∑
k=0
‖wk‖2 (1.5)

∫ ∞

0
‖e(t)‖2dt ≤ αc

∫ ∞

0
‖w(t)‖2dt (1.6)

where αd and αc are the H∞-gains.

Similarly, the H2-property gives insight into the effect of the initial

conditions on the energy of the estimation error. If a term that is a function of the
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initial error is bounded, such as the discrete- and continuous-time Lyapunov

function candidates V(e0) and V(e(0)), then the energy of the estimation error in

discrete- and continuous-time, respectively, are bounded as

∞

∑
k=0
‖ek‖2 ≤ βdV(e0) (1.7)

∫ ∞

0
‖e(t)‖2dt ≤ βcV(e(0)) (1.8)

where βd and βc are the H2-gains.

Additionally, the EKFs designed for the two discrete-time models for

uncertain measurements only have the H∞- and H2-properties for a finite period

of time. One example of a system that would have a finite-time property would

be a tracking system for highly maneuverable targets as the target is only in the

sensing range for a short period of time. These finite-time H∞- and H2-properties

are defined similarly to their infinite-horizon counterparts as follows

T

∑
k=0
‖ek‖2 ≤ αd

T

∑
k=0
‖wk‖2 (1.9)

T

∑
k=0
‖ek‖2 ≤ βdV(e0) (1.10)

for some integer 0 < T < ∞, where the finite window of time is usually quite

limited, e.g. 0 < T < 100.

1.2 Nonlinear Filtering

This section highlights various works that have been completed to date on

the topics of convergence, H2, and H∞ properties of the EKF. The Kalman filter [1]

is the minimum variance state estimator for linear systems. Furthmore, a model

with unknown parameters can be rewritten such that the parameter is one of the
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state variables, allowing the Kalman filter to also be the minimum variance

parameter estimator for linear systems. The design of the Kalman filter has been

extended to be a locally optimal minimum variance estimator for nonlinear

systems through linearization about the current estimate as presented in [2] and

[3], among others; this design is well known as the extended Kalman filter (EKF).

The EKF is used in thousands of applications, e.g. in estimation of vehicle

velocities in [4] and for system identification in [5]. In addition to applications of

the EKF, various performance properties of the EKF have been analyzed in

previous works. Convergence studies have been performed to show under what

conditions the EKF will work in both continuous [6], [7], [8], [9], [10] and discrete-

time [11], [12], [13], [14].

1.2.1 Two Forms of the Discrete-Time Extended Kalman Filter

The analysis of the discrete-time extended Kalman filter to date has

focused on the ”predict-update” form. This form has two steps: 1) use the past

estimate to predict the current estimate and 2) use the current measurement to

update the predicted estimate. For the system

xk+1 = f (xk) + Fkwk (1.11)

yk = h(xk) + Hkwk (1.12)

with Jacobians

Ak|k−1 =
∂ f (xk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k|k−1

(1.13)

Ck|k−1 =
∂h(xk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k|k−1

(1.14)

where xk ∈ <n is the state, yk ∈ <p is the measurement, wk ∈ <l is white noise

with zero mean and identity covariance, f (xk) ∈ <n and h(xk) ∈ <p are analytic

vector functions, and Fk and Hk are the noise coefficient matrices. Note, the
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subscript x̂k|k−1 represents the current estimate based on the previous

measurement and x̂k|k represents the current estimate based on the current

measurement. The algorithm is as follows [15]

• State prediction

x̂k|k−1 = f (x̂k−1|k−1) (1.15)

• Covariance prediction

Pk|k−1 = Ak|k−1Pk−1|k−1AT
k|k−1 + Fk−1FT

k−1 (1.16)

• Innovation

ek = yk − h(x̂k|k−1) (1.17)

• Innovation covariance

Ree
k = Ck|k−1Pk|k−1CT

k|k−1 + HkHT
k (1.18)

• Gain

Kk = Pk|k−1CT
k|k−1 (Ree

k )
−1 (1.19)

• State update

x̂k|k = x̂k|k−1 + Kkek (1.20)

• Covariance update

Pk|k = (In − KkCk|k−1)Pk|k−1 (1.21)

Alternatively, there is the ”direct” form of the EKF, which performs prediction

and update in one step, that has not been widely used in analysis. The algorithm

for this form is as follows



7

• State estimate

x̂k+1 = f (x̂k) + Kk(yk − h(x̂k)) (1.22)

• Kalman Gain

Kk = (AkPkCT
k + FkHT

k )(CkPkCT
k + HkHT

k )
−1 (1.23)

• Riccati Difference Equation

Pk+1 = (Ak − KkCk)Pk(Ak − KkCk)
T + (Fk − KkHk)(Fk − KkHk)

T (1.24)

• Jacobians

Ak =
∂ f (xk)

∂xk

∣∣∣∣
xk=x̂k

(1.25)

Ck =
∂h(xk)

∂xk

∣∣∣∣
xk=x̂k

(1.26)

One of the main contributions of this work is to use the direct form of the EKF in

the analysis which lends itself to be used with the Schur complement, defined

below in Section 1.6 Lemma 4.

1.2.2 Current State of Analysis of the Extended Kalman Filter

In [6], Ljung considers the continuous-time EKF used as a parameter

estimator for linear systems by treating the parameter as another state. From this

formulation of the problem, Ljung is able to show convergence properties for the

EKF used as a parameter estimator. Following a similar procedure as Ljung,

Ursin made a small change in the derivation that leads to improved convergence

results [7]. Verification of these results was performed in [8], in which Campbell

and Wiberg show that when the EKF used as a parameter estimator converges, it

always converges to the expected parameters and never to a “spurious” point.

Reif et al. analyze the EKF as a state estimator for continuous-time

nonlinear stochastic systems. Through the use of Itō calculus, they show under
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what conditions the EKF maintains stochastic stability [9]. In [10], Bonnabel and

Slotine investigate an EKF for deterministic continuous-time nonlinear systems

and use contraction theory to perform the convergence analysis. The form of their

results leads to additional analysis on the robustness of the EKF.

In [11], Reif et al. consider an EKF for stochastic discrete-time nonlinear

systems. Using the ”predict-update” form of the EKF, they derive the

convergence conditions for the estimation error of an EKF for noisy systems

through the use of Lyapunov analysis. To obtain their result, they assume that the

system Jacobian, Ak, is invertible, which reduces the systems that this analysis is

valid for. In [12], Boutayeb et al. study the convergence of the EKF for

deterministic discrete-time nonlinear systems using Lyapunov analysis and

include the residues from the first order Taylor Series approximations of the

nonlinear system in their formulation. In [13], Reif and Unbehauen show through

Lyapunov analysis that the EKF can be modified to work as an exponential

observer for deterministic discrete-time nonlinear systems. Similarly in [14], Song

and Grizzle show that the EKF can also be used as a local asymptotic observer for

deterministic discrete-time nonlinear systems.

Variations of the EKF have been developed for various models over the

years; one that is focused on as part of this dissertation is the uncertain

measurement model. There are two common definitions for uncertain

measurements: the measurement data is provided via a communication network

with occasional packet loss that results in a measurement signal of zero (referred

to in this work as intermittent measurements); and the measurement data always

contains noise but the data signal is sparse in nature or exhibits signs of sensor

degradation and failure (referred to in this work as uncertain measurements). To

emphasize the differences, consider a sinusoidal measurement as shown in Figure

1.1. When additive noise is introduced to the measurement, it becomes Figure 1.2.



9

Now consider examples for the two definitions above, both are the sinusoidal

Time Steps, k
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 1.1: Example of a sinusoidal measurement

measurement with noise but Figure 1.3 contains an intermittent measurement

and Figure 1.4 shows an uncertain measurement. The circles denote the same

region in both plots, highlighting the differences in the model. The intermittent

model is exactly zero when packets are dropped, while the uncertain

measurement is sending noise from the sensor to the estimation system.

Many researchers have provided work on Kalman filtering for the

intermittent measurement model. Sinopoli et al. [16] derive the Kalman filter for

discrete-time systems with intermittent measurements and this EKF is analyzed

in [17], [18], [19], [20], [21], [22]. On the other hand, Wang and Yaz derive an EKF

for the discrete-time uncertain measurement model in [23] and there is yet to be

progress regarding additional analysis of this EKF.
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Figure 1.2: Example of a sinusoidal measurement with additive noise
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Figure 1.3: Example of an intermittent measurement
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Figure 1.4: Example of an uncertain measurement

1.3 Main Contributions

The ubiquitous discrete- and continuous-time extended Kalman filters are

applied to systems with finite-energy disturbances and are analyzed for

convergence, H∞- and H2-properties. The following are the main contributions of

this work.

• Convergence and error energy analysis are performed on the discrete-time

EKF in the direct form applied to system models that are noise-free as well

as models with stochastic finite-energy noise.

– By analyzing the EKF in the direct form, the assumptions on the system

are reduced, such as not having to invoke the assumption that Ak is

invertible as in [11].

– Much has been studied regarding the convergence of these filters, but

little in regards to the H∞- and H2-properties, which are provided in
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this work.

• Novel results on general convergence, H∞-, and H2-properties of two

variations of the discrete-time extended Kalman filter designed for systems

with uncertain measurements are provided.

– The two uncertain measurement models used are: 1) measurement

sensors fail independently and 2) all sensors fail simultaneously.

• Through similar analysis performed in discrete-time, the continuous-time

EKF is also shown to inherently have the H∞- and H2-properties.

1.4 Dissertation Organization

This dissertation contains seven chapters. Chapter 1 consists of an

introduction to filter analysis and the H∞- and H2-properties as well as notation

and lemmata used throughout the dissertation. Chapter 2 contains the analysis of

the discrete-time extended Kalman filter applied to noise-free systems to show an

alternative method in obtaining convergence and H2-property results as well as

simulation studies. Chapter 3 contains the analysis of the discrete-time extended

Kalman filter applied to systems with disturbances taken as an element of

stochastic `2 accompanied with simulation studies. Chapter 4 includes the

analysis of the discrete-time extended Kalman filter designed for systems with

uncertain measurements with each sensor in the system having an individual

failure rate, i.e. the sensors fail independently from each other. Chapter 5 contains

a special case of Chapter 4, the analysis of the discrete-time extended Kalman

filter designed for systems with uncertain measurements with one failure rate for

all of the sensors, i.e. all sensors fail at the same time. Chapter 6 is an extension of

the discrete-time analysis to the continuous-time extended Kalman filter applied

to systems with deterministic finite-energy disturbances. Chapter 7 will conclude

the dissertation summarizing the work and introducing future work ideas.
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1.5 Notation

The following notation is used throughout this dissertation:

• x ∈ <n is an n-dimensional vector with real elements

• xT represents the transpose of vector x

• A ∈ <m×n is an m× n matrix with real elements

• In is the n× n identity matrix

• A > 0 (A ≥ 0) is a positive definite (semi-definite) matrix

• ◦ denotes the Hadamard product, given below in Section 1.6 Lemma 7

• ‖ · ‖ denotes the Euclidean norm of real vectors

• ‖ A ‖i represents the induced 2-norm (the spectral norm) of the matrix A

• λmin(A) and λmax(A) are the minimum and maximum eigenvalues of the

symmetric matrix A

• Ak denotes a time-varying matrix, that is, a matrix that changes with the

discrete-time index k = 0, 1, 2, . . .

• At denotes a time-varying matrix, that is, a matrix that changes with the

continuous-time t ≥ 0

• Ȧt is the time derivative of the matrix At

• E{x} = x is the expected value of the random variable x

• E{x|y} is the expected value of x conditional on y

• Stochastic `2 is the space of bounded energy sequences that are zero mean

and uncorrelated in time, i.e. xk ∈ `2 implies ∑∞
k=0 ‖xk‖2 < ∞, xk = 0,

xT
k xk−1 = 0

• L2 is the space of square integrable (finite-energy) vector functions, for

x ∈ L2,
∫ ∞

0 ‖x(t)‖
2dt < ∞
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1.6 Lemmata

Lemma 1 (Minimization by Completion of Squares). [24] For A = AT > 0,

X = −BT A−1 is the minimum solution of D = C + BTXT + XB + XAXT

Proof. To minimize

D1 = C + BTXT + XB + XAXT (1.27)

over X, the equation is written in a quadratic form

D2 = C + (X−Y)A(X−Y)T −YAYT (1.28)

where YAYT has been added and subtracted. For (1.27) and (1.28) to be

equivalent, like terms can be identified by expanding (1.28) as

D2 = C + XAXT −YAXT − XAYT + YAYT −YAYT (1.29)

= C−YAXT − XAYT + XAXT

where it can be seen that

BTXT = −YAXT (1.30)

or

BT = −YA (1.31)

Y = −BT A−1 (1.32)

which must be true for (1.27) and (1.28) to be equivalent.

In (1.28), the only free variable is X, resulting in (X−Y)A(X−Y)T as the

term to minimize. This term can be minimized by setting X equal to Y, yielding

the zero matrix. Therefore (1.27) can be minimized by choosing

X = Y = −BT A−1.

�
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Lemma 2. [2] If the pair (Ak, Ck) is uniformly observable, with ‖Ak‖i ≤ ā, ‖Ck‖i ≤ c̄,

‖Fk‖i ≤ f̄ , and ‖Hk‖i ≤ h̄ uniformly bounded in time, then the solution of the Riccati

difference equation and the Kalman gain are uniformly bounded both above and below as

0 < pIn ≤ Pk ≤ p̄In < ∞ and 0 < kIn ≤ Kk ≤ k̄In < ∞, respectively, for k = 1, 2, . . . .

Lemma 3 (Rayleigh’s inequality). [25] For Q = QT,

λmin(Q)‖x‖2 ≤ xTQx ≤ λmax(Q)‖x‖2

Lemma 4 (The Schur Complement). [25] For matrices A, B, and C, the following

conditions are equivalent:

a)

A BT

B C

 ≥ 0

b) C > 0 and A− BTC−1B ≥ 0

c) A > 0 and C− BA−1BT ≥ 0

Lemma 5 (Smoothing property of expectations). [26] E{E{x|y}} = E{x}

Lemma 6. [2] If the pair (Ak, Ck) is uniformly observable, with ‖Ak‖i ≤ ā, ‖Ck‖i ≤ c̄,

‖Fk‖i ≤ f̄ , ‖Hk‖i ≤ h̄, and ‖h(xk)‖ ≤ αh uniformly bounded in time, then the solution

of the Riccati difference equation and the Kalman gain are uniformly bounded both above

and below as 0 < pIn ≤ Pk ≤ p̄In < ∞ and 0 < kIn ≤ Kk ≤ k̄In < ∞, respectively, for

k = 1, 2, . . . .

Lemma 7 (Hadamard Product). [25] For matrices A, B ∈ <p×p,

[A ◦ B]i,j = [A]i,j[B]i,j

Corollary 7.1. [25] For matrices satisfying Lemma 7 and B = diag{b1, b2, . . . , bp}

consisting of random elements, E{BABT} = E{BBT} ◦ A

Lemma 8 (Time derivative of the inverse of a time-varying matrix). [25]
d(A−1

t )
dt = −A−1

t Ȧt A−1
t
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Lemma 9. [2] If the pair (At, Ct) is uniformly observable, with ‖At‖i ≤ ā, ‖Ct‖i ≤ c̄,

‖Ft‖i ≤ f̄ , and ‖Ht‖i ≤ h̄ uniformly bounded in time, then the solution of the Riccati

differential equation and the Kalman gain are uniformly bounded both above and below as

0 < pIn ≤ Pt ≤ p̄In < ∞ and 0 < kIn ≤ Kt ≤ k̄In < ∞, respectively, for t ≥ 0

Lemma 10 (Matrix Cross-Term Bound). [25] For appropriately sized vectors, e and w,

and matrix M, where β > 0 is an arbitrary constant:

eT Mw + wT MTe ≤ βeTe + β−1wT MT Mw

Lemma 11. [27] Let X and Y be n× n Hermitian matrices where the subscript denotes

the eigenvalue order, and the subscript n is the index of the minimum eigenvalue:

λi+j−n(XY) ≥ λi(X)λj(Y), for i + j ≥ n + 1.
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CHAPTER 2

H2-PROPERTY OF THE DISCRETE-TIME EXTENDED KALMAN FILTER
APPLIED TO NOISE FREE SYSTEMS

The discrete-time EKF designed for systems with zero mean, white noise

and correlation between the process and measurement noise is the focus of this

chapter. The development of the direct form of this EKF is provided. This EKF is

then analyzed using Lyapunov techniques for noise free systems showing both

convergence and the H2-property. Simulations are provided that study the effect

of the initial conditions for three different types of nonlinearities. These

simulations give insight into the validity and conservativeness of the results

herein.

2.1 EKF Formulation

The discrete-time extended Kalman filter for systems with correlation

between the process and measurement noise in direct form is derived in this

section based on [24]. Consider the nonlinear discrete-time system in (2.1) and

(2.2):

xk+1 = f (xk) + Fkwk (2.1)

yk = h(xk) + Hkwk (2.2)

where xk ∈ <n is the state, yk ∈ <p is the measurement, wk ∈ <l is zero mean,

(wk = 0), white noise (wkwT
k−1 = 0), with identity covariance (wkwT

k = Il), Fk and

Hk are the noise coefficient matrices resulting in the process noise covariance,

FkFT
k > 0, the measurement noise covariance, HkHT

k > 0, and the correlation

between the process and measurement noise, FkHT
k .
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The state estimate dynamics are calculated using known information: the

form of the nonlinearites, the current measurement, and the current estimate as

x̂k+1 = f (x̂k) + Kk(yk − h(x̂k)) (2.3)

where Kk ∈ <n×p will be the Kalman gain. The nonlinearities are approximated

using a Taylor Series Expansion about the current estimate yielding

f (xk) ∼= f (x̂k) + Ak(xk − x̂k) (2.4)

h(xk) ∼= h(x̂k) + Ck(xk − x̂k) (2.5)

with the Jacobians defined as

Ak =
∂ f (xk)

∂xk

∣∣∣∣
xk=x̂k

(2.6)

Ck =
∂h(xk)

∂xk

∣∣∣∣
xk=x̂k

(2.7)

The nonlinear observer error defined as the difference between the current

state and the estimate,

ek = xk − x̂k (2.8)

has the following dynamics

ek+1 = f (xk) + Fkwk − f (x̂k)− Kk(h(xk) + Hkwk − h(x̂k)) (2.9)

which, when combined with the approximations in (2.4) and (2.5), yield

ek+1
∼= (Ak − KkCk)ek + (Fk − KkHk)wk (2.10)

The goal of the EKF is to minimize the error covariance,

Pk = E
{

ekeT
k

}
(2.11)
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which is done through analysis of the error covariance dynamics,

Pk+1 = E
{

ek+1eT
k+1

}
(2.12)

∼= E
{
((Ak − KkCk)ek + (Fk − KkHk)wk)((Ak − KkCk)ek + (Fk − KkHk)wk)

T
}

= E

(Ak − KkCk)ekeT
k (Ak − KkCk)

T + (Ak − KkCk)ekwT
k (Fk − KkHk)

T

+(Fk − KkHk)wkeT
k (Ak − KkCk)

T + (Fk − KkHk)wkwT
k (Fk − KkHk)

T


Since the expectation operator is linear, it can be applied separately to each term

while also removing known terms from the expectation operation

Pk+1
∼=(Ak − KkCk)ekeT

k (Ak − KkCk)
T + (Ak − KkCk)ekwT

k (Fk − KkHk)
T (2.13)

+ (Fk − KkHk)wkeT
k (Ak − KkCk)

T + (Fk − KkHk)wkwT
k (Fk − KkHk)

T

In (2.10), it is seen that the current observer error, ek, is a function of the past

noise, wk−1. When the noise is white, wk and wk−1 are uncorrelated, implying that

wk and ek are uncorrelated, simplifying (2.13) to

Pk+1
∼=(Ak − KkCk)ekeT

k (Ak − KkCk)
T + (Ak − KkCk)(ek)wk

T(Fk − KkHk)
T (2.14)

+ (Fk − KkHk)(wk)ek
T(Ak − KkCk)

T + (Fk − KkHk)wkwT
k (Fk − KkHk)

T

Using the error covariance definition in (2.11), and known statistics of the noise,

zero mean and identity covariance, reduces (2.14) to

Pk+1
∼= (Ak − KkCk)Pk(Ak − KkCk)

T + (Fk − KkHk)(Fk − KkHk)
T (2.15)

To minimize the error covariance over the gain, Kk, (2.15) is expanded to

obtain the form for use with Lemma 1

Pk+1
∼=AkPk AT

k − AkPkCT
k KT

k − KkCkPk AT
k + KkCkPkCT

k KT
k (2.16)

+ FkFT
k − FkHT

k KT
k − KkHkFT

k + KkHkHT
k KT

k
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followed by grouping terms with respect to Kk which leads to

Pk+1
∼=AkPk AT

k + FkFT
k − (AkPkCT

k + FkHT
k )K

T
k (2.17)

− Kk(CkPk AT
k + HkFT

k ) + Kk(CkPkCT
k + HkHT

k )K
T
k

Recognizing that (2.17) is now of the form in Lemma 1 where the corresponding

terms are

A = CkPkCT
k + HkHT

k (2.18)

B = −(CkPk AT
k + HkFT

k ) (2.19)

C = AkPk AT
k + FkFT

k (2.20)

D = Pk+1 (2.21)

X = Kk (2.22)

applying Lemma 1 to (2.17) results in the locally optimal gain that minimizes

(2.17)

Kk = (AkPkCT
k + FkHT

k )(CkPkCT
k + HkHT

k )
−1 (2.23)

Therefore, the extended Kalman filter for the system in (2.1) and (2.2) is

defined by the following equations

• State estimate

x̂k+1 = f (x̂k) + Kk(yk − h(x̂k)) (2.24)

• Kalman Gain

Kk = (AkPkCT
k + FkHT

k )(CkPkCT
k + HkHT

k )
−1 (2.25)

• Riccati Difference Equation

Pk+1 = AkPkAT
k +FkFT

k (2.26)
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where

Ak = Ak − KkCk (2.27)

Fk = Fk − KkHk (2.28)

with

FkFT
k > 0 (2.29)

and Ak and Ck in (2.6) and (2.7), respectively.

2.2 Convergence Analysis of EKF Used on Noise-Free Systems

Now, consider the noise-free deterministic nonlinear discrete-time system

in (2.30) and (2.31):

xk+1 = f (xk) (2.30)

yk = h(xk) (2.31)

which has the following error dynamics, with error defined in (2.8),

ek+1 = f (xk)− f (x̂k)− Kk(h(xk)− h(x̂k)) (2.32)

which, when combined with the approximations in (2.4) and (2.5), yield

ek+1
∼= Akek (2.33)

Assumption 2.1. The pair (Ak, Ck) is uniformly observable, with ‖Ak‖i ≤ ā,

‖Ck‖i ≤ c̄, ‖Fk‖i ≤ f̄ , and ‖Hk‖i ≤ h̄ uniformly bounded in time.

Theorem 2.1. Consider the deterministic nonlinear system (2.30) and measurement

equation (2.31) with noise taken as wk = 0 for any integer k > 0. Let the state be

estimated using an extended Kalman filter with the gain from (2.25), which was designed

for systems with zero mean, white noise with identity covariance. With Assumption 2.1

on Ak, Ck, Fk, and Hk, Lemma 2 holds. With these conditions, the observer error is
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guaranteed to be asymptotically stable. Furthermore, the observer error energy is bounded

as
∞

∑
k=0
‖ek‖2 ≤ 1

ϕ
eT

0 P−1
0 e0 (2.34)

for any integer T > 0 where

ϕ , inf
k
(λmin(P−1

k −A
T
k P−1

k+1Ak)) (2.35)

with Ak in (2.27)

Proof. This proof has two main sections, convergence analysis and H2-analysis.

With Assumption 2.1, Lemma 2 states that the solution to the Riccati equation, Pk,

and the Kalman gain, Kk, are uniformly upper and lower bounded, which is

essential throughout the proof. The Lyapunov energy function candidate

Vk = eT
k P−1

k ek (2.36)

and the asymptotic stability condition,

Vk −Vk+1 > 0 (2.37)

are used as the basis of this study. Substituting directly from (2.36), (2.37) becomes

eT
k P−1

k ek − eT
k+1P−1

k+1ek+1 > 0 (2.38)

Substituting from (2.10) and combining like terms, (2.38) simplifies to

eT
k P−1

k ek − eT
kAT

k P−1
k+1Akek = eT

k (P−1
k −A

T
k P−1

k+1Ak)ek > 0 (2.39)

With (2.39) positive and in quadtratic form, Lemma 3 is used to lower bound

(2.39) as

Vk −Vk+1 ≥ ϕeT
k ek > 0 (2.40)

with ϕ in (2.35). Such a ϕ > 0 always exists if

P−1
k −A

T
k P−1

k+1Ak > 0 (2.41)
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The inverse of Pk+1 makes it unclear if (2.41) is true; however, Pk is a positive

definite matrix, allowing for Lemma 4 to be used. After substituting Pk+1 with

(2.26), the following conditions are equivalent to that in (2.41)P−1
k AT

k

Ak AkPkAT
k +FkFT

k

 > 0 (2.42)

AkPkAT
k +FkFT

k −AkPkAT
k > 0 (2.43)

FkFT
k > 0 (2.44)

With FkFT
k > 0 in (2.29), it is seen from (2.44) that the inequality is true, proving

(2.41) and showing that the discrete-time EKF will converge asymptotically for

noise-free systems with Assumption 2.1.

For H2-analysis, the effect of initial conditions, V0 = eT
0 P−1

0 e0, on the

observer error energy is considered by taking the summation of (2.40) from 0 to T,

for any integer T > 0

V0 −VT ≥ ϕ
T

∑
k=0
‖ek‖2 (2.45)

and for any VT > 0, (2.45) is simplified as

T

∑
k=0
‖ek‖2 ≤ 1

ϕ
V0 (2.46)

The inequality in (2.46) shows a bound on the H2-gain of the EKF to be 1/ϕ, with

ϕ in (2.35). �

2.3 Significance

When the discrete-time EKF is used as a nonlinear observer for noise-free

systems that meet the specified conditions, the results show that the observer

error converges asymptotically. In there derivation to show convergence, fewer

assumptions imposed compared to previous works resulting in a more general
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condition. In addition, it has been shown for the first time that the EKF has an

H2-property which says for bounded initial error, e0 < ∞, the energy of the

observer error is also bounded, ∑∞
k=0 ‖ek‖2 < ∞ .

2.4 Simulations

Three simulation cases are provided to show convergence of the observer

error and the validity of the H2-bound. The first case study is a system with a

sinusoidal nonlinearity, the second case study is a system with a quadratic

nonlinearity, and the third case study has a cubic nonlinearity. The effect of initial

error on the H2-gain and bound is analyzed for each case showing that more

“severe” nonlinearities may be more sensitive to large initial errors.

Three nonlinear systems of the form

ÿ = − f (y) (2.47)

which, when converted to state-space representation, become

ẋ =

0 1

0 0

 x +

 0

− f (x1)

 (2.48)

y =

[
1 0

]
x (2.49)

In each case, the systems are discretized using a first-order Euler approximation

xk+1 − xk
τ

=

0 1

0 0

 xk +

 0

− f (x1,k)

 (2.50)

yk =

[
1 0

]
xk (2.51)



25

which, after rearrangement, becomes

xk+1 =

1 τ

0 1

 xk +

 0

−τ f (x1,k)

 (2.52)

yk =

[
1 0

]
xk (2.53)

2.4.1 Sinusoidal Nonlinearity

Consider the continuous-time system in (2.54) which has a “mild”

nonlinearity

ÿ = −sin(y) (2.54)

which is discretized following the steps provided in the introduction of this

section as

xk+1 =

1 τ

0 1

 xk +

 0

−τsin(x1,k)

 (2.55)

yk =

[
1 0

]
xk (2.56)

An EKF used as a nonlinear observer for the deterministic system in (2.55) and

(2.56) with FkFT
k = I2, FkHT

k = 0, and HkHT
k = 1 and sampling time τ = 0.1s has

been analyzed to show convergence and compare the H2-gain from simulation to

the theoretical bound.

The initial observer error is considered in polar form:

eT
0 = ‖e0‖

[
cos(θ) sin(θ)

]T
(2.57)

To show convergence of the observer, the magnitude of the initial observer error

is kept as ‖e0‖ = 5 while the angle is swept through 360◦ in 45◦ increments.

Figures 2.1 and 2.2 show the time responses of ek = [e1,k, e2,k]
T for the initial

conditions given above. In all of the cases, the estimation error converges to zero.
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To analyze the H2-gain, θ is swept through 360◦ in 1◦ increments and three

values for the magnitude are used, ‖e0‖ = {5, 25, 50}. The H2-gain is calculated

using results from the simulation and is compared to the theoretical H2-bound by

solving (2.46) as
∑1

k=0 00‖ek‖2

eT
0 P−1

0 e0
≤ 1

ϕ
(2.58)

The left hand side of (2.58) is evaluated by calculating the 2-norm of the error at

each instant in time, squaring each of those values and then summing them; this

is then divided by the initial Lyapunov function, eT
0 P0e0. The right hand side of

(2.58) is evaluated by finding λmin(P−1
k −A

T
k P−1

k+1Ak) at each instant in time and

then taking the minimum of these minimums to obtain ϕ. The ratio of observer

error energy to V0 should be less than the theoretical bound, 1/ϕ. With this

relationship between the H2-gain from simulation and the theoretical bound, the

ratio of these two values has certain properties: 1) the ratio should be greater than

zero and less than one and 2) the closer the ratio is to one, the tighter the bound.

While keeping the magnitude of the initial observer error constant at

‖e0‖ = 5 and sweeping the angle through 360◦, the black dashed line in Figure 2.3

shows the values of the simulation to theoretical ratio at each 1◦ increment.

Likewise, the blue dash-dot and red solid lines represent the simulation to

theoretical ratio at each 1◦ increment for ‖e0‖ = 25 and ‖e0‖ = 50, respectively.

Figure 2.3 shows that the magnitude of the initial error has little effect on the

ratio. On the other hand, the angle component has a noticeable effect on this

simulation to theoretical ratio, with the minimum approximately along the 30◦

line and the maximum approximately along the 120◦ line.
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Figure 2.3: Sinusoidal nonlinearity - Ratio of H2-gain from simulation to
theoretical H2

2.4.2 Quadratic Nonlinearity

The EKF is now used as a nonlinear observer for the deterministic system

ÿ = −y2 (2.59)

which has a more “severe” nonlinearity and is discretized and converted to state

space representation as (2.60) and (2.61) with FkFT
k = I2, FkHT

k = 0 and HkHT
k = 1

and sampling time τ = 0.1s.

xk+1 =

1 τ

0 1

 xk +

 0

−τx2
1,k

 (2.60)

yk =

[
1 0

]
xk (2.61)
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With the knowledge that the existence of an H2-gain implies that the error has

finite energy, for the following two case studies, only the ratio between the

H2-gain from simulation and theoretical H2-bound will be analyzed. The

procedure is the same as before, θ is swept through 360◦ in 1◦ increments and

three values for the magnitude are used, ‖e0‖ = {5, 25, 50}.

While keeping the magnitude of the initial observer error constant at

‖e0‖ = 5 and sweeping the angle through 360◦, the black dashed line in Figure 2.4

shows the values of the simulation to theoretical ratio at each 1◦ increment.

Likewise, the blue dash-dot and red solid lines represent the simulation to

theoretical ratio at each 1◦ increment for ‖e0‖ = 25 and ‖e0‖ = 50, respectively.

Figure 2.4 shows that for the system in (2.60) and (2.61), the magnitude and the

angle of the initial error both have affect on the result.

2.4.3 Cubic Nonlinearity

Similar to the previous two case studies, the EKF is used as a nonlinear

observer for the deterministic system

ÿ = −y3 (2.62)

which has the most “severe” nonlinearity considered and is discretized and

converted to state space representation in (2.63) and (2.64) with FkFT
k = I2,

FkHT
k = 0 and HkHT

k = 1 and sampling time τ = 0.1s.

xk+1 =

1 τ

0 1

 xk +

 0

−τx3
1,k

 (2.63)

yk =

[
1 0

]
xk (2.64)

The procedure to compare the H2-gain from simulation to theoretical H2 bound is

the same as before, θ is swept through 360◦ in 1◦ increments and three values for
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the magnitude are used, ‖e0‖ = {2.5, 5, 7.5}. Notice that the range in error

magnitude is smaller in this set of simulations. Due to the larger or more “severe”

nonlinearity of x3
1,k, the system Jacobian, Ak, grows unbounded with larger initial

errors, which goes against Assumption 2.1. For this reason, the range has been

reduced to look at the three different magnitudes given above.

While keeping the magnitude of the initial observer error constant at

‖e0‖ = 2.5 and sweeping the angle through 360◦, the black dashed line in Figure

2.5 shows the values of the simulation to theoretical ratio at each 1◦ increment.

Likewise, the blue dash-dot and red solid lines represent the simulation to

theoretical ratio at each 1◦ increment for ‖e0‖ = 4 and ‖e0‖ = 8, respectively.
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Figure 2.5 shows that for the system in (2.60) and (2.61) the magnitude and the

angle of the initial error both have an effect on the result. Also, the deformation of

the shape’s curvature in both the ‖e0‖ = 5 and ‖e0‖ = 7.5 cases signals that the

initial error might be getting too large, nearly causing the assumptions to fail,

which is indeed seen when ‖e0‖ = 10.
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Figure 2.5: Cubic nonlinearity - Ratio of H2-gain from simulation to theoretical H2

2.5 Summary

Convergence of the discrete-time extended Kalman filter used as a

nonlinear observer for noise-free deterministic systems was shown using

Lyapunov analysis. Additionally, a bound on the H2-gain was derived. Three
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simulation studies were provided to show convergence of the observer error and

the validity of the H2-bound. The first case study was a system with a sinusoidal

nonlinearity and was the “mildest” nonlinearity considered. For this system, the

initial error magnitude had a lesser effect on the H2-gain compared to the angle of

the initial error. The second case study was a system with a quadratic

nonlinearity, which is a more “severe” nonlinearity. The ratio between the

H2-gain from simulation and theoretical H2-bound varied for the three initial

error magnitudes, becoming more conservative as the magnitude of the initial

error increased. The third case study had a cubic nonlinearity and was the most

“severe” nonlinearity in the study. Unlike the system with the quadratic

nonlinearity, where the overall shape of the three responses in Figure 2.4 stayed

relatively similar but the size varied, in this case study, as the magnitude of the

initial error increased, the general response of the ratio began having a deformed

shape and became more conservative as the magnitude of the initial error

increased. It was discussed that this deformation was due to the initial error

nearing its maximum before the observer error might diverge. Next, this EKF will

be further analyzed when applied to systems with finite-energy noise.
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CHAPTER 3

H∞-PROPERTY OF THE DISCRETE-TIME EXTENDED KALMAN FILTER
APPLIED TO SYSTEMS WITH STOCHASTIC `2 DISTURBANCES

In Chapter 2, the EKF designed for systems with zero mean, white noise

and correlation between the process and measurement was analyzed for

noise-free systems. This chapter will extend that work to the same EKF being

applied to systems that have stochastic `2 type disturbances in both the process

and measurement. Lyapunov analysis will be completed to obtain general

convergence as well as the H∞-property. Simulations are provided to show the

effect that the magnitude of the disturbance and the initial error have on

convergence. Additional simulations provide analysis on the validity of the result

by comparing the H∞-gain calculated from simulation to the theoretical

H∞-bound.

3.1 EKF Formulation

For convenience, the main equations for the discrete-time extended

Kalman filter for systems with correlation between process and measurement

noise given in Chapter 2 are presented again here. Consider the nonlinear

discrete-time system in (3.1) and (3.2):

xk+1 = f (xk) + Fkwk (3.1)

yk = h(xk) + Hkwk (3.2)

where xk ∈ <n is the state, yk ∈ <p is the measurement, wk ∈ <l is zero mean,

(wk = 0), white noise (wkwT
k−1 = 0), with identity covariance (wkwT

k = Il), Fk and

Hk are the noise coefficient matrices resulting in the process noise covariance,

FkFT
k , the measurement noise covariance, HkHT

k , and the correlation between the

process and measurement noise, FkHT
k .
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The resulting extended Kalman filter for the system in (3.1) and (3.2) was

shown in Chapter 2 to be defined by the following

• State estimate

x̂k+1 = f (x̂k) + Kk(yk − h(x̂k)) (3.3)

• Kalman Gain

Kk = (AkPkCT
k + FkHT

k )(CkPkCT
k + HkHT

k )
−1 (3.4)

• Riccati Difference Equation

Pk+1 = AkPkAT
k +FkFT

k (3.5)

where

Ak = Ak − KkCk (3.6)

Fk = Fk − KkHk (3.7)

with FkFT
k > 0 and Ak and Ck in (2.6) and (2.7), respectively.

3.2 Convergence Analysis of EKF Used on Systems with Finite-Energy Noise

Consider the nonlinear discrete-time system and measurement equations,

xk+1 = f (xk) + Fkwk (3.8)

yk = h(xk) + Hkwk (3.9)

where the disturbance wk ∈ `2 is now zero mean, identity covariance,

uncorrelated in time, and finite-energy. With the error defined as

ek = xk − x̂k (3.10)

the error dynamics are

ek+1
∼= xk+1 − x̂k+1 (3.11)

= f (xk) + Fkwk − f (x̂k)− Kk(yk − h(x̂k))
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which, when combined with the Taylor series approximations (2.4) and (2.5) leads

to

ek+1
∼= Akek +Fkwk (3.12)

with Ak and Fk in (3.6) and (3.7). Note that in Chapter 2, the second term in (3.12)

was not present because the disturbance, wk, was zero.

Theorem 3.1. Consider the nonlinear system (3.8) and measurement equation (3.9),

with the noise taken as an element of stochastic `2 and FkFT
k > 0 with Fk in (3.7). Let

the state be estimated using an extended Kalman filter, which was designed for white

noise with zero mean and unit covariance, with gain Kk from (3.4). With the conditions

on Ak, Ck, Fk, and Hk in Assumption 2.1, Lemma 2 holds. With these conditions, the

energy of the estimation error is bounded as follows

∞

∑
k=0
‖ek‖2 <

1
ϕ1

(
eT

0 P−1
0 e0 + ϕ2

∞

∑
k=0
‖wk‖2

)
(3.13)

where

ϕ1 , inf
k
(λmin(P−1

k −AT
k P−1

k+1Ak)) (3.14)

ϕ2 , sup
k
(λmax(FT

k P−1
k+1Fk)) (3.15)

with Ak and Fk in (3.6) and (3.7)

Proof. With Assumption 2.1, Lemma 2 states that the solution to the Riccati

equation, Pk, and the Kalman gain, Kk, are uniformly upper and lower bounded,

which is essential throughout the proof. Stochastic Lyapunov analysis is used to

determine the stability of the estimation error and obtain the H∞-gain. The

Lyapunov function candidate,

Vk = eT
k P−1

k ek (3.16)
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is analyzed along the dynamics of the error (3.12) to verify that the average

energy decreases over time. To this end, consider the following stochastic

Lyapunov difference

E{Vk+1|ek, ek−1, . . . } −Vk (3.17)

= E{eT
k+1P−1

k+1ek+1|ek, ek−1, . . . } − eT
k P−1

k ek < 0

The inequality in (3.17) is rewritten by substitution from (3.12) as,

E{(Akek +Fkwk)
TP−1

k+1(Akek +Fkwk)|ek, ek−1, . . . }

− eT
k P−1

k ek < 0 (3.18)

which, when expanded, results in

−eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2wT

kFT
k P−1

k+1Akek + wT
kFT

k P−1
k+1Fkwk < 0 (3.19)

Because Ak, Fk, x̂k, and therefore ek, Pk and Kk are functions of wk−1 and since wk

is uncorrelated in time with zero mean, the second term in (3.19) can be rewritten

so that the inequality becomes

−eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2

(
wT

k

) (
FT

k P−1
k+1Ak

)
ek

+ wT
kFT

k P−1
k+1Fkwk < 0 (3.20)

leading to

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + wT

kFT
k P−1

k+1Fkwk < 0 (3.21)

To ensure (3.21) is negative, the development for an upper bound is

provided next. The first term is lower bounded using Lemma 3

−ϕ1eT
k ek + wT

kFT
k P−1

k+1Fkwk < 0 (3.22)

with ϕ1 defined in (3.14). Such a ϕ1 always exists, if for any integer k > 0

P−1
k −A

T
k P−1

k+1Ak > 0 (3.23)
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This is shown by substituting Pk+1 from (3.5) and using Lemma 4 twice resulting

in the following equivalent matrix inequality conditionsP−1
k AT

k

Ak AkPkAT
k +FkFT

k

 > 0 (3.24)

AkPkAT
k +FkFT

k −AkPkAT
k > 0 (3.25)

and FkFT
k > 0 is true, therefore, for any integer k > 0

P−1
k −AT

k P−1
k+1Ak > 0 (3.26)

To obtain an upper bound on the second term in (3.22), it is shown that for

any integer k > 0

FT
k P−1

k+1Fk ≤ Il (3.27)

When Pk+1 is substituted from (3.5) and Lemma 4 is applied twice, the following

matrix inequality conditions are equivalent Il FT
k

Fk AkPkAT
k +FkFT

k

 ≥ 0 (3.28)

AkPkAT
k +FkFT

k −FkFT
k ≥ 0 (3.29)

which agrees with AkPkAT
k ≥ 0. Therefore, it has been shown that Il is a valid

upper bound as shown in (3.27) and Lemma 3 can be applied to the second term

in (3.22), resulting in ϕ2 in (3.15) which is guaranteed to be bounded. These

bounds result in

E{Vk+1|ek, ek−1, . . . } −Vk < −ϕ1eT
k ek + ϕ2wT

k wk < 0 (3.30)

Lastly, taking the expected value of (3.30) and using Lemma 5 results in

Vk+1 −Vk < −ϕ1eT
k ek + ϕ2wT

k wk < 0 (3.31)

To analyze the H∞-property, the ratio of the estimation error energy to the

disturbance energy is analyzed. To obtain terms that are representative of the



38

estimation error energy and the disturbance energy, the summation of (3.31) is

taken from k = 0 to k = T (for any integer T > 0) giving

VT −V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 (3.32)

and for VT ≥ 0,

−V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 (3.33)

which is rearranged as

T

∑
k=0
‖ek‖2 <

1
ϕ1

(
eT

0 P−1
0 e0 + ϕ2

T

∑
k=0
‖wk‖2

)
(3.34)

This result indicates that the energy of the estimation error has an upper bound

proportional to the initial estimation error and the disturbance energy, eT
0 P−1

0 e0

and ∑T
k=0 ‖wk‖2, where the proportionality constants ϕ1 and ϕ2 are defined in

(3.14) and (3.15). �

3.3 Significance

If the initial estimate has zero error, the result (3.34) is the H∞-property

resulting in the H∞-gain defined below,

∑∞
k=0 ‖ek‖2

∑∞
k=0 ‖wk‖2

<
ϕ2

ϕ1
(3.35)

where ϕ1 and ϕ2 are defined in (3.14) and (3.15).

On the other hand, if there is no noise in the system for k = 0, 1, 2, . . . , then

(3.34) results in a special case that presents a bound on the estimation error

energy in terms of the initial conditions, eT
0 P−1

0 e0, i.e. the H2-property of the EKF

∞

∑
k=0
‖ek‖2 <

1
ϕ1

eT
0 P−1

0 e0 (3.36)
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3.4 Simulations

Simulations are presented that demonstrate the two properties described

in Section 3.3. For sufficiently small error in the initial estimate and disturbances

with sufficiently small energy, the estimation error converges and the

assumptions are met resulting in an attenuation of the effect of the disturbances.

Then with the same initial estimate, the simulations show that for a stable system

with sufficiently large disturbances, the assumptions for the H∞-property are no

longer met and the estimation error diverges. Finally, when the magnitude of the

disturbance is the same as in the first case while the error in the initial estimate is

increased, the simulations show that the assumptions for the H∞-property are no

longer met and, as expected, the estimation error diverges. A second system is

studied where the estimation error is zero and a value for the H∞-gain can be

calculated for the system and compared to the theoretical bound. A multiplier on

the noise terms is varied and the H∞-gain from simulation is compared to the

theoretical bound of the H∞-gain. Lastly, the H∞-gain from simulation is

compared to the H∞ theoretical bound for the systems given in Section 2.4 with

sinusoidal, quadratic, and cubic nonlinearities. This will show how nonlinearities

with different severities affect the H∞-gain from simulation to theoretical bound

ratio.
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3.4.1 Effect of Initial Conditions and Disturbance Energy

Consider the nonlinear system based on reference [11] given by

x1,k+1 = x1,k + τx2,k + F11wk (3.37)

x2,k+1 = x2,k + τ
(
−x1,k +

(
x2

1,k + x2
2,k − 1

)
x2,k

)
(3.38)

yk = x1,k + Hkwk (3.39)

x0 =

[
0.8 0.2

]T
(3.40)

where τ = 0.01s is the sampling period, wk ∈ `2 and F11 and H12 are elements of F

and H, which are constant weighting matrices of the form

F =

F11 0

0 0

 (3.41)

H =

[
0 H12

]
(3.42)

These matrices will be varied for the following simulation cases as provided in

Table 3.1.

Following the procedure for the EKF, the nonlinearities of the system and

measurement equations are linearized via a Taylor Series expansion around the

state estimate

Ak =

 1 τ

τ (−1 + 2x̂1,k x̂2,k) 1 + τ
(

x̂2
1,k + 3x̂2

2,k − 1
)
 (3.43)

Ck =

[
1 0

]
(3.44)

These time varying matrices are used to calculate the solution to the Riccati

difference equation (3.5) and the Kalman gain (3.4) at each time step. Three

different cases are simulated, shown in Table 3.1, along with a qualitative stability

analysis and H∞-gain calculations. Each case is discussed in further detail below.
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Table 3.1: Effect of initial values and constant weighting matrices

Case 1 Case 2 Case 3

x̂0 [0.5 , 0.5]T [0.5 , 0.5]T [1.5 , 1.2]T

F11 10−3 10−2 10−3

H12 0.1
√

10
√

10 0.1
√

10

Error Stability Stable Unstable Unstable

H∞-Gain 0.0185 — —

Figures 3.1, 3.2, 3.3 3.4, 3.5, 3.6 3.7, 3.8, 3.9

Case 1 consists of a small error in the initial state estimate as well as small

magnitudes for the elements of the weighting matrices. This produces results that

meet the assumption of FkFT
k > 0 for k = 0, 1, . . . , N. Figures 3.1 and 3.2 show

that for this stable system, the estimates of the states are stable resulting in the

same performance for the error, Figure 3.3.

Case 2 has the same initial error, with larger magnitudes in the weighting

matrices. Figures 3.4 and 3.5 show that with larger noise, while the system is

stable, the state estimate, and the error in Figure 3.6, becomes unbounded and

does not demonstrate an H∞-property. In this case, the assumption of FkFT
k > 0

does not hold, therefore it would be expected that this example does not have an

H∞-property.

Case 3 has large initial error but small magnitudes in the weighting

matrices. Figures 3.7 and 3.8 show that the system response is stable but the

estimate is unbounded and Figure 3.9 shows that this naturally leads to instability

in the error. When checking the assumption of FkFT
k > 0, this assumption does

not hold and explains why this case does not have an H∞-property.
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Figure 3.1: Second order system, Case 1 - State, x1,k, and estimate, x̂1,k
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Figure 3.2: Second order system, Case 1 - State, x2,k, and estimate, x̂2,k
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Figure 3.3: Second order system, Case 1 - Norm of the estimation error
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Figure 3.4: Second order system, Case 2 - State, x1,k, and estimate, x̂1,k
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Figure 3.5: Second order system, Case 2 - State, x2,k, and estimate, x̂2,k
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Figure 3.6: Second order system, Case 2 - Norm of the estimation error
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Figure 3.7: Second order system, Case 3 - State, x1,k, and estimate, x̂1,k
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Figure 3.8: Second order system, Case 3 - State, x2,k, and estimate, x̂2,k
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Figure 3.9: Second order system, Case 3 - Norm of the estimation error

3.4.2 Simulation H∞-Gain to Theoretical H∞-Bound Comparison

Scalar System

A scalar system shown below has also been analyzed to facilitate the

comparison of the H∞-gain from simulation to the theoretical bound to give

insight into the validity and conservativeness of the result. The system is

xk+1 = xk + 0.01 sin xk + 10δwk (3.45)

yk = xk + 0.1δwk (3.46)

with wk ∈ `2. The variable δ is swept from −50 to 50 in 0.2 increments to observe

how the H∞-gain from simulation and theoretical bound vary with disturbance

magnitude. The H∞-gain is calculated as the left hand side of (3.35) for each δ for

a run time of T = 1000. Since this is a stochastic system, a 100 run Monte Carlo

simulation is used for the analysis.
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Figure 3.10 is a co-plot of the gain from simulation and the theoretical

bound that shows for this system that the gain is close to the bound for all δ. For a

better sense of the relationship between these values, the ratio of the calculated

H∞-gain to the theoretical bound is shown in Figure 3.11. This ratio is obtained

using (3.35), where the error energy is found by calculating the 2-norm of the

error at each instant in time, each 2-norm is then squared, the sample mean of the

squared 2-norms is calculated, and then all of these are added together. The same

process is performed for the disturbance energy. The right hand side of (3.35) is

evaluated by finding λmin(P−1
k −A

T
k Pk+1Ak) at each instant in time and then

taking the minimum of these minimums to obtain ϕ1. Similarly, ϕ2 is found by

calculating λmax(FT
k Pk+1Fk) at each instant in time and then taking the maximum

of these maximums.

δ
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Figure 3.10: Co-plot of H∞-gain and theoretical bound for a scalar system with a
sinusoidal nonlinearity
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Similar to the ratio analyzed in Chapter 2, the calculated H∞-gain to the

theoretical bound ratio has certain properties: 1) the ratio should be greater than

zero and less than one and 2) the closer the ratio is to one, the less conservative

the result. Figure 3.11 shows that the theoretical bound is very close to the

H∞-gain from simulation for all δ with the ratio remaining between 0.97 and 1.00

for this system. This ratio will be further analyzed to determine if this tightness in

the bound is system dependent by studying second order systems.
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Figure 3.11: Ratio of H∞-gain to theoretical bound for a scalar system with a
sinusoidal nonlinearity

Second Order Systems with Various Nonlinearity Severities

As mentioned in the introduction to this section, various nonlinearity

severities will now be analyzed. The nonlinearities from least severe to most

severe are: sinusoidal, quadratic, and cubic. The severity of these nonlinearities is

based on their first derivative. These systems are similar to the form given in

Section 2.4, where the continuous-time system is defined as a
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mass-spring-damper with a nonlinear spring

ÿ = −bẏ− f (y) (3.47)

which is converted to state-space form, is discretized and has noise added to it as

xk+1 =

1 τ

0 (1− τb)

 xk +

 0

−τ f (x1,k)

+ δ

0.02 0.1

0 0.01

wk (3.48)

yk =

[
1 0

]
xk + δ

[
0.1 0.1

]
wk (3.49)

with f (y) = {sin(y), y2, y3} used in the simulation, b = 5 is the damping

coefficient, and wk ∈ `2. The disturbance multiplier, δ is swept from −1 to 1 in

0.01 increments and the ratio of the H∞-gain from simulation to the theoretical

bound is calculated using the method described earlier in this section.

Figure 3.12 shows that this ratio is smaller for these systems, implying that

the bound is more conservative in these cases. Additionally, it is seen from Figure

3.12 that the least severe nonlinearity, the sinusoidal represented by the black line,

has the most accurate bound out of the three nonlinearities studies.

3.5 Summary

The H∞-property was shown for the discrete-time extended Kalman filter

used as a nonlinear observer in the presence of random finite-energy

disturbances. The H2-property of the estimation error when the disturbance is

absent follows as a special case of this result. Various simulation studies were

performed to demonstrate convergence as well as H∞. In the convergence

simulations, it was seen that the estimation error would converge for relatively

small initial error and disturbance magnitudes. A study on the validity and

conservativeness of the H∞-bound was performed on a scalar system and three

second order systems with varying nonlinearity severities. The scalar system
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Figure 3.12: Three nonlinearities - Ratio of H∞-gain to theoretical bound (100 run
Monte Carlo)

simulation showed that the bound on the H∞-gain is very tight. However, the

additional simulations on second order systems show that the tightness of the

bound is system dependent. The second order simulations also showed that for

larger disturbance magnitudes, the least severe nonlinearity was the least

conservative of the three studied. The following chapters will focus on the

analysis of EKFs designed for the uncertain measurement model.



51

CHAPTER 4

H∞-PROPERTY OF THE DISCRETE-TIME EXTENDED KALMAN FILTER
FOR SYSTEMS WITH INDIVIDUALLY FAILING MEASUREMENTS

Recall the uncertain measurement model as described in Section 1.2.2 with

an example shown in Figure 1.4, this is the model focused on in this chapter. A

variation of the EKF that was designed for systems with zero mean, white noise

and correlation between the process and measurement as well as uncertainty in

the measurement has been analyzed for systems that have stochastic `2 type

disturbances. It will be shown that this variation of the EKF has the finite-time

H∞-property. Simulations are provided that analyze the effect of the run time as

well as various levels of nonlinearity severity.

4.1 System Description and the EKF as a Nonlinear Observer

Consider the nonlinear discrete-time system and measurement equations,

xk+1 = f (xk) + Fkwk (4.1)

yk = Γkh(xk) + Hkwk (4.2)

where xk ∈ <n is the state, yk ∈ <p is the measurement, f (xk) and h(xk) are

known analytic vector functions, the state and measurement disturbance

coefficient matrices are Fk ∈ <n×l and Hk ∈ <p×l, respectively, where the

disturbance wk ∈ <l is zero mean, white, and identity covariance resulting in

FkFT
k > 0 as the process noise, HkHT

k > 0 as the measurement noise, and FkHT
k as

the correlation between the process and measurement noise. It is assumed that

the measurement nonlinearity is uniformly bounded as ‖h(x)‖ ≤ αh for all

x ∈ <n. The coefficient matrix, Γk is of the form

Γk = diag(γ1
k , γ2

k , . . . , γ
p
k ) (4.3)
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where γi
k are Bernoulli random variables, taking values of 0 or 1, uncorrelated in

time, representing whether sensor i contains data and noise or noise only. These

Bernoulli random variables have known mean, E{Γk} = Γ = diag(γi) for

i = 1, 2, . . . , p and variance E{(Γk − Γ)(Γk − Γ)T} = diag(γi(1− γi)) , Υ.

The EKF derived in this chapter is a modification of the resilient EKF

developed in [23] for systems with correlation between the system state and

measurement noise and without uncertainty in the gain. By the definition of the

measurement model, when a measurement is received it is uncertain if each

sensor is recording signal and noise or noise only. For this reason, the estimate

uses only the statistical reliability information for the sensors or the mean of Γk

and is computed as

x̂k+1 = f (x̂k) + Kk(yk − Γh(x̂k)) (4.4)

where Kk ∈ <n×p will be the minimum variance gain. Similarly, the nonlinearities

are approximated using a Taylor Series expansion about the current estimate

yielding

f (xk) ∼= f (x̂k) + Ak(xk − x̂k) (4.5)

h(xk) ∼= h(x̂k) + Ck(xk − x̂k) (4.6)

with the Jacobians defined as

Ak =
∂ f (xk)

∂x

∣∣∣∣
xk=x̂k

(4.7)

Ck =
∂h(xk)

∂x

∣∣∣∣
xk=x̂k

(4.8)

The nonlinear observer error defined as the difference between the current

state and the estimate,

ek = xk − x̂k (4.9)
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has the following dynamics

ek+1 = xk+1 − x̂k+1 (4.10)

= f (xk) + Fkwk − f (x̂k)− Kk(Γkh(xk) + Hkwk − Γh(x̂k))

= f (x̂k) + Akek + Fkwk − f (x̂k)− Kk(Γkh(x̂k) + ΓkCkek + Hkwk − Γh(x̂k))

The difference between the actual Γk and the mean is defined as

Γ̃k , Γk − Γ (4.11)

which has zero mean and variance Υ. Using the definition in (4.11), cancelling

terms, and collecting similar terms, (4.10) simplifies to

ek+1
∼= Akek +Fkwk − KkΓ̃kh(x̂k) (4.12)

with

Ak = Ak − KkΓkCk (4.13)

and

Fk = Fk − KkHk (4.14)

As a note, the initial estimate is generally chosen as the expected value of the

state, e0 = x0 − x0; therefore, taking the expectation of the initial error results in

e0 = x0 − x0 = 0. Since E{e0} = 0, E{wk} = 0, and E{Γ̃k} = 0, the expected value

for the error is E{ek} = 0, determined by taking the expectation of (4.12).

The goal of the EKF is to minimize the error covariance,

Pk = E
{

ekeT
k

}
(4.15)
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which is done through analysis of the error covariance dynamics

Pk+1 = E
{

ek+1eT
k+1

}
(4.16)

∼= E
{
(Akek +Fkwk − KkΓ̃kh(x̂k))(Akek +Fkwk − KkΓ̃kh(x̂k))

T
}

= E


AkekeT

kAT
k +AkekwT

kFT
k +AkekhT(x̂k)Γ̃T

k KT
k

+FkwkeT
kAT

k +FkwkwT
kFT

k +FkwkhT(x̂k)Γ̃T
k KT

k

+KkΓ̃kh(x̂k)eT
kAT

k + KkΓ̃kh(x̂k)wT
kFT

k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃T
k KT

k


The expectation operator is linear, therefore it can be applied separately to each

term while also removing known terms from the expectation operation

Pk+1
∼=E

{
AkekeT

kAT
k

}
+ E

{
AkekwT

k

}
FT

k + E
{
AkekhT(x̂k)Γ̃

T
k

}
KT

k (4.17)

+FkE
{

wkeT
kAT

k

}
+FkE

{
wkwT

k

}
FT

k +FkE
{

wkhT(x̂k)Γ̃
T
k

}
KT

k

+ KkE
{

Γ̃kh(x̂k)eT
kAT

k

}
+ KkE

{
Γ̃kh(x̂k)wT

k

}
FT

k + KkE
{

Γ̃kh(x̂k)hT(x̂k)Γ̃
T
k

}
KT

k

The first term is simplified by applying the definition of the error covariance,

E
{
AkekeT

kAT
k

}
= E

{
AkPkAT

k

}
(4.18)

Terms two, three, four, six, seven, and eight in (4.17) are zero due to wk, ek, and Γ̃k

being uncorrelated and having zero mean. Term five is simplified by applying the

definition of identity covariance for the noise,

FkwkwT
kF

T
k = FkFT

k (4.19)

These simplifications result in

Pk+1
∼= AkPkAk +FkFT

k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃T
k KT

k (4.20)

which will be the form used during analysis; however, the EKF should be

designed in terms of known values, so further simplifications are necessary.
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To further analyze the error covariance dynamics in terms of known

variables such as Γ, the remaining terms will be processed individually. The first

term of (4.20) is expanded using (4.11) and (4.13) as

AkPkAT
k = (Ak − KkΓCk − KkΓ̃kCk)Pk(Ak − KkΓCk − KkΓ̃kCk)T (4.21)

= (Ak − KkΓCk)Pk(Ak − KkΓCk)
T − (Ak − KkΓCk)PkCT

k Γ̃T
k KT

k

− KkΓ̃kCkPk(Ak − KkΓCk)
T + KkΓ̃kCkPkCT

k Γ̃T
k KT

k

Since the estimation error, ek and Γ̃k are uncorrelated, the expectation of

their product is equal to the product of their expectations,

AkPkAT
k = AkPkAT

k −AkPkCT
k Γ̃k

T
KT

k − KkΓ̃kCkPkAk + KkΓ̃kCkPkCT
k Γ̃T

k KT
k (4.22)

where

Ak , Ak − KkΓCk (4.23)

and, as mentioned previously, Γ̃k is zero mean, resulting in

AkekeT
kAT

k = AkPkAT
k + KkΓ̃kCkPkCT

k Γ̃T
k KT

k (4.24)

Substituting (4.24) into (4.20) and grouping terms yields

Pk+1
∼= AkPkAT

k +FkFT
k + KkΓ̃k(CkPkCT

k + h(x̂k)hT(x̂k))Γ̃T
k KT

k (4.25)

Corollary 7.1 can be applied to the third term of (4.25) as

Pk+1
∼= AkPkAT

k +FkFT
k + Kk(Υ ◦ (CkPkCT

k + h(x̂k)hT(x̂k)))KT
k (4.26)

To minimize the error covariance over the gain, Kk, (4.26) is expanded to

obtain the form for use with Lemma 1

Pk+1
∼=AkPk AT

k − AkPkCT
k ΓTKT

k − KkΓCkPk AT
k + KkΓCkPkCT

k ΓTKT
k + FkFT

k (4.27)

− FkHT
k KT

k − KkHkFT
k + KkHkHT

k KT
k + Kk(Υ ◦ (CkPkCT

k + h(x̂k)hT(x̂k)))KT
k
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followed by grouping terms with respect to Kk which yields

Pk+1
∼=AkPk AT

k + FkFT
k − (AkPkCT

k ΓT
+ FkHT

k )K
T
k − Kk(ΓCkPk AT

k + HkFT
k ) (4.28)

+ Kk

(
Υ ◦ (CkPkCT

k + h(x̂k)hT(x̂k)) + ΓCkPkCT
k ΓT

+ HkHT
k

)
KT

k

Recognizing that (4.28) is now of the form in Lemma 1 where the corresponding

terms are

A = Υ ◦ (CkPkCT
k + h(x̂k)hT(x̂k)) + ΓCkPkCT

k ΓT
+ HkHT

k (4.29)

B = −(AkPkCT
k ΓT

+ FkHT
k )

T (4.30)

C = AkPk AT
k + FkFT

k (4.31)

D = Pk+1 (4.32)

X = Kk (4.33)

so that applying Lemma 1 to (4.28) results in the locally optimal gain that

minimizes (4.28),

Kk = (AkPkCT
k ΓT

+ FkHT
k )× (4.34)

(Υ ◦ (CkPkCT
k + h(x̂k)hT(x̂k)) + ΓCkPkCT

k ΓT
+ HkHT

k )
−1

Therefore, the extended Kalman filter for the system in (4.1) and (4.2) is defined

by the following

• State estimate

x̂k+1 = f (x̂k) + Kk(yk − Γh(x̂k)) (4.35)

• Kalman Gain

Kk = (AkPkCT
k ΓT

+ FkHT
k )× (4.36)

(Υ ◦ (CkPkCT
k + h(x̂k)hT(x̂k)) + ΓCkPkCT

k ΓT
+ HkHT

k )
−1
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• Riccati Difference Equation

Pk+1 = AkPkAT
k +FkFT

k + Kk(Υ ◦ (CkPkCT
k + h(x̂k)hT(x̂k)))KT

k (4.37)

or equivalently

Pk+1 = AkPkAk +FkFT
k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃T

k KT
k (4.38)

where

Ak = Ak − KkΓkCk (4.39)

Ak = Ak − KkΓkCk (4.40)

Fk = Fk − KkHk (4.41)

with FkFT
k > 0 and Ak and Ck in (4.7) and (4.8), respectively.

4.2 Convergence Analysis of EKF Used on Systems with Uncertain
Measurements and Finite Energy Noise

Consider the nonlinear discrete-time system and measurement equations,

xk+1 = f (xk) + Fkwk (4.42)

yk = Γkh(xk) + Hkwk (4.43)

where wk ∈ `2 is now zero mean, identity covariance, uncorrelated in time, and

finite-energy. The coefficient matrix, Γk is still of the form

Γk = diag(γ1
k , γ2

k , . . . , γ
p
k ) (4.44)

where γi
k are Bernoulli random variables, taking values of 0 or 1, uncorrelated in

time, representing whether sensor i contains data and noise or noise only. These

Bernoulli random variables have known mean, E{Γk} = Γ = diag(γi) for
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i = 1, 2, . . . , p and variance E{(Γk − Γ)(Γk − Γ)T} = diag(γi(1− γi)) , Υ. With

the error defined in (4.9), the error dynamics are

ek+1 = Akek +Fkwk − KkΓ̃kh(x̂k) (4.45)

with Ak and Fk in (4.13) and (4.14).

Assumption 4.1. The pair (Ak, Ck) is uniformly observable, with ‖Ak‖i ≤ ā,

‖Ck‖i ≤ c̄, ‖Fk‖i ≤ f̄ , ‖Hk‖i ≤ h̄, and ‖h(xk)‖ ≤ αh uniformly bounded in time.

Theorem 4.1. Consider the nonlinear system (4.42) and measurement equation (4.43),

with uncertain measurements, the noise taken as an element of stochastic `2 and

FkFT
k > 0 with Fk in (4.14). Let the state be estimated using an extended Kalman filter

based on this model, which was designed for white noise with zero mean and identity

covariance, with gain Kk from (4.36). With Assumption 4.1, Lemma 6 holds. With these

conditions, the energy of the estimation error is finite-time bounded, for any integer

0 < T < ∞, as follows

T

∑
k=0
‖ek‖2 ≤ 1

ϕ1

(
eT

0 P−1
0 e0 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1)

)
(4.46)

where

ϕ1 , inf
k
(λmin(P−1

k −AT
k P−1

k+1Ak)) (4.47)

ϕ2 , sup
k
(λmax(FT

k P−1
k+1Fk)) (4.48)

ϕ3 , sup
k
(λmax(hT(x̂k)Γ̃T

k KT
k P−1

k+1KkΓ̃kh(x̂k))) (4.49)

Proof. With Assumption 4.1, Lemma 6 states that the solution to the Riccati

equation, Pk, and the Kalman gain, Kk, are uniformly upper and lower bounded,

which is essential throughout the proof. Stochastic Lyapunov analysis is used to
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determine the stability of the estimation error and obtain the finite-time H∞-gain.

The Lyapunov function candidate,

Vk = eT
k P−1

k ek (4.50)

is analyzed along the dynamics of the error (4.45) to verify that the average

energy decreases over time. To this end, consider the following stochastic

Lyapunov difference

E{Vk+1|ek, ek−1, . . . } −Vk (4.51)

= E{eT
k+1P−1

k+1ek+1|ek, ek−1, . . . } − eT
k P−1

k ek < 0

With substitution from (4.45), the inequality in (4.51) when expanded is

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2wT

kFT
k P−1

k+1Akek

− 2hT(x̂k)Γ̃T
k KT

k P−1
k+1Akek + wT

kFT
k P−1

k+1Fkwk

− 2Γ̃khT(x̂k)KT
k P−1

k+1Fkwk (4.52)

+ hT(x̂k)Γ̃kKT
k P−1

k+1KkΓ̃kh(x̂k) < 0

Because Fk, Ak, x̂k, and therefore ek, Pk and Kk are functions of wk−1 and Γk−1 and

since wk and Γk are uncorrelated in time and wk is zero mean, the second and fifth

terms can be rewritten so that (4.52) becomes

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2wT

k

(
FT

k P−1
k+1Ak

)
ek

− 2hT(x̂k)Γ̃T
k KT

k P−1
k+1Akek + wT

kFT
k P−1

k+1Fkwk

− 2
(

hT(x̂k)Γ̃T
k KT

k P−1
k+1Fk

)
wk (4.53)

+ hT(x̂k)Γ̃T
k KT

k P−1
k+1KkΓ̃kh(x̂k) < 0

leading to

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek − 2hT(x̂k)Γ̃T

k KT
k P−1

k+1Akek (4.54)

+ wT
kFT

k P−1
k+1Fkwk + hT(x̂k)Γ̃T

k KT
k P−1

k+1KkΓ̃kh(x̂k) < 0
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To ensure (4.54) is negative, the development for an overall upper bound is

provided next. The first term is lower bounded using Lemma 3

− ϕ1eT
k ek − 2hT(x̂k)Γ̃T

k KT
k P−1

k+1Akek + wT
kFT

k P−1
k+1Fkwk

+ hT(x̂k)Γ̃T
k KT

k P−1
k+1KkΓ̃kh(x̂k) < 0 (4.55)

with ϕ1 defined in (4.47). Such a ϕ1 always exists, if for all k = 0, 1, 2, . . .

P−1
k −A

T
k P−1

k+1Ak > 0 (4.56)

The inequality in (4.56) is shown by using Lemma 4 resulting in the following

conditions being equivalent P−1
k AT

k

Ak Pk+1

 > 0 (4.57)

AkPkAT
k +FkFT

k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃kKT
k −AkPkAT

k > 0 (4.58)

with FkFT
k > 0 and KkΓ̃kh(x̂k)hT(x̂k)Γ̃T

k KT
k ≥ 0, therefore, for all k = 0, 1, 2, . . .

P−1
k −AT

k P−1
k+1Ak > 0 (4.59)

To obtain an upper bound on the third term in (4.55), it is shown that for all

k = 0, 1, 2, . . .

FT
k P−1

k+1Fk ≤ Il (4.60)

by using Lemma 4 and using (4.14), the following conditions are equivalent to

(4.60)  Il FT
k

Fk Pk+1

 ≥ 0 (4.61)

AkPkAT
k +FkFT

k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃
T
k KT

k −FkFT
k ≥ 0 (4.62)
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which agrees with

AkPkAT
k + KkΓ̃kh(x̂k)hT(x̂k)Γ̃

T
k KT

k ≥ 0 (4.63)

Therefore, it has been shown that Il is a valid upper bound as shown in (4.60) and

Lemma 3 can be applied, resulting in ϕ2 in (4.48) which is guaranteed to be

bounded.

Using this same technique, the fourth term is bounded by

hT(x̂k)Γ̃
T
k KT

k P−1
k+1KkΓ̃kh(x̂k) ≤ 1 (4.64)

and Lemma 3 can be applied, resulting in ϕ3 in (4.49) which is guaranteed to be

bounded. These bounds result in

−ϕ1eT
k ek − 2hT(x̂k)Γ̃T

k KT
k P−1

k+1Akek + ϕ2wT
k wk + ϕ3 < 0 (4.65)

Lastly, taking the expected value of (4.65) and using Lemma 5 results in

−ϕ1eT
k ek − 2hT(x̂k)Γ̃T

k KT
k P−1

k+1Ak (ek) + ϕ2wT
k wk + ϕ3 < 0 (4.66)

Due to the unbiasedness, E{ek} = 0, k ≥ 0, of the estimator by design, (4.66) can

be further reduced to

Vk+1 −Vk < −ϕ1eT
k ek + ϕ2wT

k wk + ϕ3 < 0 (4.67)

To obtain the finite-time H∞-property, the ratio of the estimation error

energy to the disturbance energy is analyzed; the summation of (4.67) is taken

from k = 0 to k = T (for any integer 0 < T < ∞) giving

VT −V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1) (4.68)

and for VT ≥ 0,

−V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1) (4.69)
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which is rearranged as

T

∑
k=0
‖ek‖2 <

1
ϕ1

(
V0 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1)

)
(4.70)

This result indicates that the energy of the estimation error has an upper bound

proportional to the initial estimation error, V0 = eT
0 P−1

0 e0, the disturbance energy,

∑T
k=0 ‖wk‖2, and a linear function of time, where the proportionality constants ϕ1,

ϕ2 and ϕ3 are defined in (4.47), (4.48), and (4.49). �

4.3 Significance

To consider the finite-time H∞ property of the EKF in this chapter, the

result (4.70) is taken as
T

∑
k=0
‖ek‖2 <

ϕ2

ϕ1

T

∑
k=0
‖wk‖2 (4.71)

for any integer 0 < T < ∞, where ϕ1 and ϕ2 are defined in (4.47) and (4.48).

On the other hand, if there is no noise in the system for k = 0, 1, 2, . . . , then

(4.70) is taken as a special case that presents a bound on the estimation error

energy in terms of the initial conditions, V0 = eT
0 P−1

0 e0, i.e. the finite-time

H2-property of the EKF
T

∑
k=0
‖ek‖2 <

1
ϕ1

V0 (4.72)

4.4 Simulations

Two studies are performed similar to those in the previous chapter. First,

the effect of initial conditions and disturbance magnitude on the convergence of

the error is analyzed. It is shown that for small initial error and small disturbance

magnitudes, the estimation error will converge. On the other hand, for large

initial error or large disturbance magnitudes, the estimation error will diverge. In

addition to these three cases, the initial error is held constant while the
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disturbance magnitude is varied and the resulting H∞-bound is calculated. The

other study analyzes the H∞-property of three second order nonlinear systems

with varying levels of severity. These systems have a variable disturbance

multiplier that is utilized to observe how different disturbance magnitudes affect

the H∞-gain and bound. Simulations are performed to analyze both the effects of

the run time, T, as well as severity of the nonlinearity by plotting the ratio

between the H∞-gain from simulation to the theoretical bound. This ratio gives

insight into both the validity and the degree of conservativeness of our result. To

reduce the effect of outliers in the stochastic data, a 100 run Monte Carlo

simulation is used for each case study.

The systems in this section are similar to those of the form given in Section

2.4, shown here for convenience, where the continuous-time system is defined as

ÿ = − f (y) (4.73)

which is converted to state-space form, is discretized and has noise added to it as

xk+1 =

1 τ

0 1

 xk +

 0

−τ f (x1,k)

+ δ

0.02 0.1

0 0.01

wk (4.74)

yk = Γk

x1,k

x2,k

+ δ

0.1 0.1

0 0.001

wk (4.75)

In the first simulation study, the system will have a quadratic nonlinearity,

f (y) = y2, which will be simulated with three combinations of initial error and

disturbance magnitude. In the second study, the nonlinearity in the system will

vary as f (y) = {sin(y), y2, y3}. Each of these three nonlinear systems will be

simulated with the run time varying and then the run time will be held constant

while the three nonlinear systems are compared.
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4.4.1 Effect of Initial Conditions and Disturbance Magnitude

Consider the system given in the introduction of this section with

f (y) = y2 (4.76)

x0 =

[
0.2 0.5

]T
(4.77)

where τ = 0.01s is the sampling time, T = 30 is the run time, Γ = 0.9 ∗ I2 is the

Bernoulli random variable statistics, and wk ∈ `2 is the finite-energy disturbance.

Three different cases are simulated as shown in Table 4.1 along with a qualitative

finite-time convergence analysis and H∞ calculations. Each case is discussed in

further detail below. To determine if a time response is finite-time bounded, the

error magnitude is considered bounded if |ei,k| < 15 for all integer k ≥ 0 and

i = 1, 2.

Table 4.1: Effect of initial values and disturbance magnitude

Case 1 Case 2 Case 3

x̂0 [−1.8 , 2.5]T [−1.8 , 2.5]T [14.2 , −13.5]T

δ 5 100 5

Error
Boundedness

Within
bounded Exceeds bound Exceeds bound

H∞-Gain 0.8307 — —

Figures 4.1, 4.2, 4.3 4.4, 4.5, 4.6 4.7, 4.8, 4.9

Case 1 considers a system with small error in the initial estimate along with

small disturbance magnitudes, which results in a finite-time bounded response of
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the error. Figures 4.1 and 4.2 show that the estimate tracks the actual state well

throughout the run time, which corresponds to the bounded error in Figure 4.3.

Case 2 consists of small error with large disturbance magnitude, where the

state and estimate time responses are shown in Figures 4.4 and 4.5. Again, the

estimate appears to be tracking the state relatively well; however, analyzing the

estimation error in Figure 4.6 shows that it does not remain within the defined

bound.

The last case considered has a large initial estimation error and a small

disturbance magnitude. The time responses in Figures 4.7, 4.8, and 4.9 show that

even though the system ends with a small estimation error, the error

corresponding to x1,k increases up to and above the defined bound during the

first four time steps. Through this study, it was observed that the initial

estimation error and the disturbance magnitudes play a role in the finite-time

bound on the estimation error as signified in the main result of this chapter.
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Figure 4.1: Quadratic nonlinearity, Case 1 - State, x1,k, and estimate, x̂1,k
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Figure 4.4: Quadratic nonlinearity, Case 2 - State, x1,k, and estimate, x̂1,k
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Figure 4.6: Quadratic nonlinearity, Case 2 - Estimation error, e1,k and e2,k
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Figure 4.8: Quadratic nonlinearity, Case 3 - State, x2,k, and estimate, x̂2,k
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Figure 4.9: Quadratic nonlinearity, Case 3 - Estimation error, e1,k and e2,k
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With the initial error used in Case 1, the disturbance magnitude is varied

from 1 to 10 and the H∞ gain, bound, and ratio are calculated for each

disturbance magnitude as shown in Table 4.2. The data in the table shows that

both the H∞-gain and bound are increasing with the disturbance magnitude. It is

observed from the values of the ratio that the H∞-gain is increasing at a faster rate

than the H∞-bound, which informs us that the theoretical bound is not as

sensitive to the disturbance magnitude as the H∞-gain. This table highlights one

method a designer could use to take advantage of the results in this dissertation.

Each of the H∞-bound results in the various chapters is calculated using

simulation, which can aid a designer in the choice of filter for their system.

Table 4.2: H∞-gain and bound for a second order system with a quadratic
nonlinearity

δ H∞-gain H∞-bound Ratio

1 0.4740 1.6377 0.2894

2 0.4878 1.6561 0.2946

3 0.5079 1.6447 0.3088

4 0.5335 1.6135 0.3307

5 0.5643 1.6337 0.3454

6 0.5995 1.6493 0.3635

7 0.6385 1.6602 0.3846

8 0.6808 1.6685 0.4080

9 0.7257 1.6753 0.4332

10 0.7730 1.7705 0.4366
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4.4.2 Sinusoidal Nonlinearity

The least severe nonlinearity is the sinusoidal, f (y) = sin(y), with wk ∈ `2

and Γk generated such that the mean is Γ = 0.9I2. The variable δ is swept from

−20 to 20 in 0.1 increments to observe how the finite-time H∞-bound varies with

the disturbance magnitude as well as with the run time, T. In the analysis

provided in this section, (4.71) is rearranged as

∑T
k=0 ‖ek‖2

∑T
k=0 ‖wk‖2

<
ϕ2

ϕ1
(4.78)

and T takes the values T = {10, 30, 50}.

Figure 4.10 is a plot of the ratio in (4.78) for each run time, T = {10, 30, 50}.

This figure shows that the bound is valid in the range of δ and T values being

analyzed because the ratios remain between zero and one. Additionally the plot

shows that there is an effect on the ratio due to the run time, T, where the smallest

run time is the most conservative for small δ, but for |δ| > 17, the smallest run

time is the least conservative.
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Figure 4.10: Sinusoidal nonlinearity - H∞-gain to theoretical bound ratio
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4.4.3 Quadratic Nonlinearity

The next nonlinearity considered is the quadratic, f (y) = y2, with wk ∈ `2

and Γk generated such that the mean is Γ = 0.9I2. The variable δ is swept from

−20 to 20 in 0.1 increments to observe how the finite-time H∞-bound varies with

the disturbance magnitude as well as with the runTime, T. Again, T takes the

values T = {10, 30, 50}.

Figure 4.11 is a plot of the ratio in (4.78) for each run time, T = {10, 30, 50}.

This figure shows similar results to those seen with the sinusoidal nonlinearity.

The ratio is smaller overall, which would mean that this nonlinear system

produces a more conservative H∞-bound than that seen from the sinusoidal

system. The bound is valid in the range of δ and T values being analyzed because

the ratios remain between zero and one, and the plot shows that there is an effect

on the ratio due to the run time, T, where the smallest run time is the most

conservative for small δ, but for |δ| > 10, the smallest run time is the least

conservative.

4.4.4 Cubic Nonlinearity

The most severe nonlinearity is the cubic, f (y) = y3, with wk ∈ `2 and Γk

generated such that the mean is Γ = 0.9I2. The variable δ is swept from −20 to 20

in 0.1 increments to observe how the finite-time H∞-bound varies with the

disturbance magnitude as well as with the run time, T taking the values

T = {10, 30, 50}.

Figure 4.12 is a plot of the ratio in (4.78) for each run time, T = {10, 30, 50}.

As with the previous cases, this figure shows that the bound is valid in the range

of δ and T values being analyzed because the ratios remain between zero and one.

The ratio is smaller overall than both of the other nonlinearities, which would
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Figure 4.11: Quadratic nonlinearity - H∞-gain to theoretical bound ratio

imply that systems with more severe nonlinearities might have more

conservative bounds due to the Taylor series approximations. Figure 4.12 shows

that there is an effect on the ratio due to the run time, T, where the smallest run

time is the most conservative for small δ, but for |δ| > 6, the smallest run time is

the least conservative.

4.4.5 Side-by-Side Comparison of Results from Three Nonlinearities

Lastly, the run time will be held constant to T = 30 and now the three

types of nonlinearities covered will be co-plotted. Figure 4.13 shows that while

for |δ| > 9, the initial assumption that the least severe nonlinearity is the least

conservative, it also shows that for |δ| < 9, the three types of nonlinearities

considered have very similar results.
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4.5 Summary

Convergence, H2, and H∞ analysis were performed on the discrete-time

extended Kalman filter used as a nonlinear observer applied to systems with
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finite-energy random disturbances and uncertain observations. Additional terms

in the error that result from the uncertain measurements cause the energy

analysis to be for finite-time only. Simulation studies were presented that

demonstrated the effect of the run time as well as the effect of the severity of the

nonlinearity on the conservativeness of the result. It was found that for larger

disturbance magnitudes, short run times and less severe nonlinearities produced

the least conservative results. A special case of this model is when the sensors no

longer fail individually, they fail all at once. The EKF designed for this model will

be analyzed in the next chapter.
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CHAPTER 5

H∞-PROPERTY OF THE DISCRETE-TIME EXTENDED KALMAN FILTER
FOR SYSTEMS WITH SIMULTANEOUSLY FAILING MEASUREMENTS

A special case of the EKF designed in Chapter 4 is analyzed for

convergence, H2, and H∞. The EKF is designed for systems with zero mean,

white noise, and correlation between the process and measurement as well as

grouped uncertainty in the measurement and is analyzed for systems that have

stochastic `2 type disturbances. Simulations are provided to compare the effect of

run time as well as the “severity” of the nonlinearity.

5.1 EKF Formulation

Consider the nonlinear discrete-time system and measurement equations,

xk+1 = f (xk) + Fkwk (5.1)

yk = γkh(xk) + Hkwk (5.2)

where xk ∈ <n is the state, yk ∈ <p is the measurement, f (xk) and h(xk) are

known analytic vector functions, the state and measurement disturbance

coefficient matrices are Fk ∈ <n×l and Hk ∈ <p×l, respectively, where the

disturbance wk ∈ <l is white, zero mean, and identity covariance. It is assumed

that the measurement nonlinearity is uniformly bounded as ‖h(x)‖ ≤ αh for all

x ∈ <n. The coefficient γk ∈ < is a Bernoulli random variable, taking values of 0

or 1, uncorrelated in time with known mean and variance, E{γk} = γ and

E{(γk − γ)2} = γ(1− γ) , Γ respectively, and represents whether all of the

measurements are present or not, therefore γ represents the probability of

successfully receiving a multi-dimensional signal.

The details for the EKF for the general case were given in Chapter 4. The

EKF for the special case, when the Bernoulli random variable is a scalar, follows
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directly from the EKF equations for the general case. For this reason, the EKF in

this chapter will not be derived; the EKF equations are given directly as the

following

• State estimate

x̂k+1 = f (x̂k) + Kk(yk − γh(x̂k)) (5.3)

• Kalman Gain

Kk = (γAkPkCT
k + FkHT

k )× (5.4)

(Γ(CkPkCT
k + h(x̂k)hT(x̂k)) + γ2CkPkCT

k + HkHT
k )
−1

• Riccati Difference Equation

Pk+1 = AkPkAT
k +FkFT

k + ΓKk(CkPkCT
k + h(x̂k)hT(x̂k))KT

k (5.5)

or equivalently

Pk+1 = AkPkAT
k +FkFT

k + ΓKkh(x̂k)hT(x̂k)KT
k (5.6)

where

Ak = Ak − γKkCk (5.7)

Ak = Ak − γkKkCk (5.8)

Fk = Fk − KkHk (5.9)

with FkFT
k > 0 and Ak and Ck in (4.7) and (4.8), respectively.

5.2 Convergence Analysis of EKF Used on Systems with Grouped Uncertain
Measurements and Finite Energy Noise

Consider the nonlinear discrete-time system and measurement equations,

xk+1 = f (xk) + Fkwk (5.10)

yk = γkh(xk) + Hkwk (5.11)

where wk ∈ `2 is now zero mean, identity covariance, uncorrelated in time, and

finite-energy. The coefficient, γk is still a Bernoulli random variable uncorrelated
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in time representing whether all sensors contain data and noise or noise only.

This Bernoulli random variable has known mean, E{γk} = γ and variance

E{(γk − γ)2} = γ(1− γ)) , Γ. With the error defined in (4.9), the error dynamics

are

ek+1 = Akek +Fkwk − γ̃kKkh(x̂k) (5.12)

with Ak and Fk in (4.13) and (4.14) and

γ̃k = γk − γ (5.13)

is zero mean with covariance Γ.

Theorem 5.1. Consider the nonlinear system (5.10) and measurement equation (5.11),

with grouped uncertain measurements, the noise taken as an element of stochastic `2 and

FkFT
k > 0 with Fk in (5.9). Let the state be estimated using an extended Kalman filter

based on this model, which was designed for white noise with zero mean and identity

covariance, with gain Kk from (5.4). With Assumption 4.1, Lemma 6 holds. With these

conditions, the energy of the estimation error is finite-time bounded for any integer

0 < T < ∞ as follows

T

∑
k=0
‖ek‖2 ≤ 1

ϕ1

(
eT

0 P−1
0 e0 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1)

)
(5.14)

where

ϕ1 , inf
k
(λmin(P−1

k −AT
k P−1

k+1Ak)) (5.15)

ϕ2 , sup
k
(λmax(FT

k P−1
k+1Fk)) (5.16)

ϕ3 , sup
k
(λmax(ΓhT(x̂k)KT

k P−1
k+1Kkh(x̂k))) (5.17)

Proof. With Assumption 4.1, Lemma 6 states that the solution to the Riccati

equation, Pk, and the Kalman gain, Kk, are uniformly upper and lower bounded,
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which is essential throughout the proof. Stochastic Lyapunov analysis is used to

determine the stability of the estimation error and obtain the H∞-gain. The

Lyapunov function candidate,

Vk = eT
k P−1

k ek (5.18)

is analyzed along the dynamics of the error (5.12) to verify that the average

energy decreases over time. To this end, consider the following stochastic

Lyapunov difference

E{Vk+1|ek, ek−1, . . . } −Vk (5.19)

= E{eT
k+1P−1

k+1ek+1|ek, ek−1, . . . } − eT
k P−1

k ek < 0

With substitution from (5.12), the inequality in (5.19) is expanded as,

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2wT

kFT
k P−1

k+1Akek

− 2γ̃khT(x̂k)KT
k P−1

k+1Akek + wT
kFT

k P−1
k+1Fkwk

− 2γ̃khT(x̂k)KT
k P−1

k+1Fkwk (5.20)

+ γ̃2
khT(x̂k)KT

k P−1
k+1Kkh(x̂k) < 0

Because Fk, Ak, x̂k, and therefore ek, Pk and Kk are functions of wk−1 and γk−1 and

since wk and γk are uncorrelated in time and wk is zero mean, the second and fifth

terms can be rewritten so that (5.20) becomes

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek + 2wT

k

(
FT

k P−1
k+1Ak

)
ek

− 2γ̃khT(x̂k)KT
k P−1

k+1Akek + wT
kFT

k P−1
k+1Fkwk

− 2γ̃k

(
hT(x̂k)KT

k P−1
k+1Fk

)
wk (5.21)

+ γ̃2
khT(x̂k)KT

k P−1
k+1Kkh(x̂k) < 0
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leading to

− eT
k

(
P−1

k −AT
k P−1

k+1Ak

)
ek

− 2γ̃khT(x̂k)KT
k P−1

k+1Akek (5.22)

+ wT
kFT

k P−1
k+1Fkwk

+ ΓhT(x̂k)KT
k P−1

k+1Kkh(x̂k) < 0

To ensure (5.22) is negative, the development for an upper bound is

provided next. The first term is lower bounded using Lemma 3

− ϕ1eT
k ek − 2γ̃khT(x̂k)KT

k P−1
k+1Akek + wT

kFT
k P−1

k+1Fkwk

+ ΓhT(x̂k)KT
k P−1

k+1Kkh(x̂k) < 0 (5.23)

with ϕ1 defined in (5.15). Such a ϕ1 always exists, since for all k = 0, 1, 2, . . .

P−1
k −A

T
k P−1

k+1Ak > 0 (5.24)

This is shown by using Lemma 4 twice such that the following conditions are

equivalent to (5.24) P−1
k AT

k

Ak Pk+1

 > 0 (5.25)

AkPkAT
k +FkFT

k + ΓKkh(x̂k)hT(x̂k)KT
k

−AkPkAT
k > 0 (5.26)

and FkFT
k > 0 and ΓKkh(x̂k)hT(x̂k)KT

k ≥ 0, therefore, for all k = 0, 1, 2, . . .

P−1
k −AT

k P−1
k+1Ak > 0 (5.27)

To obtain an upper bound on the third term in (5.23), it is shown that for all

k = 0, 1, 2, . . .

FT
k P−1

k+1Fk ≤ Il (5.28)
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by substituting Fk from (5.9) and using Lemma 4 twice the following conditions

are equivalent  Il FT
k

Fk Pk+1

 ≥ 0 (5.29)

AkPkAT
k +FkFT

k + ΓKkh(x̂k)hT(x̂k)KT
k

−FkFT
k ≥ 0 (5.30)

which agrees with

AkPkAT
k + ΓKkh(x̂k)hT(x̂k)KT

k ≥ 0 (5.31)

Therefore, it has been shown that Il is a valid upper bound as shown in (5.28) and

Lemma 3 can be applied, resulting in ϕ2 in (5.16) which is guaranteed to be

bounded.

Using this same technique, the third term is bounded by

ΓhT(x̂k)KT
k P−1

k+1Kkh(x̂k) ≤ 1 (5.32)

and Lemma 3 can be applied, resulting in ϕ3 in (5.17) which is guaranteed to be

bounded. These bounds result in

− ϕ1eT
k ek − 2γ̃khT(x̂k)KT

k P−1
k+1Akek

+ ϕ2wT
k wk + ϕ3 < 0 (5.33)

Lastly, taking the expected value of (5.33) and using Lemma 5 results in

− ϕ1eT
k ek − 2γ̃khT(x̂k)KT

k P−1
k+1Ak (ek)

+ ϕ2wT
k wk + ϕ3 < 0 (5.34)

Due to the unbiasedness, E{ek} = 0, k ≥ 0, of the estimator by design, (5.34) can

be further reduced to

Vk+1 −Vk < −ϕ1eT
k ek + ϕ2wT

k wk + ϕ3 < 0 (5.35)
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To obtain the finite-time H∞-property, the ratio of the estimation error

energy to the disturbance energy is analyzed; the summation of (5.35) is taken

from k = 0 to k = T (for any integer T > 0) giving

VT −V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1) (5.36)

and for VT ≥ 0,

−V0 < −ϕ1

T

∑
k=0
‖ek‖2 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1) (5.37)

which is rearranged as

T

∑
k=0
‖ek‖2 <

1
ϕ1

(
V0 + ϕ2

T

∑
k=0
‖wk‖2 + ϕ3(T + 1)

)
(5.38)

This result indicates that the energy of the estimation error has an upper bound

proportional to the summation of a function of the initial estimation error,

V0 = eT
0 P−1

0 e0, the disturbance energy, ∑T
k=0 ‖wk‖2, and a linear function of time

where the proportionality constants ϕ1, ϕ2 and ϕ3 are defined in (5.15), (5.16), and

(5.17). �

When the result of this chapter is compared to that in Chapter 4, it is seen

that this chapter’s result is a special case. Consider ϕ3 from (4.49) and ϕ3 from

(5.17) provided in (5.39) and (5.40) for side-by-side comparison. What can be seen

from this comparison is that if Γ̃k is taken as a scalar, as is the case in this chapter,

the two equations are equivalent. Therefore the result in Chapter 4 can be directly

applied to this special case.

Ch4: ϕ3 , sup
k
(λmax(hT(x̂k)Γ̃T

k KT
k P−1

k+1KkΓ̃kh(x̂k))) (5.39)

Ch5: ϕ3 , sup
k
(λmax(ΓhT(x̂k)KT

k P−1
k+1Kkh(x̂k))) (5.40)
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5.3 Significance

To consider the finite-time H∞-property of the EKF in this chapter, the

result (5.38) is taken as
T

∑
k=0
‖ek‖2 <

ϕ2

ϕ1

T

∑
k=0
‖wk‖2 (5.41)

for any integer 0 < T < ∞, where ϕ1, ϕ2, and ϕ3 are defined in (5.15), (5.16), and

(5.17).

On the other hand, if there is no noise in the system for k = 0, 1, 2, . . . , then

(5.38) is taken as a special case that presents a bound on the estimation error

energy in terms of the initial conditions, V0 = eT
0 P−1

0 e0, i.e. the finite-time

H2-property of the EKF
T

∑
k=0
‖ek‖2 <

1
ϕ1

V0 (5.42)

5.4 Simulations

A scalar nonlinear system is considered with a variable disturbance

magnitude. Simulations are performed to demonstrate the effect of the

disturbance magnitude on the the finite-time H∞-gain. The ratio of the left hand

side and right hand side of (5.41) is analyzed to give insight to both the validity

and the degree of conservativeness of our result. This ratio should remain

between zero and one. Additionally, a study to observe the effects of the initial

estimation error and disturbance magnitude is performed. Lastly, since the run

time variable, T, appears in the result, the same simulation set up will be run for

different values of T. From these simulations, it will be apparent that the run time

has an effect on the validity and conservativeness of the result. To reduce the

effect of outliers in the stochastic data, a 100 run Monte Carlo simulation is used

for each case.
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5.4.1 Scalar System

Consider the scalar nonlinear system

xk+1 = xk + 0.01 sin xk + 10δwk (5.43)

yk = γkxk + 0.1δwk (5.44)

with wk ∈ `2 and γk such that the mean is γ = 0.9. The variable δ is swept from

−50 to 50 in 0.2 increments to observe how the result in (5.41) varies with the

disturbance magnitude. The ratio of the left hand side of (5.41) over the right

hand side is analyzed to show the validity of the result for each δ where

T = {10, 30, 50} for this study. The bound on the energy of the error is less

conservative when the ratio in (5.41) is closer to one.

Figure 5.1 is a co-plot of the ratios in (5.41) for T = {10, 30, 50}. This figure

shows that the bound is valid in all cases because the ratios remain between zero

and one. Additionally this plot shows that the disturbance magnitude has a slight

effect on the ratio for this system with the ratio being larger, i.e. the bound is less

conservative, for smaller disturbance magnitudes. Additionally, the run time has

a noticeable effect on the conservativeness of the result with a short run time

providing a less conservative result. This implies that the bound on the energy of

the observer error is more accurate for shorter run times; therefore this result

would be best aimed towards H∞ analysis of the transient response of a system.

5.4.2 Effect of Initial Conditions and Disturbance Magnitude

Consider a mass-spring-damper with a nonlinear spring where the

continuous-time system is defined as

ÿ = −bẏ− f (y) (5.45)
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Figure 5.1: Calculate H∞-gain to theoretical bound ratio

which is converted to state-space form, is discretized and has noise added to it as

xk+1 =

1 τ

0 (1− τb)

 xk +

 0

−τ f (x1,k)

+ δ

0.02 0.1

0 0.01

wk (5.46)

yk = γk

x1,k

x2,k

 xk + δ

0.1 0.1

0 0.001

wk (5.47)

with

f (y) = y2 (5.48)

x0 =

[
0.2 0.5

]T
(5.49)

and τ = 0.01s is the sampling time, T = 30 is the run time, b = 5 is the damping

coefficient, γ = 0.9 is the Bernoulli random variable statistics, and wk ∈ `2 is the

finite-energy disturbance. As in the previous chapter, three different cases are

simulated with different values for the initial conditions and the disturbance

magnitude. Table 5.1 consists of the initial estimate value and the disturbance

magnitude used for each case along with a qualitative finite-time bounded
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analysis and H∞ calculations. Each case is discussed in further detail below. To

determine if a time response is finite-time bounded, the error magnitude is

considered bounded if |ei,k| < 15 for all integer k ≥ 0 and i = 1, 2.

Table 5.1: Effect of initial values and disturbance magnitude

Case 1 Case 2 Case 3

x̂0 [−1.8 , 1.5]T [−1.8 , 1.5]T [14.2 , −13.5]T

δ 5 60 5

Error
Boundedness

Within
bounded Exceeds bound Exceeds bound

H∞-Gain 0.5185 — —

Figures 5.2, 5.3, 5.4 5.5, 5.6, 5.7 5.8, 5.9, 5.10

Case 1 considers a system with small error in the initial estimate along with

small disturbance magnitudes, which results in a finite-time bounded response of

the error. Figures 5.2 and 5.3 show that the estimate tracks the actual state well

throughout the run time, which corresponds to the bounded error in Figure 5.4.

Case 2 consists of small error with large disturbance magnitude, where the

state and estimate time responses are shown in Figures 5.5 and 5.6. Again, the

estimate appears to be tracking the state relatively well; however, analyzing the

estimation error in Figure 5.7, it is observed that the estimation error does not

remain within the defined bound.

The last case in this simulation study has a large initial estimation error

and a small disturbance magnitude. The time responses in Figures 5.8 and 5.9,

show the time responses of the state variables and their estimates. By analyzing
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the response of the estimation error in Figure 5.10, it is seen that even though the

initial error begins within the bounded region, it is unable to remain bounded for

the entire run time. These three cases emphasize the effect disturbance magnitude

and initial estimate have on the time response of the estimation error. The

estimation error of the EKF designed for systems with uncertain measurements

that have group failure rates will remain within a desired bound for sufficiently

small initial error and sufficiently small disturbance magnitude.
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Figure 5.2: Quadratic Nonlinearity, Case 1 - State, x1,k, and estimate, x̂1,k

5.4.3 Sinusoidal Nonlinearity

The system in state-space form in Section 5.4.2, with zero damping, b = 0,

is used in this study for three different system nonlinearities,

f (y) = {sin(y), y2, y3}. First, each of these nonlinear systems will be simulated

with the run time varying and then the run time will be held constant while the
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three nonlinear systems will be compared. The least “severe” nonlinearity is the

sinusoidal, f (y) = sin(y), with wk ∈ `2 and γk generated such that the mean is

γ = 0.9. The variable δ is swept from −15 to 15 in 0.1 increments to observe how

the finite-time H∞-bound varies with the disturbance magnitude as well as with

the run time, T, which takes the values {10, 30, 50}.

Figure 5.11 is a plot of the ratio in (5.41) for each run time, T = {10, 30, 50}.

This figure shows that the bound is valid in the range of δ and values of T being

analyzed because the ratios remain between zero and one. Additionally the plot

shows that there is an effect on the ratio due to the run time, T, though it is

different than seen in the previous chapter. In Figure 5.11, the ratio resulting from

T = 10 is consistently the most conservative result within this range of δ values.
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Figure 5.11: Sinusoidal nonlinearity - H∞-gain to theoretical bound ratio
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5.4.4 Quadratic Nonlinearity

The next nonlinearity considered is the quadratic, f (y) = y2, with wk ∈ `2

and γk generated such that the mean is γ = 0.9. The variable δ is swept from −20

to 20 in 0.1 increments to observe how the finite-time H∞-bound varies with the

disturbance magnitude as well as with the run time, T. Again, T takes the values

T = {10, 30, 50}.

Figure 5.12 is a plot of the ratio in (5.41) for each run time, T = {10, 30, 50}.

This figure shows similar results to those seen with the sinusoidal nonlinearity,
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Figure 5.12: Quadratic nonlinearity - H∞-gain to theoretical bound ratio

where the least/most conservative is rather indifferent for small δ but as δ

increase, the result from T = 10 is the most conservative.
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5.4.5 Cubic Nonlinearity

The most “severe” nonlinearity is the cubic, f (y) = y3, with wk ∈ `2 and γk

generated such that the mean is γ = 0.9. The variable δ is swept from −20 to 20 in

0.1 increments to observe how the finite-time H∞-bound varies with the

disturbance magnitude as well as with the run time, T, which takes the values

T = {10, 30, 50}.

Figure 5.13 is a plot of the ratio in (5.41) for each run time, T = {10, 30, 50}.

As with the sinusoidal case in this chapter, this figure shows that the bound is

valid in the range of δ and values of T being analyzed because the ratios remain

between zero and one but the result for T = 10 is consistently the least

conservative result for this range of disturbance magnitudes.
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Figure 5.13: Cubic nonlinearity - H∞-gain to theoretical bound ratio
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5.4.6 Side-by-Side Comparison of Results from Three Nonlinearities

Lastly, the run time will be held constant to T = 30 and now the three

types of nonlinearities covered will be co-plotted. Figure 5.14 shows that while

for |δ| > 8, the assumption that the least “severe” nonlinearity is the least

conservative is true. It also shows that throughout the range of δ, the result for

the sinusoidal and quadratic nonlinearities are very close.
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5.5 Summary

The discrete-time extended Kalman filter used as a nonlinear observer was

analyzed for the finite-time H∞-property in the presence of random disturbances

and uncertain observations. The H2-property of the estimation error when the

disturbance is absent followed as a special case of this result. Simulation studies
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were provided to demonstrate the effect of the run time on the validity and

conservativeness of the finite-time H∞-bound developed in this chapter. The

results seen in this chapter were not as clear cut as those in Chapter 4, though

when comparing the three levels of nonlinearity “severity” side-by-side, it was

apparent that the most “severe” nonlinearity resulted in the most conservative

result.
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CHAPTER 6

EXTENSION: H∞-PROPERTY OF THE CONTINUOUS-TIME EXTENDED
KALMAN FILTER FOR SYSTEMS WITH L2 TYPE DISTURBANCES

Moving from the discrete-time domain to the continuous-time domain, the

continuous-time EKF is analyzed. This EKF is designed for systems with zero

mean white noise and correlation between the process and measurement and has

been analyzed for systems that have L2 type disturbances. In previous work [9],

Reif et al. consider the stochastic stability for this EKF; this work continues to

move forward on the topic by analyzing the H∞-property of this EKF.

6.1 System Description and the EKF as a Nonlinear Observer

Consider the nonlinear continuous-time system and measurement

equations,

ẋ = f (x) + Ftw (6.1)

y = h(x) + Htw (6.2)

where x ∈ <n is the state, y ∈ <p is the measurement, f (x) and h(x) are known

analytic vector functions, the state and measurement disturbance coefficient

matrices are Ft ∈ <n×l and Ht ∈ <p×l, respectively, where the disturbance w ∈ <l

is white with zero mean and identity covariance.

When the EKF [28] is used to estimate the state, the estimate is computed

as

˙̂x = f (x̂) + Kt(y− h(x̂)) (6.3)

where Kt ∈ <n×p is the Kalman gain

Kt = (PtCT
t + FtHT

t )R−1
t (6.4)
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which is dependent on the solution of the associated matrix Riccati differential

equation

Ṗ =(At − FtHT
t R−1

t Ct)Pt + Pt(At − FtHT
t R−1

t Ct)
T (6.5)

− PtCT
t R−1

t CtPt + Qt − FtHT
t R−1

t HtFT
t

where Q ≥ 0 is an n× n matrix, R > 0 is a p× p matrix, and At and Ct are

defined below. The matrices, Q and R, are chosen positive definite and chosen as

Q , FtFT
t + εIn and R , HtHT

t where ε > 0 is arbitrary in the following

development. Also, the Riccati equation for the inverse of Pt > 0 is used:

d(P−1
t )

dt
=− P−1

t At −AT
t P−1

t (6.6)

+ CT
t R−1

t Ct − P−1
t QtP−1

t + P−1
t FtHT

t R−1
t HtFT

t P−1
t

with

At = At − FtHT
t R−1

t Ct (6.7)

which is obtained from (6.5) using Lemma 8.

The EKF is set up by using first order approximations of the nonlinearities

in the state and measurement using Taylor Series approximation evaluated at the

state estimate such that

f (x) ∼= f (x̂) + At(x− x̂) (6.8)

h(x) ∼= h(x̂) + Ct(x− x̂) (6.9)

where

At =
∂ f (x)

∂x

∣∣∣∣
x=x̂

and Ct =
∂h(x)

∂x

∣∣∣∣
x=x̂

(6.10)

Assumption 6.1. The pair (At, Ct) is uniformly observable, with ‖At‖i ≤ ā, ‖Ct‖i ≤ c̄

uniformly bounded in time.
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6.2 Error Analysis

The H∞-property of the EKF for continuous-time systems is investigated

for finite-energy disturbance, wk ∈ L2. The estimation error is defined as

e = x− x̂ (6.11)

The dynamics of the estimation error are obtained by using (6.1) and (6.3)

in the time derivative of (6.11) to give

ė = f (x) + Ftw− f (x̂)− Kt(y− h(x̂)) (6.12)

By using (6.2) and regrouping terms, (6.12) becomes

ė = f (x)− f (x̂)− Kt(h(x)− h(x̂)) + (Ft − KtHt)w (6.13)

Applying the approximations in (6.8) and (6.9) to the error dynamics in (6.13)

leads to

ė ∼= (At − KtCt)e + (Ft − KtHt)w (6.14)

which can also be written in matrix vector form as

ė ∼=
[

In −Kt

] Ate + Ftw

Cte + Htw

 (6.15)

Theorem 6.1. Consider the nonlinear system (6.1) and measurement equation (6.2),

with the disturbance taken as an element in L2. Let the state be estimated using an

extended Kalman filter, which was designed for white noise with zero mean and unit

covariance, with gain Kt from (6.4). With the conditions in Assumption 6.1, Lemma 9

holds. With these conditions, the energy of the estimation error is bounded as follows

∫ T

0
‖e‖2dt ≤ 1

ϕ1

(
e(0)TP(0)−1e(0) + ϕ2

∫ T

0
‖w‖2dt

)
(6.16)
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where

ϕ1 , inf
t
(λmin(Q̃t))− β (6.17)

ϕ2 , β−1 sup
t
(λmax(Φt)) (6.18)

Φt ,
[

FT
t HT

t

]  P−1
t

−KT
t P−1

t

 [P−1
t −P−1

t Kt

]  Ft

Ht

 (6.19)

and

Q̃t , P−1
t (Qt − FtHT

t R−1
t HtFT

t )P−1
t + CT

t R−1
t Ct > 0 (6.20)

when β > 0 is an arbitrary constant.

Proof. Lyapunov analysis is used to determine the convergence of the estimation

error in the presence of finite energy disturbances and obtain the H∞-gain. The

Lyapunov energy function candidate,

V(t) = eTP−1
t e (6.21)

is analyzed along the dynamics of the error (6.14) to verify that the energy

decreases over time. To this end, consider the following Lyapunov differential

equation

V̇(t) = eT d(P−1
t )

dt
e + 2eTP−1

t ė (6.22)

Applying the Kalman gain (6.4), and substituting (6.6) and (6.15) into (6.22) yields

V̇ ∼= eT(−P−1
t At −AT

t P−1
t + CT

t R−1
t Ct − P−1

t QtP−1
t + P−1

t FtHT
t R−1

t HtFT
t P−1

t )e

+ 2eTP−1
t

[
In −(PtCT

t + FtHT
t )R−1

] Ate + Ftw

Cte + Htw

 (6.23)

By collecting terms, (6.23) can be written as

V̇ = −eTQ̃te + 2eT
[

P−1
t −(CT

t + P−1
t FtHT

t )R−1

]  Ft

Ht

w (6.24)

where Q̃t is given by (6.20).
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To guarantee V̇ < 0 , an overall upper bound for (6.24) is established by

finding appropriate bounds for each term. The second term in (6.24) is bounded

using Lemma 10, which yields

eT
[

P−1
t −(CT

t + P−1
t FtHT

t )R−1

]  Ft

Ht

w

+ wT
[

FT
t HT

t

]  P−1
t

−R−1(CT
t + P−1

t FtHT
t )

T

 e (6.25)

≤ βeTe + β−1wTΦtw

with Φt in (6.19) and β > 0. Therefore, a sufficient condition for (6.22) to hold is

V̇ ≤ −eT(Q̃t − βIn)e + β−1wTΦtw (6.26)

To obtain an overall upper bound, the negative term is lower bounded and

the positive term is upper bounded using Lemma 3,

Q̃t − βIn ≥ inf
t
(λmin(Q̃t))− β , ϕ1 (6.27)

β−1 ‖Φt‖i ≤ β−1 sup
t
(λmax(Φt)) , ϕ2 (6.28)

yielding the inequality

V̇ ≤ −ϕ1‖e‖2 + ϕ2‖w‖2 < 0 (6.29)

Considering Lemma 9 in (6.27) and (6.28), ϕ1 and ϕ2 are both positive finite

constants under Assumption 6.1 for sufficiently small values of β.

To obtain the H∞-property, the ratio of the estimation error energy to the

disturbance energy is analyzed; (6.29) is integrated from t = 0 to t = T (for all

T ≥ 0) giving

V(T)−V(0) ≤ −ϕ1

∫ T

0
‖e‖2dt + ϕ2

∫ T

0
‖w‖2dt (6.30)
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and for V(T) ≥ 0,

−V(0) ≤ −ϕ1

∫ T

0
‖e‖2dt + ϕ2

∫ T

0
‖w‖2dt (6.31)

which can be rearranged as

∫ T

0
‖e‖2dt ≤ 1

ϕ1

(
V(0) + ϕ2

∫ T

0
‖w‖2dt

)
(6.32)

This result shows the relationship of the energy of the error to the initial

estimation error, V(0) = e(0)P(0)−1e(0), and the disturbance energy,
∫ T

0 ‖w‖
2dt,

with ϕ1 and ϕ2 defined in (6.17) and (6.18). �

6.3 Significance

If the initial estimate has zero error, the result (6.32) is the H∞-property

resulting in the H∞-gain below, ∫ T
0 ‖e‖

2∫ T
0 ‖w‖2

≤ ϕ2

ϕ1
(6.33)

where ϕ1 and ϕ2 are defined in (6.17) and (6.18), respectively.

On the other hand, if there is no disturbance in the system for t ≥ 0, then

(6.32) results in a special case that presents a bound on the estimation error

energy in terms of the initial conditions, V(0) = e(0)TP(0)−1e(0), i.e. the

H2-property of the EKF ∫ T

0
‖e‖2 ≤ 1

ϕ1
V(0) (6.34)

6.4 Simulations

Simulations are presented that demonstrate the H∞-property of the

continuous-time EKF. First, three cases are analyzed to show the necessity for

sufficiently small initial error and disturbance energy. These simulations show
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that for sufficiently small error in the initial estimate and disturbances with

sufficiently small energy, the estimation error is asymptotically stable,

accommodating the effect of the disturbances with a finite bound on the energy

gain. Then using the same initial estimate, simulations show that, even for a

stable system, sufficiently large disturbances render the estimation error unstable.

When the magnitude of the disturbance is reduced and the error in the initial

estimate is increased, the simulations show that there is a limit to the amount of

error allowed in the initial estimate. An additional study demonstrates how the

H∞-gain changes due to different disturbance magnitudes.

6.4.1 Effect of Initial Conditions and Disturbance Magnitude

The nonlinear system from [9] is used with modifications for a

finite-energy disturbance given by

ẋ =

 x2

−x1 + (x2
1 + x2

2 − 1)x2

+

0.2 1

0 0.1

w (6.35)

y = x1 +

[
0.1 0.1

]
w (6.36)

w = δ

e−0.5t

e−t

 (6.37)

where δ is the disturbance magnitude that is varied in the simulation cases below

and x(0) =
[

0.8 0.2

]T
.

Following the procedure for the EKF, the nonlinearities are linearized via a

Taylor Series approximation around the state estimate

∂ f
∂x

∣∣∣∣
x=x̂

=

 0 1

−1 + 2x̂1x̂2 x̂2
1 + 3x̂2

2 − 1

 = At (6.38)

∂h
∂x

∣∣∣∣
x=x̂

=

[
1 0

]
= Ct (6.39)
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These time varying matrices are used to calculate the solution to the Riccati

equation and the Kalman gain at each instance in time, with Q = FFT + I2,

R = HHT, and P(0) = I2. The first three cases analyzed via MATLAB simulation

are given in Table 6.1 along with the qualitative stability analysis.

Table 6.1: Initial values and disturbance magnitude effect on error

Case 1 Case 2 Case 3

x̂(0)
[
0.9 0.3

]T [
0.9 0.3

]T [
2.8 2.2

]T

Disturbance, δ 0.1 5 0.1

Error Stability Stable Unstable Unstable

Figures 6.1, 6.2, 6.3 6.4, 6.5, 6.6 6.7, 6.8, 6.9

Case 1 consists of a small error in the initial state estimate as well as a

small disturbance magnitude. Figures 6.1 and 6.2 show that for this

asymptotically stable system, the estimate is also asymptotically stable resulting

in the same performance for the estimation error, Figure 6.3. Using the same

initial value for the estimate, case 2 has a large magnitude for the finite energy

disturbance. Figures 6.4 and 6.5 show that with this larger disturbance, the

estimate does not track both state variables with Figure 6.6 showing the

estimation error as unstable. Case 3 has large error in the initial estimate of the

state with a small magnitude of the disturbance. Figures 6.7 and 6.8 show that

even though the state itself is stable, the estimate is unable to track it, causing the

unstable error response in Figure 6.9.
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Figure 6.1: Case 1 - x1 and the estimate of x1
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Figure 6.2: Case 1 - x2 and the estimate of x2
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Figure 6.3: Case 1 - Error between the state and the estimate
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Figure 6.4: Case 2 - x1 and the estimate of x1
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Figure 6.5: Case 2 - x2 and the estimate of x2
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Figure 6.6: Case 2 - Error between the state and the estimate
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Figure 6.7: Case 3 - x1 and the estimate of x1
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Figure 6.8: Case 3 - x2 and the estimate of x2
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Figure 6.9: Case 3 - Error between the state and the estimate

In addition to these three cases, the H∞-gain is studied for the same system

by setting the initial estimation error equal to zero and changing the amplitude of

the disturbance by varying δ from −0.2 to +0.2 in 0.004 increments. The left hand

side of (6.33) is approximated as the ratio of the Riemann sums of the numerator

and denominator. The results from this analysis are given in Figure 6.10, which

shows that the relationship between the disturbance magnitude and the H∞-gain

is nonlinear. Note that when there is no disturbance, δ = 0, one cannot obtain an

H∞-gain and is the reason for the gap at δ = 0.
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Figure 6.10: Second order system - H∞ analysis

6.4.2 H∞-Gain to Theoretical Bound Comparison - Sinusoidal Nonlinearity

Both the H∞-gain and the H∞-bound are analyzed for the following

mass-spring-damper system with a spring that has a sinusoidal nonlinearity

ẋ =

 x2

− sin(x1)− bx2

+

0.2 1

0 0.1

w (6.40)

y =

[
1 0

]
x +

[
0.1 0.1

]
w (6.41)

w = δ

e−1.5t

e−3.5t

 (6.42)

The initial conditions are

x(0) = x̂(0) =
[

0.1 0.1

]T
(6.43)

P(0) =

1 0

0 1

 (6.44)
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The disturbance magnitude, δ, is varied from −1 to +1 in 0.02 increments. The

Riemann sum method is used to approximate the left hand side of (6.33), the

H∞-gain. In addition, the simulation data is used to determine the right hand side

of (6.33), the H∞-bound, with β = 0.1 and ε = 1. These two values are compared

via a ratio of the H∞-gain from simulation to the theoretical H∞-bound. Since the

ratio in Figure 6.11 has values that are always positive and less than one, this

shows the H∞-bound is consistently greater than the H∞-gain and therefore

validates that, for this range of δ values, there is an H∞-property.
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Figure 6.11: Sinusoidal nonlinear system: H∞-gain and H∞-bound ratio

Since the response of the ratio in Figure 6.11 verifies that this system has an

H∞ property, it is of interest to observe how the H∞-gain itself varies with

differing disturbance magnitudes. Figure 6.12 shows a nonlinear relationship

between the H∞-gain and the disturbance magnitudes, with a smaller gain for

negative disturbance magnitudes and a larger response for disturbance
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magnitudes greater than zero.
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Figure 6.12: Sinusoidal nonlinear system: H∞-gain

6.4.3 H∞-Gain to Theoretical Bound Comparison - Cubic Nonlinearity

Again, the H∞-gain and the H∞-bound are analyzed, this time for the

following mass-spring-damper system with a spring that has a cubic nonlinearity

ẋ =

 x2

−x3
1 − bx2

+

0.2 1

0 0.1

w (6.45)

y =

[
1 0

]
x +

[
0.1 0.1

]
w (6.46)

w = δ

e−1.5t

e−3.5t

 (6.47)
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The initial conditions are

x(0) = x̂(0) =
[

0.1 0.1

]T
(6.48)

P(0) =

1 0

0 1

 (6.49)

The disturbance magnitude, δ, is varied from −1 to +1 in 0.02 increments. The

Riemann sum method is used to approximate the left hand side of (6.33), the

H∞-gain. In addition, the simulation data is used to determine the right hand side

of (6.33), the H∞-bound, with β = 0.1 and ε = 1. These two values are compared

via a ratio of the H∞-gain from simulation to the theoretical H∞-bound. Since the

ratio in Figure 6.13 has values that are always positive and less than one, this

shows the H∞-bound is consistently greater than the H∞-gain and therefore

validates that, for this range of δ values, there is an H∞-property.
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Figure 6.13: Cubic nonlinear system: H∞-gain and H∞-bound ratio
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When observing how the H∞-gain varies with differing disturbance

magnitudes, Figure 6.14 shows a nonlinear relationship between the H∞-gain and

the disturbance magnitudes. This system has a different relationship to that seen

for the system with the sinusoidal nonlinearity.
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Figure 6.14: Cubic nonlinear system: H∞-gain

These examples have highlighted various aspects regarding the

H∞-propety of the continuous-time EKF. The first case studies show that there is a

limit to both the initial error as well as the amount of disturbance energy

regarding the convergence of the estimation error. The second and third examples

show that while both exhibit the H∞-property in the respective disturbance

magnitude ranges, the actual H∞-gain is quite different for the two systems.

6.5 Summary

The continuous-time extended Kalman filter used as a nonlinear observer

is analyzed for the H∞-property. The H2-property of the estimation error when



115

the disturbance is absent follows as a special case of this result. Simulation studies

are presented to validate the results. It is proven mathematically and verified by

simulations that, in addition to the noise filtering, the EKF has the H∞-property,

where the estimation error energy to disturbance energy ratio is finite if the initial

estimation error and the disturbance magnitude are sufficiently small.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The ubiquitous discrete-time extended Kalman filter is analyzed for its

ability to attenuate finite-energy disturbances. The property of specific interest is

the H∞-property. Knowledge of this property gives a designer insight into the

effectiveness of their extended Kalman filter in the face of finite-energy

disturbances and it is shown that a bound can be calculated based on system

parameters. Variations of the discrete-time extended Kalman filter are analyzed

for both general convergence and the H∞-property. Lastly, this work is extended

to continuous-time, where the continuous-time extended Kalman filter is shown

to also inherently possess the H∞-property.

7.1 Summary

This dissertation began by introducing finite-energy disturbances, which

are essential to consider H∞. The definition of H∞ is such that for a disturbance

with bounded or finite-energy, the energy of the estimation error is also bounded.

This works reveals the H∞-property in EKFs designed for various models

through the use of Lyapunov convergence techniques.

The first EKF that is analyzed is the basic EKF designed for systems with

white noise. In Chapter 2, the development for this EKF in the direct form is

provided rather than the more commonly used form of the EKF algorithm, the

predict-update form. By using the EKF in the direct form, fewer assumptions are

required on the system compared to previous works that analyze the EKF in the

predict-update form. Once the EKF is defined, it is applied to a noise-free system

and Lyapunov analysis is performed. In the Lyapunov analysis, there are steps in
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the derivation where, by taking advantage of the direct form of the EKF, the

inequalities are of a form to apply the Schur complement when proving positive

definiteness making the derivations easier and with less restrictive results. At the

end of the Lyapunov analysis, it is shown that the EKF used for a noise-free

system would converge under Assumption 2.1, the pair (Ak, Ck) is uniformly

observable, with ‖Ak‖i ≤ ā, ‖Ck‖i ≤ c̄, ‖Fk‖i ≤ f̄ , and ‖Hk‖i ≤ h̄ uniformly

bounded in time, without having to make assumptions on the invertibility of the

system Jacobian as in previous work. To analyze if the EKF also inherently has

the H2-property, the summation of both sides of the inequality is taken from 0 to

any integer T > 0. Simulations are provided that compare the H2-gain from

simulation to the theoretical bound which validate the result by showing that the

bound is never exceeded.

Similarly, the same EKF used in Chapter 2 is used in Chapter 3 for systems

with finite-energy disturbances. Using the direct form of the EKF in the

Lyapunov analysis, it is possible to show convergence of this EKF. Additionally,

taking the summation of the resulting inequality from the Lyapunov analysis,

bounds on the H∞- and H2-properties are developed. Simulations are provided to

demonstrate that initial conditions and disturbance magnitude both affect the

convergence of the estimation error. For sufficiently small disturbance magnitude

and initial error, the estimation error of the EKF will converge. Additionally, the

ratio between the H∞-gain from simulation to the theoretical bound is analyzed

and shows the bound is never exceeded.

In Chapter 4, the system used in the EKF design is a system model with

uncertain measurements. Unlike the previous system model, this model has a

measurement that always contains noise and randomly may or may not also

include the measured signal. The development of this modified EKF is provided

in the direct form. In the Lyapunov analysis, there are extra terms due to the
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uncertainty in the measurements, which leads to finite-time H∞- and

H2-properties. Simulations are performed that show the effect of the disturbance

magnitude and initial conditions on the boundedness of the estimation error.

Additionally the ratio of the H∞-gain to theoretical bound is analyzed for varying

disturbances magnitudes as well as different run time values. The simulations

show that the bound is never exceeded for systems that met the conditions in

Assumption 4.1, the pair (Ak, Ck) is uniformly observable, with ‖Ak‖i ≤ ā,

‖Ck‖i ≤ c̄, ‖Fk‖i ≤ f̄ , ‖Hk‖i ≤ h̄, and ‖h(xk)‖ ≤ αh uniformly bounded in time. A

special case of this result is shown in Chapter 5 for uncertain measurement

models that have a simultaneously failing sensors. Simulations, similar to those

in Chapter 4, are performed to observe the effect of initial conditions and

disturbance magnitude on the H∞-gain and bound.

Chapter 6 moved into the continuous-time domain, in which the

continuous-time EKF was analyzed using Lyapunov analysis. It was shown that,

similar to what was seen with the discrete-time EKF, this EKF inherently has the

H∞- and H2-properties. Simulations show that these properties, along with

general convergence, rely heavily on the initial conditions, disturbance

magnitude, and the severity of the nonlinearities.

Additionally, the discrete-time EKFs applied to the various models in

Chapters 2 through 5 are simulated using similar nonlinear systems with varying

severity: sinusoidal, quadratic, and cubic. It is consistently seen in each chapter,

that for large enough disturbance magnitudes, the least severe nonlinearity,

sinusoidal, is the least conservative result while the most severe nonlinearity,

cubic, is the most conservative result. Therefore, it is inferred through simulation

that systems with more severe nonlinearities are more likely to fail system

assumptions when there is a large initial error or large disturbance magnitude.
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7.2 Conclusions

In conducting this research, it is discovered that the inherent relationship

between the Riccati difference equation and the Lyapunov difference inequality

could be exploited in the convergence analysis of the EKF. This relationship is

used in combination with the Schur Complement, Lemma 4, to show positive

definiteness in the Lyapunov convergence analysis. By applying the Schur

complement in the Lyapunov inequality, an equivalent condition for positive

definiteness is given. This new condition has many terms that cancel due to the

similarities between the Riccati difference equation and the Lyapunov difference

inequality. The benefit of this relationship to the convergence analysis is

discovered due to the discrete-time EKF being analyzed in the direct form. The

ability to exploit this relationship in the convergence proof can continue to be

investigated with other variations of the discrete-time and continuous-time EKFs.

7.3 Future Work

This work is just the beginning of error convergence and energy analysis

on extended Kalman filters represented in the direct form. Deeper analysis into

simulation results presented in this dissertation can be performed. In Chapter 2, it

can be investigated as to why Figure 2.3 has the minimum of the H2 ratio of the

gain from simulation to the theoretical bound approximately along the 30◦ line

and the maximum approximately along the 120◦ line.

The sampling period used in many of the simulations was T = 0.01s. This

caused the nonlinearity in some of the cases to appear negligible compared to the

noise in the system. The investigation of the sample period’s affect on the

accuracy of the bound can be performed. Key points to consider are: 1) if the

shape of the ratio between the gain from simulation to the theoretical bound
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changes with different sampling periods and 2) how the sampling period affects

the accuracy, based on whether the resulting ratio is larger or smaller than that

presented in this dissertation.

The choice of the Lyapunov function candidate used throughout this

dissertation enables the exploitation of the relationship between the Lyapunov

difference inequality and the Riccati difference equations allowing for the proof

of positive definiteness and upper boundedness at critical points in the

derivations. However, the choice of the Lyapunov function candidate can be

changed in an attempt to achieve a tighter bound.

This work could be extended to the most general EKF in [23] which would

add uncertainty on the estimation gain. The techniques herein could also be

applied to various EKFs for systems with stochastic nonlinearities [29], [30] or for

systems with the nonlinearity as a function of both the state variables and the

disturbances. Additionally, the linear unbiased state estimator for systems with

random sensor delays [31] could be extended for nonlinear systems followed by

convergence, H2, and H∞ analysis.
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APPENDIX A

MATLAB CODE

The MATLAB code used for all of the simulations in this dissertation are

contained in this Appendix.

A.1 Chapter 2 MATLAB Code

A.1.1 Convergence Study

close all

clear

%% Set initial values

tau = .1;

runTime = 100;

maxerror1 = 50;

stepsize = .1;

maxerror = maxerror1/stepsize;

errorRange = (2* maxerror +1);

n = 2;

p = 1;

%% set up the constant matrices and create the noise

Q = eye(n);

R = eye(p);

%% Set the initial state and run the original system

x(:,1) = [.2 ; .1];

for k=1: runTime;
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% Set up the system

f(:,k) = [x(1,k)+tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

h(:,k) = x(1,k);

x(:,k+1) = f(:,k);

y(:,k) = h(:,k);

end

for i = 1:8

%% Initialize and clean up the signals

x_hat = zeros(n,runTime);

y_hat = zeros(p,runTime);

f_hat = zeros(n,runTime);

h_hat = zeros(p,runTime);

P = zeros(n,n,( runTime));

A = zeros(n,n,( runTime));

Ct= zeros(p,n,( runTime));

K = zeros(n,p,( runTime));

normx = zeros(1,runTime);

normxhat = zeros(1,runTime);

norme = zeros(1,runTime);

norme2 = zeros(1,runTime);

min_eig_gamma1 = zeros(1,runTime);

%% Initialize the error in polar coordinates

rho = 5;

theta = [0 45 90 135 180 225 270 315];

initerror = [rho*cos(pi*theta(i)/180) ; rho*sin(pi*theta(i

)/180) ];
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%% Set the initial estimate and apply the EKF

x_hat (:,1) = x(:,1) - initerror;

P(:,:,1) = eye(n);

for k = 1: runTime;

% Set up the system

A(:,:,k) = [1 , tau ; -tau*cos(x_hat(1,k)) , 1];

C(:,:,k) = [1 , 0];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-tau

*sin(x_hat(1,k))];

h_hat(:,k) = x_hat(1,k);

y_hat(:,k) = h_hat(k);

% Kalman Gain

K(:,:,k) = (A(:,:,k)*P(:,:,k)*C(:,:,k)')*inv(C(:,:,k)*P

(:,:,k)*C(:,:,k)'+R);

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(:,:,k)*C(:,:,k))*P(:,:,k)*(A(:,:,

k)-K(:,:,k)*C(:,:,k))' + Q + K(:,:,k)*R*K(:,:,k)';

end

%% Calculate Error and 2-Norm

e(:,:,i)=x-x_hat;

for j=1: runTime

norme(j) = norm(e(:,j,i) ,2);

norme2(j) = norme(j)^2;



128

eig_gamma= eig(inv(P(:,:,j)) - (A(:,:,j)-K(:,:,j)*C(:,:,j)

) '*inv(P(:,:,j+1))*(A(:,:,j)-K(:,:,j)*C(:,:,j)));

min_eig_gamma(j) = min(eig_gamma);

end

inf_gamma = min(min_eig_gamma);

H2_bound(i) = 1/ inf_gamma;

%% Sum over simulation time

sum_e = sum(norme2);

V0 = e(:,1) '*P(:,:,1)*e(:,1);

H2(i) = sum_e/V0;

end

%% plots

e_0(:,:) = e(:,:,1);

e_45 (:,:) = e(:,:,2);

e_90 (:,:) = e(:,:,3);

e_135 (:,:) = e(:,:,4);

e_180 (:,:) = e(:,:,5);

e_225 (:,:) = e(:,:,6);

e_270 (:,:) = e(:,:,7);

e_315 (:,:) = e(:,:,8);

ratio_ST=H2./ H2_bound;

deg_range = 0:45:360;

rad_range = 0:pi /4:2*pi;

t = 0: runTime;

figure (1)
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plot(t,e_0(1,:),t,e_45 (1,:),t,e_90 (1,:),t,e_135 (1,:),t,

e_180 (1,:),t,e_225 (1,:),t,e_270 (1,:),t,e_315 (1,:))

xlabel('Time , k','FontSize ' ,12)

ylabel('e_{1,k}','FontSize ' ,12)

legend('e_0 = [5 0]^T','e_0 = [3.5355 3.5355]^T','e_0 = [0

5]^T','e_0 = [ -3.5355 3.5355]^T','e_0 = [-5 0]^T','e_0

= [ -3.5355 -3.5355]^T','e_0 = [0 -5]^T','e_0 = [3.5355

-3.5355]^T','FontSize ' ,12)

figure (2)

plot(t,e_0(2,:),t,e_45 (2,:),t,e_90 (2,:),t,e_135 (2,:),t,

e_180 (2,:),t,e_225 (2,:),t,e_270 (2,:),t,e_315 (2,:))

xlabel('Time , k','FontSize ' ,12)

ylabel('e_{2,k}','FontSize ' ,12)

legend('e_0 = [5 0]^T','e_0 = [3.5355 3.5355]^T','e_0 = [0

5]^T','e_0 = [ -3.5355 3.5355]^T','e_0 = [-5 0]^T','e_0

= [ -3.5355 -3.5355]^T','e_0 = [0 -5]^T','e_0 = [3.5355

-3.5355]^T','FontSize ' ,12)

A.1.2 H2 Analysis for f (y) = sin(y)

NOTE: This is also modified for f (y) = y2 and f (y) = y3.

close all

clear

tau = .1;

runTime = 100;

maxerror1 = 50;

stepsize = .1;
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maxerror = maxerror1/stepsize;

errorRange = (2* maxerror +1);

n = 2;

p = 1;

%% set up the constant matrices and create the noise

Q = eye(n);

R = eye(p);

%% Set the initial state and run the original system

x(:,1) = [.2 ; .1];

for k=1: runTime;

% Set up the system

f(:,k) = [x(1,k)+tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

h(:,k) = x(1,k);

x(:,k+1) = f(:,k);

y(:,k) = h(:,k);

end

% Sweep 360 degrees

for m = 1:361

%Increase the radius from stepsize to maxerror

for i = 1:3

%% Initialize and clean up the signals

x_hat = zeros(n,runTime);

y_hat = zeros(p,runTime);

f_hat = zeros(n,runTime);

h_hat = zeros(p,runTime);

P = zeros(n,n,( runTime));
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A = zeros(n,n,( runTime));

Ct= zeros(p,n,( runTime));

K = zeros(n,p,( runTime));

normx = zeros(1,runTime);

normxhat = zeros(1,runTime);

norme = zeros(1,runTime);

norme2 = zeros(1,runTime);

min_eig_gamma1 = zeros(1,runTime);

%% Initialize the error in polar coordinates

rho = [5 25 50];

theta = m-1;

initerror = [rho(i)*cos(pi*theta /180) ; rho(i)*sin(pi*

theta /180)];

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x(:,1) - initerror;

P(:,:,1) = eye(n);

for k = 1: runTime;

% Set up the system

A(:,:,k) = [1 , tau ; -tau*cos(x_hat(1,k)) , 1];

C(:,:,k) = [1 , 0];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-tau

*sin(x_hat(1,k))];

h_hat(:,k) = x_hat(1,k);

y_hat(:,k) = h_hat(k);

% Kalman Gain
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K(:,:,k) = (A(:,:,k)*P(:,:,k)*C(:,:,k)')*inv(C(:,:,k)*P

(:,:,k)*C(:,:,k)'+R);

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(:,:,k)*C(:,:,k))*P(:,:,k)*(A(:,:,

k)-K(:,:,k)*C(:,:,k))' + Q + K(:,:,k)*R*K(:,:,k)';

end

%% Calculate Error and 2-Norm

e=x-x_hat;

for j=1: runTime

norme(j) = norm(e(:,j) ,2);

norme2(j) = norme(j)^2;

eig_gamma= eig(inv(P(:,:,j)) - (A(:,:,j)-K(:,:,j)*C(:,:,j)

) '*inv(P(:,:,j+1))*(A(:,:,j)-K(:,:,j)*C(:,:,j)));

min_eig_gamma(j) = min(eig_gamma);

end

inf_gamma = min(min_eig_gamma);

H2_bound(i,m) = 1/ inf_gamma;

%% Sum over simulation time

sum_e = sum(norme2);

V0 = e(:,1) '*P(:,:,1)*e(:,1);

H2(i,m) = sum_e/V0;

end

end

%% plots
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ratio_ST=H2./ H2_bound;

deg_range = 0:360;

rad_range = 0:pi /180:2* pi;

figure (1)

polar(rad_range ,ratio_ST (1,:),'--k')

hold on

polar(rad_range ,ratio_ST (2,:),'-.b')

polar(rad_range ,ratio_ST (3,:),'-r')

legend('||e_0|| = 5','||e_0|| = 25','||e_0|| = 50')

A.2 Chapter 3 MATLAB Code

A.2.1 Second Order System with Three Cases of Initial Conditions and
Disturbance Magnitude

To use this code, change the run vector to have a 1 for the case number of

interested, e.g. run = [0 1 0]; for case 2.

clear

global K

%% Select which cases to run

run = [0 0 1];

%% Case 1

tau = .01;

runTime = 1001;

F = [10^( -3) , 0 ; 0 , 0];

H = [0 , 10^( -1/2)];

caseNum = 1*run(1);

x_hat0= [.5 ; .5];
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dt_ekf_v3(tau ,runTime ,F,H,caseNum ,x_hat0)

if run (1) == 1

for j=1: runTime

eig_FFt(j) = min(eig((F-K(1:2,j)*H)*(F-K(1:2,j)*H)'));

end

case1FFt = min(eig_FFt)

end

%% Case 2

tau = 0.01;

runTime = 2001;

F = [10^-2 , 0 ; 0 , 0];

H = [0 , 10^(1/2) ];

caseNum = 2*run(2);

x_hat0 = [.5 ; .5];

dt_ekf_v3(tau ,runTime ,F,H,caseNum ,x_hat0)

if run (2) == 1

for j=1: runTime

eig_FFt(j) = min(eig((F-K(1:2,j)*H)*(F-K(1:2,j)*H)'));

end

case2FFt = min(eig_FFt)

end

%% Case 3

tau = 0.01;

runTime = 2001;

F = [10^( -3) , 0 ; 0 , 0];

H = [0 , 10^( -1/2)];
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caseNum = 3*run(3);

x_hat0 = [2.5 ; -2.7];

dt_ekf_v3(tau ,runTime ,F,H,caseNum ,x_hat0)

if run (3) == 1

for j=1: runTime

eig_FFt(j) = min(eig((F-K(1:2,j)*H)*(F-K(1:2,j)*H)'));

end

case3FFt = min(eig_FFt)

end

This is the code for the function called in the above code:

function dt_ekf_v3(tau ,runTime ,F,H,caseNum ,x_hat0)

%% If the case number is 0, just exit , else run the

function through

if caseNum ~= 0

clear w x y x_hat y_hat P A At C Ct K

global K

%% Set the initial state and run the original system

x(1:2 ,1) = [.8;.2];

for k=1: runTime;

% Set up the system

w(:,k) = exp ( -.001*k)*[randn;randn];

f(1:2,k) = [x(1,k)+tau*x(2,k);

x(2,k)+tau*(-x(1,k)+(x(1,k)^2+x(2,k)^2-1)*x(2,k))];

h(1:1,k) = x(1,k);

x(1:2,k+1) = f(1:2,k)+F*w(:,k);

y(1:1,k) = h(1:1,k)+H*w(:,k);
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end

%% Set the initial estimate and apply the EKF

x_hat (1:2 ,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

A(:,:,k) = [1tau ;

(-1+2* x_hat(1,k)*x_hat(2,k))*tau (1+( x_hat(1,k)^2+3*

x_hat(2,k)^2-1)*tau)];

Ct(1:2,k) = [1 0]';

f_hat (1:2,k) = [x_hat(1,k)+tau*x_hat(2,k) ;

x_hat(2,k)+tau*(-x_hat(1,k)+(x_hat(1,k)^2+ x_hat(2,k)

^2-1)*x_hat(2,k))];

h_hat (1:1,k) = x_hat(1,k);

y_hat (1:1,k) = Ct(:,k)'*x_hat (1:2,k);

% Kalman Gain

K(1:2,k) = (A(:,:,k)*P(:,:,k)*Ct(:,k)+F*H')*inv(Ct(:,k)

'*P(:,:,k)*Ct(:,k)+H*H');

% State Estimate

x_hat (1:2,k+1) = f_hat (1:2,k)+K(1:2,k)*(y(1:1,k)-y_hat

(1:1,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(1:2,k)*Ct(:,k)')*P(:,:,k)*(A(:,:,

k)-K(1:2,k)*Ct(:,k) ') '+(F-K(1:2,k)*H)*(F-K(1:2,k)*H) ';

end

%% Calculate Error and 2-Norms
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e(:,:)=x(:,:)-x_hat (:,:);

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);

norme(j)= norm(e(:,j) ,2);

normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

end

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf = sum_e/sum_w

% %% Create plots

str=sprintf('Case Number %d:',caseNum);

t = [0: runTime -1];

% Figure 1

figure ((caseNum -1) *3+1)

plot(t,x(1,1: runTime),'k',t,x_hat (1,1: runTime),'b--')

legend('x_{1,k}','x hat_{1,k}')

xlabel('Time Steps','Fontsize ' ,12)

ylabel('State and Estimate Norm','Fontsize ' ,12)

% Figure 2
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figure ((caseNum -1) *3+2)

plot(t,x(2,1: runTime),'k',t,x_hat (2,1: runTime),'b--')

legend('x_{2,k}','x hat_{2,k}')

xlabel('Time Steps','Fontsize ' ,12)

ylabel('State and Estimate Norm','Fontsize ' ,12)

% Figure 3

figure ((caseNum -1) *3+3)

plot(t,norme ,'k')

xlabel('Steps ','Fontsize ' ,12)

ylabel('\mid\mid e_k \mid\mid','Fontsize ' ,12)

disp([str ' Completed '])

end

end

A.2.2 Scalar System with the Disturbance Magnitude Varied and Monte Carlo

clear all

tau = .01;

numRuns = 100;

runTime = 1001;

initF = 10^(1);

initH = 10^( -1);

x_hat0= .2;

distRange = 501;

stepSize = .2;

%% If the case number is 0, just exit , else run the

function through
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for m = 1: numRuns

for i = 1: distRange

dist_mag = (i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;

H = dist_mag*initH;

%% Set the initial state and run the original system

x(1) = .2;

for k=1: runTime;

% Set up the system

w(k) = exp ( -0.001*k)*randn;

f(k) = x(k)+tau*sin(x(k));

h(k) = x(k);

x(k+1) = f(k)+F*w(k);

y(k) = h(k)+H*w(k);

end

%% Set the initial estimate and apply the EKF

x_hat (1) = x_hat0;

P(1) = 1;

for k = 1: runTime;

% Set up the system

A(k) = 1+tau*cos(x_hat(k));

C(k) = 1;

f_hat(k) = x_hat(k)+tau*sin(x_hat(k));

h_hat(k) = x_hat(k);
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y_hat(k) = h_hat(k);

% Kalman Gain

K(k) = (A(k)*P(k)*C(k)+F*H)/(C(k)*P(k)*C(k)+H*H);

% State Estimate

x_hat(k+1) = f_hat(k)+K(k)*(y(k)-y_hat(k));

% Riccati Difference Equation

P(k+1) = (A(k)-K(k)*C(k))*P(k)*(A(k)-K(k)*C(k))+(F-K(k)*H)

*(F-K(k)*H);

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(j) ,2);

normxhat(j) = norm(x_hat(j) ,2);

norme(j)= norm(e(j) ,2);

normw(j)= norm(w(j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_gamma1= eig (1/(P(j)) -(A(j)-K(j)*C(j))*(A(j)-K(j)*C(j))

/(P(j+1)));

min_eig_gamma1(j) = min(eig_gamma1);

eig_gamma2= eig((F-K(j)*H)*(F-K(j)*H)/(P(j+1)));

max_eig_gamma2(j) = max(eig_gamma2);
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end

FFt = min(eig((F-K(j)*H)*(F-K(j)*H)));

inf_gamma1 = min(min_eig_gamma1);

sup_gamma2=max(max_eig_gamma2);

Hinf_bound(i,m) = sup_gamma2/inf_gamma1;

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf(i,m) = sum_e/sum_w;

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

end

end

end

HinfMC = mean(Hinf ','omitnan ');

Hinf_boundMC = mean(Hinf_bound ','omitnan ');

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

figure (24)

plot(t,HinfMC ,'k',t,Hinf_boundMC ,'--k')

xlabel('\delta ','FontSize ' ,14)

ylabel('Magnitude ','FontSize ' ,12)

legend('Actual H_\infty -gain','H_\infty -bound ')

ratio_ST=HinfMC ./ Hinf_boundMC;
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figure (25)

plot(t,ratio_ST ,'k')

xlabel('\delta ','FontSize ' ,14)

ylabel('actual to theoretical ratio ','FontSize ' ,12)

A.2.3 H∞ Analysis of Three Different Nonlinearities

clear all

index = 15;

tau = .1;

numRuns = 100;

runTime = 101;

initF = [0.02 0.1 ; 0 0.01];

initH = [0.1 0.1];

distRange = 201;

stepSize = .01;

b=5;

%% If the case number is 0, just exit , else run the

function through

for nonlinearity = 1:3;

nonlinearity

for m = 1: numRuns

for i = 1: distRange

dist_mag = -(i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;
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H = dist_mag*initH;

%% Set the initial state and run the original system

x(:,1) = [.2;.5];

x_hat0 = x(:,1);

for k=1: runTime;

w(:,k) = [.9^k*randn ; .9^k*randn];

if nonlinearity == 1

f(:,k) = [x(1,k) + tau*x(2,k) ; (1-tau*b)*x(2,k)-tau*sin(x

(1,k))];

elseif nonlinearity == 2

f(:,k) = [x(1,k) + tau*x(2,k) ; (1-tau*b)*x(2,k)-tau*x(1,k

)^2];

else

f(:,k) = [x(1,k) + tau*x(2,k) ; (1-tau*b)*x(2,k)-tau*x(1,k

)^3];

end

h(:,k) = [x(1,k)];

x(:,k+1) = f(:,k)+F*w(:,k);

y(:,k) = h(:,k)+H*w(:,k);

end

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

if nonlinearity == 1
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A(:,:,k)= [1 , tau ; -tau*cos(x_hat(1,k)) , 1-tau*b];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; (1-tau*b)*

x_hat(2,k)-tau*sin(x_hat(1,k))];

elseif nonlinearity == 2

A(:,:,k)= [1 , tau ; -2*tau*x_hat(1,k) , 1-tau*b];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; (1-tau*b)*

x_hat(2,k)-tau*x_hat(1,k)^2];

else

A(:,:,k)= [1 , tau ; -3*tau*x_hat(1,k)^2 , 1-tau*b];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; (1-tau*b)*

x_hat(2,k)-tau*x_hat(1,k)^3];

end

Ct(:,:,k)= [1;0]; % I need to store it as a column vector

so I am makeing C^T here

h_hat(:,k) = [x_hat(1,k)];

y_hat(:,k) = h_hat(:,k);

obsvCheck(k) = rank(obsv(A(:,:,k),Ct(:,:,k) '));

% Kalman Gain

K(:,:,k) = (A(:,:,k)*P(:,:,k)*Ct(:,:,k)+F*H')*inv(Ct(:,:,k

) '*P(:,:,k)*Ct(:,:,k)+H*H');

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(:,:,k)*Ct(:,:,k) ')*P(:,:,k)*(A

(:,:,k)-K(:,:,k)*Ct(:,:,k)') '+(F-K(:,:,k)*H)*(F-K(:,:,k

)*H)';
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end

if min(obsvCheck) ~= 2

min(obsvCheck)

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);

norme(j)= norm(e(:,j) ,2);

normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_phi1= eig(inv(P(:,:,j))-(A(:,:,j)-K(:,:,j)*Ct(:,:,j) ')

'*inv(P(:,:,j+1))*(A(:,:,j)-K(:,:,j)*Ct(:,:,j)'));

min_eig_phi1(j) = min(eig_phi1);

if min_eig_phi1(j) <= 0

sprintf('T = %d, dist = %d',runTime ,dist_mag)

end

eig_phi2= eig((F-K(:,:,j)*H) '*inv(P(:,:,j+1))*(F-K(:,:,j)*

H));

max_eig_phi2(j) = max(eig_phi2);
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eig_FFt = eig((F-K(:,:,j)*H)*(F-K(:,:,j)*H)');

min_eig_FFt(j) = min(eig_FFt);

end

inf_FFt = min(eig_FFt);

inf_phi1 = min(min_eig_phi1);

sup_phi2=max(max_eig_phi2);

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf_bound(i,m) = (sup_phi2/inf_phi1);

Hinf(i,m) = sum_e/sum_w;

ratio(i,m) = Hinf(i,m)/Hinf_bound(i,m);

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

ratio(i,m) = NaN;

end

end

end

ratioMC = mean(ratio ','omitnan ');

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

str = sprintf('%d Monte Carlo',numRuns);

figure(index)
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hold on

if nonlinearity == 1

plot(t,ratioMC ,'k')

elseif nonlinearity == 2

plot(t,ratioMC ,'b')

else

plot(t,ratioMC ,'g')

end

xlabel('\delta ','FontSize ' ,14)

ylabel('H_\infty Ratio','FontSize ' ,12)

title(str)

end

figure(index)

legend('f(y) = sin(y)','f(y) = y^2','f(y) = y^3')

A.3 Chapter 4 MATLAB Code

A.3.1 H∞ Analysis of f (y) = sin(y) with Three Different Run Times

NOTE: This is also modified for f (y) = y2 and f (y) = y3.

clear all

index = 12;

tau = .01;

Gamma_bar = [0.90 0; 0 0.90];

upsilon = Gamma_bar *(eye(2)-Gamma_bar);

numRuns = 100;

runTime_all = [10;30;50];
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initF = [.02 .1;0 .01];

initH = [0.1 0.1;0 0.001];

distRange = 401;

stepSize = .1;

%% If the case number is 0, just exit , else run the

function through

for runTime_index = 1:3;

runTime = runTime_all(runTime_index);

for m = 1: numRuns

for i = 1: distRange

dist_mag = (i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;

H = dist_mag*initH;

%% Set the initial state and run the original system

x(:,1) = [.2;.5];

x_hat0 = x(:,1);

g1 = 7;

g2 = 5;

for k=1: runTime;

% Set up the system

% Self generate bernoulli RVs

if g1 >9

gamma1(k) = 0;

g1 = 1;
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else

gamma1(k) = 1;

g1 = g1+1;

end

if g2 >9

gamma2(k) = 0;

g2 = 1;

else

gamma2(k) = 1;

g2 = g2+1;

end

% gamma(k) = binornd(1,lambda);

Gamma(:,:,k) = [gamma1(k) 0 ; 0 gamma2(k)];

w(:,k) = [exp ( -0.001*k)*randn ; exp ( -0.01*k)*randn ];

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

h(:,k) = [x(1,k) ; x(2,k)];

x(:,k+1) = f(:,k)+F*w(:,k);

y(:,k) = Gamma(:,:,k)*h(:,k)+H*w(:,k);

end

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

A(:,:,k)= [1 , tau ; -tau*cos(x_hat(1,k)) , 1];

C(:,:,k)= eye(2);
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f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*sin(x_hat(1,k))];

h_hat(:,k) = [x_hat(1,k);x_hat(2,k)];

y_hat(:,k) = Gamma_bar*h_hat(:,k);

obsvCheck(k) = rank(obsv(A(:,:,k),C(:,:,k)));

% Kalman Gain

K(:,:,k) = (A(:,:,k)*P(:,:,k)*C(:,:,k)'*Gamma_bar '+F*H')*

inv(upsilon .*(C(:,:,k)*P(:,:,k)*C(:,:,k)'+h_hat(:,k)*

h_hat(:,k)')+Gamma_bar*C(:,:,k)*P(:,:,k)*C(:,:,k)'*

Gamma_bar '+H*H');

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(:,:,k)*Gamma_bar*C(:,:,k))*P(:,:,

k)*(A(:,:,k)-K(:,:,k)*Gamma_bar*C(:,:,k)) '+(F-K(:,:,k)*

H)*(F-K(:,:,k)*H) '+K(:,:,k)*( upsilon .*(C(:,:,k)*P(:,:,k

)*C(:,:,k) '+h_hat(:,k)*h_hat(:,k) '))*K(:,:,k) ';

end

if min(obsvCheck) ~= 2

min(obsvCheck)

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);
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norme(j)= norm(e(:,j) ,2);

normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_phi1= eig(inv(P(:,:,j))-(A(:,:,j)-K(:,:,j)*Gamma_bar*C

(:,:,j)) '*inv(P(:,:,j+1))*(A(:,:,j)-K(:,:,j)*Gamma_bar*

C(:,:,j))-C(:,:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j+1)

)*K(:,:,j)))*C(:,:,j));

min_eig_phi1(j) = min(eig_phi1);

if min_eig_phi1(j) <= 0

sprintf('T = %d, dist = %d',runTime ,dist_mag)

end

eig_phi2= eig((F-K(:,:,j)*H) '*inv(P(:,:,j+1))*(F-K(:,:,j)*

H));

max_eig_phi2(j) = max(eig_phi2);

eig_phi3= eig(h_hat(:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j

+1))*K(:,:,j)))*h_hat(:,j));

max_eig_phi3(j) = max(eig_phi3);

eig_FFt = eig((F-K(:,:,j)*H)*(F-K(:,:,j)*H)');

min_eig_FFt(j) = min(eig_FFt);

end

inf_FFt = min(eig_FFt);

inf_phi1 = min(min_eig_phi1);
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sup_phi2=max(max_eig_phi2);

sup_phi3=max(max_eig_phi3);

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf_bound(i,m) = (sup_phi2/inf_phi1);

Hinf(i,m) = sum_e/sum_w;

ratio01(i,m) = inf_phi1*sum_e/( sup_phi2*sum_w+sup_phi3 *(

runTime +1+1));

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

ratio01(i,m) = NaN;

end

end

end

HinfMC = mean(Hinf ','omitnan ');

Hinf_boundMC = mean(Hinf_bound ','omitnan ');

ratio01MC = mean(ratio01 ','omitnan ');

ratioMC = HinfMC ./ Hinf_boundMC;

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

str = sprintf('%d Monte Carlo',numRuns);

figure(index +1)

hold on
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if runTime_index == 1

plot(t,ratioMC ,'k')

elseif runTime_index == 2

plot(t,ratioMC ,'b')

else

plot(t,ratioMC ,'g')

end

xlabel('\delta ','FontSize ' ,14)

ylabel('H_\infty Ratio','FontSize ' ,12)

title(str)

end

figure(index +1)

legend('T=10','T=30','T=50')

A.3.2 H∞ Analysis of Three Different Nonlinearities

clear all

index = 13;

tau = .01;

Gamma_bar = [0.90 0; 0 0.90];

upsilon = Gamma_bar *(eye(2)-Gamma_bar);

numRuns = 100;

runTime = 30;

initF = [.02 .1;0 .01];

initH = [0.1 0.1;0 0.001];

distRange = 401;

stepSize = .1;
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for nonlinearity = 1:3;

for m = 1: numRuns

for i = 1: distRange

dist_mag = (i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;

H = dist_mag*initH;

%% Set the initial state and run the original system

x(:,1) = [.2;.5];

x_hat0 = x(:,1);

g1 = 7;

g2 = 5;

for k=1: runTime;

% Set up the system

% Self generate bernoulli RVs

if g1 >9

gamma1(k) = 0;

g1 = 1;

else

gamma1(k) = 1;

g1 = g1+1;

end

if g2 >9

gamma2(k) = 0;

g2 = 1;
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else

gamma2(k) = 1;

g2 = g2+1;

end

% gamma(k) = binornd(1,lambda);

Gamma(:,:,k) = [gamma1(k) 0 ; 0 gamma2(k)];

w(:,k) = [exp ( -0.001*k)*randn ; exp ( -0.01*k)*randn ];

if nonlinearity == 1

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

elseif nonlinearity == 2

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*x(1,k)^2];

else

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*x(1,k)^3];

end

h(:,k) = [x(1,k) ; x(2,k)];

x(:,k+1) = f(:,k)+F*w(:,k);

y(:,k) = Gamma(:,:,k)*h(:,k)+H*w(:,k);

end

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

if nonlinearity == 1

A(:,:,k)= [1 , tau ; -tau*cos(x_hat(1,k)) , 1];
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f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*sin(x_hat(1,k))];

elseif nonlinearity == 2

A(:,:,k)= [1 , tau ; -2*tau*x_hat(1,k) , 1];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*x_hat(1,k)^2];

else

A(:,:,k)= [1 , tau ; -3*tau*x_hat(1,k)^2 , 1];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*x_hat(1,k)^3];

end

C(:,:,k)= eye(2);

h_hat(:,k) = [x_hat(1,k);x_hat(2,k)];

y_hat(:,k) = Gamma_bar*h_hat(:,k);

obsvCheck(k) = rank(obsv(A(:,:,k),C(:,:,k)));

% Kalman Gain

K(:,:,k) = (A(:,:,k)*P(:,:,k)*C(:,:,k)'*Gamma_bar '+F*H')*

inv(upsilon .*(C(:,:,k)*P(:,:,k)*C(:,:,k)'+h_hat(:,k)*

h_hat(:,k)')+Gamma_bar*C(:,:,k)*P(:,:,k)*C(:,:,k)'*

Gamma_bar '+H*H');

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-K(:,:,k)*Gamma_bar*C(:,:,k))*P(:,:,

k)*(A(:,:,k)-K(:,:,k)*Gamma_bar*C(:,:,k)) '+(F-K(:,:,k)*
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H)*(F-K(:,:,k)*H) '+K(:,:,k)*( upsilon .*(C(:,:,k)*P(:,:,k

)*C(:,:,k) '+h_hat(:,k)*h_hat(:,k) '))*K(:,:,k) ';

end

if min(obsvCheck) ~= 2

min(obsvCheck)

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);

norme(j)= norm(e(:,j) ,2);

normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_phi1= eig(inv(P(:,:,j))-(A(:,:,j)-K(:,:,j)*Gamma_bar*C

(:,:,j)) '*inv(P(:,:,j+1))*(A(:,:,j)-K(:,:,j)*Gamma_bar*

C(:,:,j))-C(:,:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j+1)

)*K(:,:,j)))*C(:,:,j));

min_eig_phi1(j) = min(eig_phi1);

if min_eig_phi1(j) <= 0

sprintf('T = %d, dist = %d',runTime ,dist_mag)

end
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eig_phi2= eig((F-K(:,:,j)*H) '*inv(P(:,:,j+1))*(F-K(:,:,j)*

H));

max_eig_phi2(j) = max(eig_phi2);

eig_phi3= eig(h_hat(:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j

+1))*K(:,:,j)))*h_hat(:,j));

max_eig_phi3(j) = max(eig_phi3);

eig_FFt = eig((F-K(:,:,j)*H)*(F-K(:,:,j)*H)');

min_eig_FFt(j) = min(eig_FFt);

end

inf_FFt = min(eig_FFt);

inf_phi1 = min(min_eig_phi1);

sup_phi2=max(max_eig_phi2);

sup_phi3=max(max_eig_phi3);

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf_bound(i,m) = (sup_phi2/inf_phi1);

Hinf(i,m) = sum_e/sum_w;

ratio01(i,m) = inf_phi1*sum_e/( sup_phi2*sum_w+sup_phi3 *(

runTime +1+1));

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

ratio01(i,m) = NaN;

end

end
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end

ratio = Hinf./ Hinf_bound;

ratioMC = mean(ratio ','omitnan ');

ratio01MC = mean(ratio01 ','omitnan ');

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

str = sprintf('%d Monte Carlo',numRuns);

figure(index +1)

hold on

if nonlinearity == 1

plot(t,ratioMC ,'k')

elseif nonlinearity == 2

plot(t,ratioMC ,'b')

else

plot(t,ratioMC ,'g')

end

xlabel('\delta ','FontSize ' ,14)

ylabel('H_\infty Ratio','FontSize ' ,12)

title(str)

end

figure(index +1)

legend('f(y) = sin(y)','f(y) = y^2','f(y) = y^3')
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A.4 Chapter 5 MATLAB Code

A.4.1 H∞ Analysis of f (y) = sin(y) with Three Different Run Times

NOTE: This is also modified for f (y) = y2 and f (y) = y3.

clear all

index = 6;

tau = .01;

Gamma_bar = 0.90;

upsilon = Gamma_bar *(1- Gamma_bar);

numRuns = 100;

runTime_all = [10;30;50];

initF = [.02 0.1 ; 0 .01];

initH = [0.1 0.1];

distRange = 301;

stepSize = .1;

for runTime_index = 1:3;

runTime = runTime_all(runTime_index);

for m = 1: numRuns

for i = 1: distRange

dist_mag = (i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;

H = dist_mag*initH;

%% Set the initial state and run the original system

x(:,1) = [.2;.5];
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x_hat0 = x(:,1);

g1 = 4;

for k=1: runTime;

% Set up the system

% Self generate bernoulli RVs

if g1 >9

gamma1(k) = 0;

g1 = 1;

else

gamma1(k) = 1;

g1 = g1+1;

end

% gamma(k) = binornd(1,lambda);

w(:,k) = [exp ( -0.001*k)*randn ; exp ( -0.01*k)*randn ];

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

h(:,k) = x(1,k);

x(:,k+1) = f(:,k)+F*w(:,k);

y(:,k) = gamma1(k)*h(:,k)+H*w(:,k);

end

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

A(:,:,k)= [1 , tau ; -tau*cos(x_hat(1,k)) , 1];

Ct(:,:,k) = [1;0];



162

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*sin(x_hat(1,k))];

h_hat(:,k) = x_hat(1,k);

y_hat(:,k) = Gamma_bar*h_hat(:,k);

obsvCheck(k) = rank(obsv(A(:,:,k),Ct(:,:,k) '));

% Kalman Gain

K(:,:,k) = (Gamma_bar*A(:,:,k)*P(:,:,k)*Ct(:,:,k)+F*H')*

inv(upsilon *(Ct(:,:,k) '*P(:,:,k)*Ct(:,:,k)+h_hat(:,k)*

h_hat(:,k)')+( Gamma_bar ^2)*Ct(:,:,k)'*P(:,:,k)*Ct(:,:,k

)+H*H');

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-Gamma_bar*K(:,:,k)*Ct(:,:,k) ')*P

(:,:,k)*(A(:,:,k)-Gamma_bar*K(:,:,k)*Ct(:,:,k)') '+(F-K

(:,:,k)*H)*(F-K(:,:,k)*H)'+upsilon*K(:,:,k)*(Ct(:,:,k)

'*P(:,:,k)*Ct(:,:,k)+h_hat(:,k)*h_hat(:,k) ')*K(:,:,k) ';

end

if min(obsvCheck) ~= 2

min(obsvCheck)

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);
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norme(j)= norm(e(:,j) ,2);

normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_phi1= eig(inv(P(:,:,j))-(A(:,:,j)-Gamma_bar*K(:,:,j)*

Ct(:,:,j) ') '*inv(P(:,:,j+1))*(A(:,:,j)-Gamma_bar*K(:,:,

j)*Ct(:,:,j)')-upsilon*Ct(:,:,j)*K(:,:,j)'*inv(P(:,:,j

+1))*K(:,:,j)*Ct(:,:,j) ');

min_eig_phi1(j) = min(eig_phi1);

if min_eig_phi1(j) <= 0

sprintf('T = %d, dist = %d',runTime ,dist_mag)

end

eig_phi2= eig((F-K(:,:,j)*H) '*inv(P(:,:,j+1))*(F-K(:,:,j)*

H));

max_eig_phi2(j) = max(eig_phi2);

eig_phi3= eig(h_hat(:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j

+1))*K(:,:,j)))*h_hat(:,j));

max_eig_phi3(j) = max(eig_phi3);

eig_FFt = eig((F-K(:,:,j)*H)*(F-K(:,:,j)*H)');

min_eig_FFt(j) = min(eig_FFt);

end

inf_FFt(i,m) = min(eig_FFt);

inf_phi1(i,m) = min(min_eig_phi1);
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sup_phi2(i,m)=max(max_eig_phi2);

sup_phi3(i,m)=max(max_eig_phi3);

%% Sum over simulation time

sum_e(i,m) = sum(norme2_bar);

sum_w(i,m) = sum(normw2_bar);

Hinf_bound(i,m) = (sup_phi2(i,m)/inf_phi1(i,m));

Hinf(i,m) = sum_e(i,m)/sum_w(i,m);

ratio01(i,m) = inf_phi1(i,m)*sum_e(i,m)/( sup_phi2(i,m)*

sum_w(i,m)+sup_phi3(i,m)*( runTime +1+1));

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

ratio01(i,m) = NaN;

end

end

end

ratio = Hinf./ Hinf_bound;

ratioMC = mean(ratio ','omitnan ');

ratio01MC = mean(ratio01 ','omitnan ');

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

str = sprintf('%d Monte Carlo',numRuns);

figure(index +1)

hold on

if runTime_index == 1
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plot(t,ratioMC ,'k')

elseif runTime_index == 2

plot(t,ratioMC ,'b')

else

plot(t,ratioMC ,'g')

end

xlabel('\delta ','FontSize ' ,14)

ylabel('H_\infty Ratio','FontSize ' ,12)

title(str)

end

figure(index +1)

legend('T=10','T=30','T=50')

A.4.2 H∞ Analysis of Three Different Nonlinearities

clear all

index = 1;

tau = .01;

Gamma_bar = 0.90;

upsilon = Gamma_bar *(1- Gamma_bar);

numRuns = 100;

runTime = 30;

initF = [.02 0.1 ; 0 .01];

initH = [0.1 0.1];

distRange = 301;

stepSize = .1;

for nonlinearity = 1:3;
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for m = 1: numRuns

for i = 1: distRange

dist_mag = (i-(( distRange -1)/2) -1)*stepSize;

if dist_mag ~= 0

%% set up the constant matrices and create the noise

F = dist_mag*initF;

H = dist_mag*initH;

%% Set the initial state and run the original system

x(:,1) = [.2;.5];

x_hat0 = x(:,1);

g1 = 4;

for k=1: runTime;

% Set up the system

% Self generate bernoulli RVs

if g1 >9

gamma1(k) = 0;

g1 = 1;

else

gamma1(k) = 1;

g1 = g1+1;

end

% gamma(k) = binornd(1,lambda);

w(:,k) = [exp ( -0.001*k)*randn ; exp ( -0.01*k)*randn ];

if nonlinearity == 1

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*sin(x(1,k))];

elseif nonlinearity == 2
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f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*x(1,k)^2];

else

f(:,k) = [x(1,k) + tau*x(2,k) ; x(2,k)-tau*x(1,k)^3];

end

h(:,k) = x(1,k);

x(:,k+1) = f(:,k)+F*w(:,k);

y(:,k) = gamma1(k)*h(:,k)+H*w(:,k);

end

%% Set the initial estimate and apply the EKF

x_hat (:,1) = x_hat0;

P(:,:,1) = eye (2);

for k = 1: runTime;

% Set up the system

if nonlinearity == 1

A(:,:,k)= [1 , tau ; -tau*cos(x_hat(1,k)) , 1];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*sin(x_hat(1,k))];

elseif nonlinearity == 2

A(:,:,k)= [1 , tau ; -2*tau*x_hat(1,k) , 1];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*x_hat(1,k)^2];

else

A(:,:,k)= [1 , tau ; -3*tau*x_hat(1,k)^2 , 1];

f_hat(:,k) = [x_hat(1,k) + tau*x_hat(2,k) ; x_hat(2,k)-

tau*x_hat(1,k)^3];

end
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Ct(:,:,k) = [1;0];

h_hat(:,k) = x_hat(1,k);

y_hat(:,k) = Gamma_bar*h_hat(:,k);

obsvCheck(k) = rank(obsv(A(:,:,k),Ct(:,:,k) '));

% Kalman Gain

K(:,:,k) = (Gamma_bar*A(:,:,k)*P(:,:,k)*Ct(:,:,k)+F*H')*

inv(upsilon *(Ct(:,:,k) '*P(:,:,k)*Ct(:,:,k)+h_hat(:,k)*

h_hat(:,k)')+( Gamma_bar ^2)*Ct(:,:,k)'*P(:,:,k)*Ct(:,:,k

)+H*H');

% State Estimate

x_hat(:,k+1) = f_hat(:,k)+K(:,:,k)*(y(:,k)-y_hat(:,k));

% Riccati Difference Equation

P(:,:,k+1) = (A(:,:,k)-Gamma_bar*K(:,:,k)*Ct(:,:,k) ')*P

(:,:,k)*(A(:,:,k)-Gamma_bar*K(:,:,k)*Ct(:,:,k)') '+(F-K

(:,:,k)*H)*(F-K(:,:,k)*H)'+upsilon*K(:,:,k)*(Ct(:,:,k)

'*P(:,:,k)*Ct(:,:,k)+h_hat(:,k)*h_hat(:,k) ')*K(:,:,k) ';

end

if min(obsvCheck) ~= 2

min(obsvCheck)

end

%% Calculate Error and 2-Norms

e=x-x_hat;

for j=1: runTime

normx(j)= norm(x(:,j) ,2);

normxhat(j) = norm(x_hat(:,j) ,2);

norme(j)= norm(e(:,j) ,2);
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normw(j)= norm(w(:,j) ,2);

norme2(j)= norme(j)^2;

normw2(j)= normw(j)^2;

%% Sampled mean at each time step

norme2_bar(j) = (1/j)*sum(norme2 (1:j));

normw2_bar(j) = (1/j)*sum(normw2 (1:j));

eig_phi1= eig(inv(P(:,:,j))-(A(:,:,j)-Gamma_bar*K(:,:,j)*

Ct(:,:,j) ') '*inv(P(:,:,j+1))*(A(:,:,j)-Gamma_bar*K(:,:,

j)*Ct(:,:,j)')-upsilon*Ct(:,:,j)*K(:,:,j)'*inv(P(:,:,j

+1))*K(:,:,j)*Ct(:,:,j) ');

min_eig_phi1(j) = min(eig_phi1);

if min_eig_phi1(j) <= 0

sprintf('T = %d, dist = %d',runTime ,dist_mag)

end

eig_phi2= eig((F-K(:,:,j)*H) '*inv(P(:,:,j+1))*(F-K(:,:,j)*

H));

max_eig_phi2(j) = max(eig_phi2);

eig_phi3= eig(h_hat(:,j) '*(upsilon .*(K(:,:,j) '*inv(P(:,:,j

+1))*K(:,:,j)))*h_hat(:,j));

max_eig_phi3(j) = max(eig_phi3);

eig_FFt = eig((F-K(:,:,j)*H)*(F-K(:,:,j)*H)');

min_eig_FFt(j) = min(eig_FFt);

end

inf_FFt = min(eig_FFt);

inf_phi1 = min(min_eig_phi1);

sup_phi2=max(max_eig_phi2);
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sup_phi3=max(max_eig_phi3);

%% Sum over simulation time

sum_e = sum(norme2_bar);

sum_w = sum(normw2_bar);

Hinf_bound(i,m) = (sup_phi2/inf_phi1);

Hinf(i,m) = sum_e/sum_w;

ratio01(i,m) = inf_phi1*sum_e/( sup_phi2*sum_w+sup_phi3 *(

runTime +1+1));

else

Hinf(i,m) = NaN;

Hinf_bound(i,m) = NaN;

ratio01(i,m) = NaN;

end

end

end

ratio = Hinf./ Hinf_bound;

ratioMC = mean(ratio ','omitnan ');

ratio01MC = mean(ratio01 ','omitnan ');

%% plots

t=-((distRange -1)/2)*stepSize:stepSize :(( distRange -1) /2)*

stepSize;

str = sprintf('%d Monte Carlo',numRuns);

figure(index +1)

hold on

if nonlinearity == 1

plot(t,ratioMC ,'k')
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elseif nonlinearity == 2

plot(t,ratioMC ,'b')

else

plot(t,ratioMC ,'g')

end

xlabel('\delta ','FontSize ' ,14)

ylabel('H_\infty Ratio','FontSize ' ,12)

title(str)

end

figure(index +1)

legend('f(y) = sin(y)','f(y) = y^2','f(y) = y^3')

A.5 Chapter 6 MATLAB Code

A.5.1 Second Order System

NOTE: This is modified for the various examples in Chapter 6 of the dissertation.

clear all

close all

fntsz = 12;

%% Global Variables

global F H Q Rinv dist_mag dist_tc1 dist_tc2 dist_freq b

%% Set up disturbance parameters

dist_tc1 = 0.5;

dist_tc2 = 1;

dist_freq = 2;

b=5;
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%% Debug Flag

debug = 1;

%% Begin loop for different parameters

for i = 1:3

clear Xs t X0 txs txtemp normx normxhat w e C P mat eigMat

maxeig supeig

%% DEBUG Mode Printout

if debug == 1

disp(['i = ', num2str(i)]);

end;

%% Define time span and initial state condition

t = 0:.01:30;

x0 = [0.8;0.2];

%%% Determine distrubance magnitude and initial estimate

%%%%%%%%%%%%%%

if i == 1

dist_mag = .1;

xhat0 = x0+[ -.1; -.1];

elseif i == 2

dist_mag = 5;

xhat0 = x0+[ -.1; -.1];

else

dist_mag = .1;

xhat0 = x0+[-2;-2];

end

F = [.2 1;0 .1];
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H = [.1 .1];

%% Set up the EKF around eq point [0;0]

Q= eye (2);

R= 1;

Rinv = 1/R;

P0 = [1 0;0 1];

beta = .1;

%% Calcualte the norm of the estimate of the inital

condition

est_error_norm = norm(xhat0 -x0 ,2);

%% Form the initial condition for the ODE solver

X0 = [P0(1,1);P0(1,2);P0(2,2);x0;xhat0 ];

%% DEBUG Mode Printout

if debug == 1

disp('The EKF is set up');

end;

%% Set up ODE

% Set the tolerance and run two ODEs: the first ODE is

for the state

% as standalone (Xtemp) - this is done to obtain a more

accurate

% result for x(t) when xhat becomes unstable , the second

ODE solves x,

% xhat and P to obtain the error dynamics

tol = 1e-9;% <= default is 1e-3

options = odeset('RelTol ',tol);
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[txtemp ,Xtemp] = ode45('ct_sys_eq ',t,x0,options);

[txs ,Xs] = ode45('ctekf_ric_eq ',t,X0,options);

maxTC=length(txs);

for j=1: maxTC

P = [Xs(j,1),Xs(j,2);Xs(j,2),Xs(j,3)];

C = [1,0];

QT = inv(P)*(Q-F*H'*Rinv*H*F')*inv(P)+C'*Rinv*C;

eigQT = eig(QT);

mineigQT(j) = min(eigQT);

gam2=[F',H']*[ inv(P);-Rinv*(C+H*F'*inv(P))]*[inv(P),-(C'+

inv(P)*F*H')*Rinv ]*[F;H];

eigGam2=eig(gam2);

maxeigGam2(j)=max(eigGam2);

end

gamma2(i) = (1/ beta)*max(maxeigGam2)

gamma1(i) = min(mineigQT)-beta

Hinf_bound = gamma2(i)/gamma1(i)

%% DEBUG Mode Printout

if debug == 1

disp('The EKF was computed ');

end;

sizetx = size(txtemp);

maxt = sizetx (1)

for j=1: maxt

normx(j) = norm(Xtemp(j,1:2) ,2);

end
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sizetxhat = size(txs);

maxt = sizetxhat (1)

for j=1: maxt

normxhat(j) = norm(Xs(j,6:7) ,2);

end

%% Plots of x(t) and xhat(t)

% Use a subplot to show x(t) and the estimate

% Use the standalone solution for x(t) to ensure a

numerically stable

% solution

figure('color ', 'w')

plot(txs ,Xs(:,4),'b-',txs ,Xs(:,6),'m--','LineWidth ' ,2)

legend('x_1','x hat_1')

xlabel('Time','FontSize ',fntsz)

ylabel('Magnitude ','FontSize ',fntsz)

figure('color ', 'w')

plot(txs ,Xs(:,5),'b-',txs ,Xs(:,7),'m--','LineWidth ' ,2)

legend('x_2','x hat_2')

xlabel('Time','FontSize ',fntsz)

ylabel('Magnitude ','FontSize ',fntsz)

%% DEBUG Mode Printout

if debug == 1

disp('The state and estimates plot was created ');

end;

%% Plots of the error

% Calculate the error



176

e = Xs(: ,4:5)-Xs(: ,6:7);

% Plot the error

figure('color ', 'w')

plot(txs ,e(:,1),'b-',txs ,e(:,2),'m--','LineWidth ' ,2)

xlabel('Time','FontSize ',fntsz)

ylabel('Error ','FontSize ',fntsz)

legend('x_1 error','x_2 error')

%% Calculate the Hinf gain 03/23/2015

% First Error energy (integral of norm ^2), then

disturbance energy

% Then find ratio

% 03/23/2015

disturbanceT=zeros(2,maxt) ';

for j=1: maxt

disturbanceT(j,:) = dist_mag *[exp(-dist_tc1*txs(j));exp(-

dist_tc2*txs(j))]'; %dist_mag*exp(-dist_tc*txs(j))*sin

(2*pi*dist_freq*txs(j));

end

eEnergy =0;

wEnergy =0;

for j=1:maxt -1

delt=txs(j+1)-txs(j);

eEnergy=eEnergy + [norm(e(j,:))^2]* delt;

wEnergy=wEnergy + [norm(disturbanceT(j,:))^2]* delt;

end

eEnergy
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wEnergy

Hinf=eEnergy/wEnergy

%% DEBUG Mode Printout

if debug == 1

disp('The error plot was created ');

end

end

This is the code for the system model function:

function xdot=ct_sys_eq(t,y)

global F H Q Rinv dist_mag dist_tc1 dist_tc2 dist_freq b

xdot= zeros (2,1);

x = [y(1);y(2)];

w= dist_mag *[exp(-dist_tc1*t);exp(-dist_tc2*t)]; %dist_mag

*exp(-dist_tc*t).*sin (2*pi*dist_freq*t);

xdot = [x(2);-x(1)+(x(1) ^2+x(2)^2-1)*x(2)]+F*w;

This is the code for the Riccati differential equation function:

function xdotv=ctekf_ric_eq(t,y)

global F H Q Rinv dist_mag dist_tc1 dist_tc2 dist_freq b

xdotv= zeros (7,1);

P= [y(1) y(2);y(2) y(3)];

x= [y(4);y(5)];

xhat = [y(6);y(7)];

A= [0 , 1 ; -1+2* xhat (1)*xhat (2) , xhat (1) ^2+3* xhat (2)

^2 -1];

C= [1 0];
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w= dist_mag *[exp(-dist_tc1*t);exp(-dist_tc2*t)]; %dist_mag

*exp(-dist_tc*t).*sin (2*pi*dist_freq*t);

Pdot = (A-F*H'*Rinv*C)*P+P*(A-F*H'*Rinv*C)'+Q-P*C'*Rinv*C*

P-F*H'*Rinv*H*F';

xdotv (1) = Pdot (1,1);

xdotv (2) = Pdot (1,2);

xdotv (3) = Pdot (2,2);

xdot = [x(2);-x(1)+(x(1) ^2+x(2)^2-1)*x(2)]+F*w;

xdotv (4) = xdot (1);

xdotv (5) = xdot (2);

K= (P*C'+F*H')*Rinv;

xhatdot = [xhat (2);-xhat (1)+(xhat (1)^2+ xhat (2)^2-1)*xhat

(2)]+K*(C*x+H*w-C*xhat);

xdotv (6) = xhatdot (1);

xdotv (7) = xhatdot (2);
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